Search results for: estimation after selection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4184

Search results for: estimation after selection

2894 Methodology for the Analysis of Energy Efficiency in Pneumatics Systems

Authors: Mario Lupaca, Karol Munoz, Victor De Negri

Abstract:

The present article presents a methodology for the improvement of the energy efficiency in pneumatic systems through the restoring of air. In this way, three techniques of expansion of a cylinder are identified: Expansion using the air of the compressor (conventional), restoring the air (efficient), and combining the air of the compressor and the restored air (hybrid). The methodology starts with the development of the GRAFCET of the system so that it can be decided whether to expand the cylinder in a conventional, efficient, or hybrid way. The methodology can be applied to any case. Finally, graphs of comparison between the three methods of expansion with certain cylinder strokes and workloads are presented, to facilitate the subsequent selection of one system or another.

Keywords: energetic, efficiency, GRAFCET, methodology, pneumatic

Procedia PDF Downloads 311
2893 The Role of Logistics Services in Influencing Customer Satisfaction and Reviews in an Online Marketplace

Authors: nafees mahbub, blake tindol, utkarsh shrivastava, kuanchin chen

Abstract:

Online shopping has become an integral part of businesses today. Big players such as Amazon are setting the bar for delivery services, and many businesses are working towards meeting them. However, what happens if a seller underestimates or overestimates the delivery time? Does it translate to consumer comments, ratings, or lost sales? Although several prior studies have investigated the impact of poor logistics on customer satisfaction, that impact of under estimation of delivery times has been rarely considered. The study uses real-time customer online purchase data to study the impact of missed delivery times on satisfaction.

Keywords: LOST SALES, DELIVERY TIME, CUSTOMER SATISFACTION, CUSTOMER REVIEWS

Procedia PDF Downloads 214
2892 Application of Adaptive Particle Filter for Localizing a Mobile Robot Using 3D Camera Data

Authors: Maysam Shahsavari, Seyed Jamalaldin Haddadi

Abstract:

There are several methods to localize a mobile robot such as relative, absolute and probabilistic. In this paper, particle filter due to its simple implementation and the fact that it does not need to know to the starting position will be used. This method estimates the position of the mobile robot using a probabilistic distribution, relying on a known map of the environment instead of predicting it. Afterwards, it updates this estimation by reading input sensors and control commands. To receive information from the surrounding world, distance to obstacles, for example, a Kinect is used which is much cheaper than a laser range finder. Finally, after explaining the Adaptive Particle Filter method and its implementation in detail, we will compare this method with the dead reckoning method and show that this method is much more suitable for situations in which we have a map of the environment.

Keywords: particle filter, localization, methods, odometry, kinect

Procedia PDF Downloads 269
2891 Matrix Completion with Heterogeneous Cost

Authors: Ilqar Ramazanli

Abstract:

The matrix completion problem has been studied broadly under many underlying conditions. The problem has been explored under adaptive or non-adaptive, exact or estimation, single-phase or multi-phase, and many other categories. In most of these cases, the observation cost of each entry is uniform and has the same cost across the columns. However, in many real-life scenarios, we could expect elements from distinct columns or distinct positions to have a different cost. In this paper, we explore this generalization under adaptive conditions. We approach the problem under two different cost models. The first one is that entries from different columns have different observation costs, but within the same column, each entry has a uniform cost. The second one is any two entry has different observation cost, despite being the same or different columns. We provide complexity analysis of our algorithms and provide tightness guarantees.

Keywords: matroid optimization, matrix completion, linear algebra, algorithms

Procedia PDF Downloads 109
2890 Application of Principal Component Analysis and Ordered Logit Model in Diabetic Kidney Disease Progression in People with Type 2 Diabetes

Authors: Mequanent Wale Mekonen, Edoardo Otranto, Angela Alibrandi

Abstract:

Diabetic kidney disease is one of the main microvascular complications caused by diabetes. Several clinical and biochemical variables are reported to be associated with diabetic kidney disease in people with type 2 diabetes. However, their interrelations could distort the effect estimation of these variables for the disease's progression. The objective of the study is to determine how the biochemical and clinical variables in people with type 2 diabetes are interrelated with each other and their effects on kidney disease progression through advanced statistical methods. First, principal component analysis was used to explore how the biochemical and clinical variables intercorrelate with each other, which helped us reduce a set of correlated biochemical variables to a smaller number of uncorrelated variables. Then, ordered logit regression models (cumulative, stage, and adjacent) were employed to assess the effect of biochemical and clinical variables on the order-level response variable (progression of kidney function) by considering the proportionality assumption for more robust effect estimation. This retrospective cross-sectional study retrieved data from a type 2 diabetic cohort in a polyclinic hospital at the University of Messina, Italy. The principal component analysis yielded three uncorrelated components. These are principal component 1, with negative loading of glycosylated haemoglobin, glycemia, and creatinine; principal component 2, with negative loading of total cholesterol and low-density lipoprotein; and principal component 3, with negative loading of high-density lipoprotein and a positive load of triglycerides. The ordered logit models (cumulative, stage, and adjacent) showed that the first component (glycosylated haemoglobin, glycemia, and creatinine) had a significant effect on the progression of kidney disease. For instance, the cumulative odds model indicated that the first principal component (linear combination of glycosylated haemoglobin, glycemia, and creatinine) had a strong and significant effect on the progression of kidney disease, with an effect or odds ratio of 0.423 (P value = 0.000). However, this effect was inconsistent across levels of kidney disease because the first principal component did not meet the proportionality assumption. To address the proportionality problem and provide robust effect estimates, alternative ordered logit models, such as the partial cumulative odds model, the partial adjacent category model, and the partial continuation ratio model, were used. These models suggested that clinical variables such as age, sex, body mass index, medication (metformin), and biochemical variables such as glycosylated haemoglobin, glycemia, and creatinine have a significant effect on the progression of kidney disease.

Keywords: diabetic kidney disease, ordered logit model, principal component analysis, type 2 diabetes

Procedia PDF Downloads 39
2889 Application of Multilinear Regression Analysis for Prediction of Synthetic Shear Wave Velocity Logs in Upper Assam Basin

Authors: Triveni Gogoi, Rima Chatterjee

Abstract:

Shear wave velocity (Vs) estimation is an important approach in the seismic exploration and characterization of a hydrocarbon reservoir. There are varying methods for prediction of S-wave velocity, if recorded S-wave log is not available. But all the available methods for Vs prediction are empirical mathematical models. Shear wave velocity can be estimated using P-wave velocity by applying Castagna’s equation, which is the most common approach. The constants used in Castagna’s equation vary for different lithologies and geological set-ups. In this study, multiple regression analysis has been used for estimation of S-wave velocity. The EMERGE module from Hampson-Russel software has been used here for generation of S-wave log. Both single attribute and multi attributes analysis have been carried out for generation of synthetic S-wave log in Upper Assam basin. Upper Assam basin situated in North Eastern India is one of the most important petroleum provinces of India. The present study was carried out using four wells of the study area. Out of these wells, S-wave velocity was available for three wells. The main objective of the present study is a prediction of shear wave velocities for wells where S-wave velocity information is not available. The three wells having S-wave velocity were first used to test the reliability of the method and the generated S-wave log was compared with actual S-wave log. Single attribute analysis has been carried out for these three wells within the depth range 1700-2100m, which corresponds to Barail group of Oligocene age. The Barail Group is the main target zone in this study, which is the primary producing reservoir of the basin. A system generated list of attributes with varying degrees of correlation appeared and the attribute with the highest correlation was concerned for the single attribute analysis. Crossplot between the attributes shows the variation of points from line of best fit. The final result of the analysis was compared with the available S-wave log, which shows a good visual fit with a correlation of 72%. Next multi-attribute analysis has been carried out for the same data using all the wells within the same analysis window. A high correlation of 85% has been observed between the output log from the analysis and the recorded S-wave. The almost perfect fit between the synthetic S-wave and the recorded S-wave log validates the reliability of the method. For further authentication, the generated S-wave data from the wells have been tied to the seismic and correlated them. Synthetic share wave log has been generated for the well M2 where S-wave is not available and it shows a good correlation with the seismic. Neutron porosity, density, AI and P-wave velocity are proved to be the most significant variables in this statistical method for S-wave generation. Multilinear regression method thus can be considered as a reliable technique for generation of shear wave velocity log in this study.

Keywords: Castagna's equation, multi linear regression, multi attribute analysis, shear wave logs

Procedia PDF Downloads 229
2888 Learning to Teach in Large Classrooms: Training Faculty Members from Milano Bicocca University, from Didactic Transposition to Communication Skills

Authors: E. Nigris, F. Passalacqua

Abstract:

Relating to the recent researches in the field of faculty development, this paper aims to present a pilot training programme realized at the University of Milano-Bicocca to improve teaching skills of faculty members. A total of 57 professors (both full professors and associate professors) were trained during the pilot programme in three editions of the workshop, focused on promoting skills for teaching large classes. The study takes into account: 1) the theoretical framework of the programme which combines the recent tradition about professional development and the research on in-service training of school teachers; 2) the structure and the content of the training programme, organized in a 12 hours-full immersion workshop and in individual consultations; 3) the educational specificity of the training programme which is based on the relation between 'general didactic' (active learning metholodies; didactic communication) and 'disciplinary didactics' (didactic transposition and reconstruction); 4) results about the impact of the training programme, both related to the workshop and the individual consultations. This study aims to provide insights mainly on two levels of the training program’s impact ('behaviour change' and 'transfer') and for this reason learning outcomes are evaluated by different instruments: a questionnaire filled out by all 57 participants; 12 in-depth interviews; 3 focus groups; conversation transcriptions of workshop activities. Data analysis is based on a descriptive qualitative approach and it is conducted through thematic analysis of the transcripts using analytical categories derived principally from the didactic transposition theory. The results show that the training programme developed effectively three major skills regarding different stages of the 'didactic transposition' process: a) the content selection; a more accurated selection and reduction of the 'scholarly knowledge', conforming to the first stage of the didactic transposition process; b) the consideration of students’ prior knowledge and misconceptions within the lesson design, in order to connect effectively the 'scholarly knowledge' to the 'knowledge to be taught' (second stage of the didactic transposition process); c) the way of asking questions and managing discussion in large classrooms, in line with the transformation of the 'knowledge to be taught' in 'taught knowledge' (third stage of the didactic transposition process).

Keywords: didactic communication, didactic transposition, instructional development, teaching large classroom

Procedia PDF Downloads 138
2887 QCARNet: Networks for Quality-Adaptive Compression Artifact

Authors: Seung Ho Park, Young Su Moon, Nam Ik Cho

Abstract:

We propose a convolution neural network (CNN) for quality adaptive compression artifact reduction named QCARNet. The proposed method is different from the existing discriminative models that learn a specific model at a certain quality level. The method is composed of a quality estimation CNN (QECNN) and a compression artifact reduction CNN (CARCNN), which are two functionally separate CNNs. By connecting the QECNN and CARCNN, each CARCNN layer is able to adaptively reduce compression artifacts and preserve details depending on the estimated quality level map generated by the QECNN. We experimentally demonstrate that the proposed method achieves better performance compared to other state-of-the-art blind compression artifact reduction methods.

Keywords: compression artifact reduction, deblocking, image denoising, image restoration

Procedia PDF Downloads 141
2886 Developing a Model – an Application of Fuzzy Analytic Network Process Techniques for Hostels

Authors: Pin-Ju Juan, Peng-Yu Juan, Yi-Shan Chen

Abstract:

The main purpose of this paper is to present a fuzzy Analytic Network Process (ANP) model for the hostel organizational performance selection. In this article, we created 39 criteria for selecting hostel organizational performance acquired from literature's review and experts method practical investigations, and the methods of fuzzy analytic network process are used to consolidate decision-makers’ assessments about criteria weightings. Finally, we selected organizational performance of a hostel in Taiwan to determine the effectiveness of the proposed evaluation model in this paper.

Keywords: Fuzzy ANP, hostel, organizational performance, strategy management

Procedia PDF Downloads 200
2885 The Impact of Trade Liberalization on Current Account Deficit: The Turkish Case

Authors: E. Selçuk, Z. Karaçor, P. Yardımcı

Abstract:

Trade liberalization and its effects on the economies of developing countries have been investigated by many different studies, and some of them have focused on its impact on the current account balance. Turkey, as being one of the countries, which has liberalized its foreign trade in the 1980s, also needs to be studied in terms of the impact of liberalization on current account deficits. Therefore, the aim of this study is to find out whether trade liberalization has affected Turkey’s trade and current account balances. In order to determine this, yearly data of Turkey from 1980 to 2013 is used. As liberalization dummy, the year 1989, which was set for Turkey, is selected. Structural break test and model estimation results show that trade liberalization has a negative impact on trade balance but do not have a significant impact on the current account balance.

Keywords: budget deficit, liberalization, Turkish economy, current account

Procedia PDF Downloads 380
2884 Fuzzy Data, Random Drift, and a Theoretical Model for the Sequential Emergence of Religious Capacity in Genus Homo

Authors: Margaret Boone Rappaport, Christopher J. Corbally

Abstract:

The ancient ape ancestral population from which living great ape and human species evolved had demographic features affecting their evolution. The population was large, had great genetic variability, and natural selection was effective at honing adaptations. The emerging populations of chimpanzees and humans were affected more by founder effects and genetic drift because they were smaller. Natural selection did not disappear, but it was not as strong. Consequences of the 'population crash' and the human effective population size are introduced briefly. The history of the ancient apes is written in the genomes of living humans and great apes. The expansion of the brain began before the human line emerged. Coalescence times for some genes are very old – up to several million years, long before Homo sapiens. The mismatch between gene trees and species trees highlights the anthropoid speciation processes, and gives the human genome history a fuzzy, probabilistic quality. However, it suggests traits that might form a foundation for capacities emerging later. A theoretical model is presented in which the genomes of early ape populations provide the substructure for the emergence of religious capacity later on the human line. The model does not search for religion, but its foundations. It suggests a course by which an evolutionary line that began with prosimians eventually produced a human species with biologically based religious capacity. The model of the sequential emergence of religious capacity relies on cognitive science, neuroscience, paleoneurology, primate field studies, cognitive archaeology, genomics, and population genetics. And, it emphasizes five trait types: (1) Documented, positive selection of sensory capabilities on the human line may have favored survival, but also eventually enriched human religious experience. (2) The bonobo model suggests a possible down-regulation of aggression and increase in tolerance while feeding, as well as paedomorphism – but, in a human species that remains cognitively sharp (unlike the bonobo). The two species emerged from the same ancient ape population, so it is logical to search for shared traits. (3) An up-regulation of emotional sensitivity and compassion seems to have occurred on the human line. This finds support in modern genetic studies. (4) The authors’ published model of morality's emergence in Homo erectus encompasses a cognitively based, decision-making capacity that was hypothetically overtaken, in part, by religious capacity. Together, they produced a strong, variable, biocultural capability to support human sociability. (5) The full flowering of human religious capacity came with the parietal expansion and smaller face (klinorhynchy) found only in Homo sapiens. Details from paleoneurology suggest the stage was set for human theologies. Larger parietal lobes allowed humans to imagine inner spaces, processes, and beings, and, with the frontal lobe, led to the first theologies composed of structured and integrated theories of the relationships between humans and the supernatural. The model leads to the evolution of a small population of African hominins that was ready to emerge with religious capacity when the species Homo sapiens evolved two hundred thousand years ago. By 50-60,000 years ago, when human ancestors left Africa, they were fully enabled.

Keywords: genetic drift, genomics, parietal expansion, religious capacity

Procedia PDF Downloads 341
2883 Comparison of MODIS-Based Rice Extent Map and Landsat-Based Rice Classification Map in Determining Biomass Energy Potential of Rice Hull in Nueva Ecija, Philippines

Authors: Klathea Sevilla, Marjorie Remolador, Bryan Baltazar, Imee Saladaga, Loureal Camille Inocencio, Ma. Rosario Concepcion Ang

Abstract:

The underutilization of biomass resources in the Philippines, combined with its growing population and the rise in fossil fuel prices confirms demand for alternative energy sources. The goal of this paper is to provide a comparison of MODIS-based and Landsat-based agricultural land cover maps when used in the estimation of rice hull’s available energy potential. Biomass resource assessment was done using mathematical models and remote sensing techniques employed in a GIS platform.

Keywords: biomass, geographic information system (GIS), remote sensing, renewable energy

Procedia PDF Downloads 481
2882 Virtual Reality for Chemical Engineering Unit Operations

Authors: Swee Kun Yap, Sachin Jangam, Suraj Vasudevan

Abstract:

Experiential learning is dubbed as a highly effective way to enhance learning. Virtual reality (VR) is thus a helpful tool in providing a safe, memorable, and interactive learning environment. A class of 49 fluid mechanics students participated in starting up a pump, one of the most used equipment in the chemical industry, in VR. They experience the process in VR to familiarize themselves with the safety training and the standard operating procedure (SOP) in guided mode. Students subsequently observe their peers (in groups of 4 to 5) complete the same training. The training first brings each user through the personal protection equipment (PPE) selection, before guiding the user through a series of steps for pump startup. One of the most common feedback given by industries include the weakness of our graduates in pump design and operation. Traditional fluid mechanics is a highly theoretical module loaded with engineering equations, providing limited opportunity for visualization and operation. With VR pump, students can now learn to startup, shutdown, troubleshoot and observe the intricacies of a centrifugal pump in a safe and controlled environment, thereby bridging the gap between theory and practical application. Following the completion of the guided mode operation, students then individually complete the VR assessment for pump startup on the same day, which requires students to complete the same series of steps, without any cues given in VR to test their recollection rate. While most students miss out a few minor steps such as the checking of lubrication oil and the closing of minor drain valves before pump priming, all the students scored full marks in the PPE selection, and over 80% of the students were able to complete all the critical steps that are required to startup a pump safely. The students were subsequently tested for their recollection rate by means of an online quiz 3 weeks later, and it is again found that over 80% of the students were able to complete the critical steps in the correct order. In the survey conducted, students reported that the VR experience has been enjoyable and enriching, and 79.5% of the students voted to include VR as a positive supplementary exercise in addition to traditional teaching methods. One of the more notable feedback is the higher ease of noticing and learning from mistakes as an observer rather than as a VR participant. Thus, the cycling between being a VR participant and an observer has helped tremendously in their knowledge retention. This reinforces the positive impact VR has on learning.

Keywords: experiential learning, learning by doing, pump, unit operations, virtual reality

Procedia PDF Downloads 138
2881 Application of the Discrete Rationalized Haar Transform to Distributed Parameter System

Authors: Joon-Hoon Park

Abstract:

In this paper the rationalized Haar transform is applied for distributed parameter system identification and estimation. A distributed parameter system is a dynamical and mathematical model described by a partial differential equation. And system identification concerns the problem of determining mathematical models from observed data. The Haar function has some disadvantages of calculation because it contains irrational numbers, for these reasons the rationalized Haar function that has only rational numbers. The algorithm adopted in this paper is based on the transform and operational matrix of the rationalized Haar function. This approach provides more convenient and efficient computational results.

Keywords: distributed parameter system, rationalized Haar transform, operational matrix, system identification

Procedia PDF Downloads 509
2880 A Preliminary Study of the Subcontractor Evaluation System for the International Construction Market

Authors: Hochan Seok, Woosik Jang, Seung-Heon Han

Abstract:

The stagnant global construction market has intensified competition since 2008 among firms that aim to win overseas contracts. Against this backdrop, subcontractor selection is identified as one of the most critical success factors in overseas construction project. However, it is difficult to select qualified subcontractors due to the lack of evaluation standards and reliability. This study aims to identify the problems associated with existing subcontractor evaluations using a correlations analysis and a multiple regression analysis with pre-qualification and performance evaluation of 121 firms in six countries.

Keywords: subcontractor evaluation system, pre-qualification, performance evaluation, correlation analysis, multiple regression analysis

Procedia PDF Downloads 368
2879 Surgical Hip Dislocation of Femoroacetabular Impingement: Survivorship and Functional Outcomes at 10 Years

Authors: L. Hoade, O. O. Onafowokan, K. Anderson, G. E. Bartlett, E. D. Fern, M. R. Norton, R. G. Middleton

Abstract:

Aims: Femoroacetabular impingement (FAI) was first recognised as a potential driver for hip pain at the turn of the last millennium. While there is an increasing trend towards surgical management of FAI by arthroscopic means, open surgical hip dislocation and debridement (SHD) remains the Gold Standard of care in terms of reported outcome measures. (1) Long-term functional and survivorship outcomes of SHD as a treatment for FAI are yet to be sufficiently reported in the literature. This study sets out to help address this imbalance. Methods: We undertook a retrospective review of our institutional database for all patients who underwent SHD for FAI between January 2003 and December 2008. A total of 223 patients (241 hips) were identified and underwent a ten year review with a standardised radiograph and patient-reported outcome measures questionnaire. The primary outcome measure of interest was survivorship, defined as progression to total hip arthroplasty (THA). Negative predictive factors were analysed. Secondary outcome measures of interest were survivorship to further (non-arthroplasty) surgery, functional outcomes as reflected by patient reported outcome measure scores (PROMS) scores, and whether a learning curve could be identified. Results: The final cohort consisted of 131 females and 110 males, with a mean age of 34 years. There was an overall native hip joint survival rate of 85.4% at ten years. Those who underwent a THA were significantly older at initial surgery, had radiographic evidence of preoperative osteoarthritis and pre- and post-operative acetabular undercoverage. In those whom had not progressed to THA, the average Non-arthritic Hip Score and Oxford Hip Score at ten year follow-up were 72.3% and 36/48, respectively, and 84% still deemed their surgery worthwhile. A learning curve was found to exist that was predicated on case selection rather than surgical technique. Conclusion: This is only the second study to evaluate the long-term outcomes (beyond ten years) of SHD for FAI and the first outside the originating centre. Our results suggest that, with correct patient selection, this remains an operation with worthwhile outcomes at ten years. How the results of open surgery compared to those of arthroscopy remains to be answered. While these results precede the advent of collison software modelling tools, this data helps set a benchmark for future comparison of other techniques effectiveness at the ten year mark.

Keywords: femoroacetabular impingement, hip pain, surgical hip dislocation, hip debridement

Procedia PDF Downloads 84
2878 Cooperative AF Scheme for Multi Source and Terminal in Edge of Cell Coverage

Authors: Myoung-Jin Kim, Chang-Bin Ha, Yeong-Seop Ahn, Hyoung-Kyu Song

Abstract:

This paper proposes a cooperative communication scheme for improve wireless communication performance. When the receiver is located in the edge of coverage, the signal from the transmitter is distorted for various reasons such as inter-cell interference (ICI), power reduction, incorrect channel estimation. In order to improve communication performance, the proposed scheme adds the relay. By the relay, the receiver has diversity gain. In this paper, two base stations, one relay and one destination are considered. The two base stations transmit same time to relay and destination. The relay forwarding to destination and the destination detects signals.

Keywords: cooperative communication, diversity gain, OFDM, MMSE

Procedia PDF Downloads 389
2877 A New Method for Estimating the Mass Recession Rate for Ablator Systems

Authors: Bianca A. Szasz, Keiichi Okuyama

Abstract:

As the human race will continue to explore the space by creating new space transportation means and sending them to other planets, the enhance of atmospheric reentry study is crucial. In this context, an analysis of mass recession rate of ablative materials for thermal shields of reentry spacecrafts is important to be carried out. The paper describes a new estimation method for calculating the mass recession of an ablator system, this method combining an old method with a new one, which was recently elaborated by Okuyama et al. The space mission of USERS spacecraft is taken as a case study and the possibility of implementing lighter ablative materials in future space missions is taking into consideration.

Keywords: ablator system, mass recession, reentry spacecraft, ablative materials

Procedia PDF Downloads 273
2876 Model-Driven and Data-Driven Approaches for Crop Yield Prediction: Analysis and Comparison

Authors: Xiangtuo Chen, Paul-Henry Cournéde

Abstract:

Crop yield prediction is a paramount issue in agriculture. The main idea of this paper is to find out efficient way to predict the yield of corn based meteorological records. The prediction models used in this paper can be classified into model-driven approaches and data-driven approaches, according to the different modeling methodologies. The model-driven approaches are based on crop mechanistic modeling. They describe crop growth in interaction with their environment as dynamical systems. But the calibration process of the dynamic system comes up with much difficulty, because it turns out to be a multidimensional non-convex optimization problem. An original contribution of this paper is to propose a statistical methodology, Multi-Scenarios Parameters Estimation (MSPE), for the parametrization of potentially complex mechanistic models from a new type of datasets (climatic data, final yield in many situations). It is tested with CORNFLO, a crop model for maize growth. On the other hand, the data-driven approach for yield prediction is free of the complex biophysical process. But it has some strict requirements about the dataset. A second contribution of the paper is the comparison of these model-driven methods with classical data-driven methods. For this purpose, we consider two classes of regression methods, methods derived from linear regression (Ridge and Lasso Regression, Principal Components Regression or Partial Least Squares Regression) and machine learning methods (Random Forest, k-Nearest Neighbor, Artificial Neural Network and SVM regression). The dataset consists of 720 records of corn yield at county scale provided by the United States Department of Agriculture (USDA) and the associated climatic data. A 5-folds cross-validation process and two accuracy metrics: root mean square error of prediction(RMSEP), mean absolute error of prediction(MAEP) were used to evaluate the crop prediction capacity. The results show that among the data-driven approaches, Random Forest is the most robust and generally achieves the best prediction error (MAEP 4.27%). It also outperforms our model-driven approach (MAEP 6.11%). However, the method to calibrate the mechanistic model from dataset easy to access offers several side-perspectives. The mechanistic model can potentially help to underline the stresses suffered by the crop or to identify the biological parameters of interest for breeding purposes. For this reason, an interesting perspective is to combine these two types of approaches.

Keywords: crop yield prediction, crop model, sensitivity analysis, paramater estimation, particle swarm optimization, random forest

Procedia PDF Downloads 231
2875 A Multi Function Myocontroller for Upper Limb Prostheses

Authors: Ayad Asaad Ibrahim

Abstract:

Myoelectrically controlled prostheses are becoming more and more popular, for below-elbow amputation, the wrist flexor and extensor muscle group, while for above-elbow biceps and triceps brachii muscles are used for control of the prosthesis. A two site multi-function controller is presented. Two stainless steel bipolar electrode pairs are used to monitor the activities in both muscles. The detected signals are processed by new pre-whitening technique to identify the accurate tension estimation in these muscles. These estimates will activate the relevant prosthesis control signal, with a time constant of 200 msec. It is ensured that the tension states in the control muscle to activate a particular prosthesis function are similar to those used to activate normal functions in the natural hand. This facilitates easier training.

Keywords: prosthesis, biosignal processing, pre-whitening, myoelectric controller

Procedia PDF Downloads 363
2874 The Role of Technology in Entrepreneurship: Key Findings from Women Start-Ups in Kaduna

Authors: Ogola Lois Kange

Abstract:

The study looked at the role technology had previously played and now plays in small and medium scale women-owned businesses starting up in Kaduna, which is an emerging entrepreneurship hub state in Nigeria. The study selected a random population of 20 businesses drawn from the north and south of Kaduna. The selection was based on a survey administered to 100 Women-owned businesses that had started up within the last 3-5years. Questionnaires were administered and analyzed based on the participants’ backgrounds, upbringing, exposure and access to technology. One of the key findings is that women-owned businesses can no longer thrive without the application of basic technology.

Keywords: business, entrepreneurship, start-up, technology, women

Procedia PDF Downloads 192
2873 Solving Fuzzy Multi-Objective Linear Programming Problems with Fuzzy Decision Variables

Authors: Mahnaz Hosseinzadeh, Aliyeh Kazemi

Abstract:

In this paper, a method is proposed for solving Fuzzy Multi-Objective Linear Programming problems (FMOLPP) with fuzzy right hand side and fuzzy decision variables. To illustrate the proposed method, it is applied to the problem of selecting suppliers for an automotive parts producer company in Iran in order to find the number of optimal orders allocated to each supplier considering the conflicting objectives. Finally, the obtained results are discussed.

Keywords: fuzzy multi-objective linear programming problems, triangular fuzzy numbers, fuzzy ranking, supplier selection problem

Procedia PDF Downloads 383
2872 Estimation of the Pore Electrical Conductivity Using Dielectric Sensors

Authors: Fethi Bouksila, Magnus Persson, Ronny Berndtsson, Akissa Bahri

Abstract:

Under salinity conditions, we evaluate the performance of Hilhost (2000) model to predict pore electrical conductivity ECp from dielectric permittivity and bulk electrical conductivity (ECa) using Time and Frequency Domain Reflectometry sensors (TDR, FDR). Using FDR_WET sensor, RMSE of ECp was 4.15 dS m-1. By replacing the standard soil parameter (K0) in Hilhost model by K0-ECa relationship, the RMSE of ECp decreased to 0.68 dS m-1. WET sensor could give similar accuracy to estimate ECp than TDR if calibrated values of K0 were used instead of standard values in Hilhost model.

Keywords: hilhost model, soil salinity, time domain reflectometry, frequency domain reflectometry, dielectric methods

Procedia PDF Downloads 135
2871 Currency Exchange Rate Forecasts Using Quantile Regression

Authors: Yuzhi Cai

Abstract:

In this paper, we discuss a Bayesian approach to quantile autoregressive (QAR) time series model estimation and forecasting. Together with a combining forecasts technique, we then predict USD to GBP currency exchange rates. Combined forecasts contain all the information captured by the fitted QAR models at different quantile levels and are therefore better than those obtained from individual models. Our results show that an unequally weighted combining method performs better than other forecasting methodology. We found that a median AR model can perform well in point forecasting when the predictive density functions are symmetric. However, in practice, using the median AR model alone may involve the loss of information about the data captured by other QAR models. We recommend that combined forecasts should be used whenever possible.

Keywords: combining forecasts, MCMC, predictive density functions, quantile forecasting, quantile modelling

Procedia PDF Downloads 256
2870 How Do Crisis Affect Economic Policy?

Authors: Eva Kotlánová

Abstract:

After recession that began in 2007 in the United States and subsequently spilled over the Europe we could expect recovery of economic growth. According to the last estimation of economic progress of European countries, this recovery is not strong enough. Among others, it will depend on economic policy, where and in which way, the economic indicators will proceed. Economic theories postulate that the economic subjects prefer stably, continual economic policy without repeated and strong fluctuations. This policy is perceived as support of economic growth. Mostly in crises period, when the government must cope with consequences of recession, the economic policy becomes unpredictable for many subjects and economic policy uncertainty grows, which have negative influence on economic growth. The aim of this paper is to use panel regression to prove or disprove this hypothesis on the example of five largest European economies in the period 2008–2012.

Keywords: economic crises in Europe, economic policy, uncertainty, panel analysis regression

Procedia PDF Downloads 386
2869 Financial Literacy in Greek High-School Students

Authors: Vasiliki A. Tzora, Nikolaos D. Philippas

Abstract:

The paper measures the financial literacy of youth in Greece derived from the examined aspects of financial knowledge, behaviours, and attitudes that high school students performed. The findings reveal that less than half of participant high school students have an acceptable level of financial literacy. Also, students who are in the top of their class cohort exhibit higher levels of financial literacy. We also find that the father’s education level has a significant effect on financial literacy. Students who keep records of their income and expenses are likely to show better levels of financial literacy than students who do not. Students’ perception/estimation of their parents’ income changes is also related to their levels of financial literacy. We conclude that financial education initiatives should be embedded in schools in order to embrace the young generation.

Keywords: financial literacy, financial knowledge, financial behaviour, financial attitude, financial wellbeing, 15-year-old students

Procedia PDF Downloads 141
2868 Urban Design via Estimation Model for Traffic Index of Cities Based on an Artificial Intelligence

Authors: Seyed Sobhan Alvani, Mohammad Gohari

Abstract:

By developing cities and increasing the population, traffic congestion has become a vital problem. Due to this crisis, urban designers try to present solutions to decrease this difficulty. On the other hand, predicting the model with perfect accuracy is essential for solution-providing. The current study presents a model based on artificial intelligence which can predict traffic index based on city population, growth rate, and area. The accuracy of the model was evaluated, which is acceptable and it is around 90%. Thus, urban designers and planners can employ it for predicting traffic index in the future to provide strategies.

Keywords: traffic index, population growth rate, cities wideness, artificial neural network

Procedia PDF Downloads 40
2867 Adjustment with Changed Lifestyle at Old Age Homes: A Perspective of Elderly in India

Authors: Priyanka V. Janbandhu, Santosh B. Phad, Dhananjay W. Bansod

Abstract:

The current changing scenario of the family is a compelling aged group not only to be alone in a nuclear family but also to join the old age institutions. The consequences of it are feeling of neglected or left alone by the children, adding a touch of helpless in the absence of lack of expected care and support. The accretion of all these feelings and unpleasant events ignite a question in their mind that – who is there for me? The efforts have taken to highlight the issues of the elderly after joining the old age home and their perception about the current life as an institutional inmate. This attempt to cover up the condition, adjustment, changed lifestyle and perspective in the association with several issues of the elderly, which have an essential effect on their well-being. The present research piece has collected the information about institutionalized elderly with the help of a semi-structured questionnaire. This study interviewed 500 respondents from 22 old age homes of Pune city of Maharashtra State, India. This data collection methodology consists of Multi-stage random sampling. In which the stratified random sampling adopted for the selection of old age homes and sample size determination, sample selection probability proportional to the size and simple random sampling techniques implemented. The study provides that around five percent of the elderly shifted to old age home along with their spouse, whereas ten percent of the elderly are staying away from their spouse. More than 71 percent of the elderly have children, and they are an involuntary inmate of the old age institution, even less than one-third of the elderly consulted to the institution before the joining it. More than sixty percent of the elderly have children, but they joined institution due to the unpleasant response of their children only. Around half of the elderly responded that there are issues while adjusting to this environment, many of them are still persistent. At least one elderly out of ten is there who is suffering from the feeling of loneliness and left out by children and other family members. In contrast, around 97 percent of the elderly are very happy or satisfied with the institutional facilities. It illustrates that the issues are associated with their children and other family members, even though they left their home before a year or more. When enquired about this loneliness feeling few of them are suffering from it before leaving their homes, it was due to lack of interaction with children, as they are too busy to have time for the aged parents. Additionally, the conflicts or fights within the family due to the presence of old persons in the family contributed to establishing another feeling of insignificance among the elderly parents. According to these elderly, have more than 70 percent of the share, the children are ready to spend money indirectly for us through these institutions, but not prepared to provide some time and very few amounts of all this expenditure directly for us.

Keywords: elderly, old age homes, life style changes and adjustment, India

Procedia PDF Downloads 134
2866 Predatory Pricing at Services Markets: Incentives, Mechanisms, Standards of Proving, and Remedies

Authors: Mykola G. Boichuk

Abstract:

The paper concerns predatory pricing incentives and mechanisms in the markets of services, as well as its anti-competitive effects. As cost estimation at services markets is more complex in comparison to markets of goods, predatory pricing is more difficult to detect in the provision of services. For instance, this is often the case for professional services, which is analyzed in the paper. The special attention is given to employment markets as de-facto main supply markets for professional services markets. Also, the paper concerns such instances as travel agents' services, where predatory pricing may have implications not only on competition but on a wider range of public interest as well. Thus, the paper develops on effective ways to apply competition law rules on predatory pricing to the provision of services.

Keywords: employment markets, predatory pricing, services markets, unfair competition

Procedia PDF Downloads 325
2865 Evaluation of Free Technologies as Tools for Business Process Management

Authors: Julio Sotomayor, Daniel Yucra, Jorge Mayhuasca

Abstract:

The article presents an evaluation of free technologies for business process automation, with emphasis only on tools compatible with the general public license (GPL). The compendium of technologies was based on promoting a service-oriented enterprise architecture (SOA) and the establishment of a business process management system (BPMS). The methodology for the selection of tools was Agile UP. This proposal allows businesses to achieve technological sovereignty and independence, in addition to the promotion of service orientation and the development of free software based on components.

Keywords: BPM, BPMS suite, open-source software, SOA, enterprise architecture, business process management

Procedia PDF Downloads 288