Search results for: second order differential
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 14982

Search results for: second order differential

2112 Generating 3D Battery Cathode Microstructures using Gaussian Mixture Models and Pix2Pix

Authors: Wesley Teskey, Vedran Glavas, Julian Wegener

Abstract:

Generating battery cathode microstructures is an important area of research, given the proliferation of the use of automotive batteries. Currently, finite element analysis (FEA) is often used for simulations of battery cathode microstructures before physical batteries can be manufactured and tested to verify the simulation results. Unfortunately, a key drawback of using FEA is that this method of simulation is very slow in terms of computational runtime. Generative AI offers the key advantage of speed when compared to FEA, and because of this, generative AI is capable of evaluating very large numbers of candidate microstructures. Given AI generated candidate microstructures, a subset of the promising microstructures can be selected for further validation using FEA. Leveraging the speed advantage of AI allows for a better final microstructural selection because high speed allows for the evaluation of many more candidate microstructures. For the approach presented, battery cathode 3D candidate microstructures are generated using Gaussian Mixture Models (GMMs) and pix2pix. This approach first uses GMMs to generate a population of spheres (representing the “active material” of the cathode). Once spheres have been sampled from the GMM, they are placed within a microstructure. Subsequently, the pix2pix sweeps over the 3D microstructure (iteratively) slice by slice and adds details to the microstructure to determine what portions of the microstructure will become electrolyte and what part of the microstructure will become binder. In this manner, each subsequent slice of the microstructure is evaluated using pix2pix, where the inputs into pix2pix are the previously processed layers of the microstructure. By feeding into pix2pix previously fully processed layers of the microstructure, pix2pix can be used to ensure candidate microstructures represent a realistic physical reality. More specifically, in order for the microstructure to represent a realistic physical reality, the locations of electrolyte and binder in each layer of the microstructure must reasonably match the locations of electrolyte and binder in previous layers to ensure geometric continuity. Using the above outlined approach, a 10x to 100x speed increase was possible when generating candidate microstructures using AI when compared to using a FEA only approach for this task. A key metric for evaluating microstructures was the battery specific power value that the microstructures would be able to produce. The best generative AI result obtained was a 12% increase in specific power for a candidate microstructure when compared to what a FEA only approach was capable of producing. This 12% increase in specific power was verified by FEA simulation.

Keywords: finite element analysis, gaussian mixture models, generative design, Pix2Pix, structural design

Procedia PDF Downloads 107
2111 Novel Adomet Analogs as Tools for Nucleic Acids Labeling

Authors: Milda Nainyte, Viktoras Masevicius

Abstract:

Biological methylation is a methyl group transfer from S-adenosyl-L-methionine (AdoMet) onto N-, C-, O- or S-nucleophiles in DNA, RNA, proteins or small biomolecules. The reaction is catalyzed by enzymes called AdoMet-dependent methyltransferases (MTases), which represent more than 3 % of the proteins in the cell. As a general mechanism, the methyl group from AdoMet replaces a hydrogen atom of nucleophilic center producing methylated DNA and S-adenosyl-L-homocysteine (AdoHcy). Recently, DNA methyltransferases have been used for the sequence-specific, covalent labeling of biopolymers. Two types of MTase catalyzed labeling of biopolymers are known, referred as two-step and one-step. During two-step labeling, an alkylating fragment is transferred onto DNA in a sequence-specific manner and then the reporter group, such as biotin, is attached for selective visualization using suitable chemistries of coupling. This approach of labeling is quite difficult and the chemical hitching does not always proceed at 100 %, but in the second step the variety of reporter groups can be selected and that gives the flexibility for this labeling method. In the one-step labeling, AdoMet analog is designed with the reporter group already attached to the functional group. Thus, the one-step labeling method would be more comfortable tool for labeling of biopolymers in order to prevent additional chemical reactions and selection of reaction conditions. Also, time costs would be reduced. However, effective AdoMet analog appropriate for one-step labeling of biopolymers and containing cleavable bond, required for reduction of PCR interferation, is still not known. To expand the practical utility of this important enzymatic reaction, cofactors with activated sulfonium-bound side-chains have been produced and can serve as surrogate cofactors for a variety of wild-type and mutant DNA and RNA MTases enabling covalent attachment of these chains to their target sites in DNA, RNA or proteins (the approach named methyltransferase-directed Transfer of Activated Groups, mTAG). Compounds containing hex-2-yn-1-yl moiety has proved to be efficient alkylating agents for labeling of DNA. Herein we describe synthetic procedures for the preparation of N-biotinoyl-N’-(pent-4-ynoyl)cystamine starting from the coupling of cystamine with pentynoic acid and finally attaching the biotin as a reporter group. The synthesis of the first AdoMet based cofactor containing a cleavable reporter group and appropriate for one-step labeling was developed.

Keywords: adoMet analogs, DNA alkylation, cofactor, methyltransferases

Procedia PDF Downloads 195
2110 The Infiltration Interface Structure of Suburban Landscape Forms in Bimen Township, Anji, Zhejiang Province, China

Authors: Ke Wang, Zhu Wang

Abstract:

Coordinating and promoting urban and rural development has been a new round of institutional change in Zhejiang province since 2004. And this plan was fully implemented, which showed that the isolation between the urban and rural areas had gradually diminished. Little by little, an infiltration interface that is dynamic, flexible and interactive is formed, and this morphological structure starts to appear on the landscape form in the surrounding villages. In order to study the specific function and formation of the structure in the context of industrial revolution, Bimen village located on the interface between Anji Township, Huzhou and Yuhang District, Hangzhou is taken as the case. Anji township is in the cross area between Yangtze River delta economic circle and innovation center in Hangzhou. Awarded with ‘Chinese beautiful village’, Bimen has witnessed the growing process of infiltration in ecology, economy, technology and culture on the interface. Within the opportunity, Bimen village presents internal reformation to adapt to the energy exchange with urban areas. In the research, the reformation is to adjust the industrial structure, to upgrade the local special bamboo crafts, to release space for activities, and to establish infrastructures on the interface. The characteristic of an interface is elasticity achieved by introducing an Internet platform using ‘O2O’ agriculture method to connect cities and farmlands. There is a platform of this kind in Bimen named ‘Xiao Mei’. ‘Xiao’ in Chinese means small, ‘Mei’ means beautiful, which indicates the method to refine the landscape form. It turns out that the new agriculture mode will strengthen the interface by orienting the Third Party Platform upon the old dynamic basis and will bring new vitality for economy development in Bimen village. The research concludes opportunities and challenges generated by the evolution of the infiltration interface. It also proposes strategies for how to organically adapt to the urbanization process. Finally it demonstrates what will happen by increasing flexibility in the landscape forms of suburbs in the Bimen village.

Keywords: Bimen village, infiltration interface, flexibility, suburban landscape form

Procedia PDF Downloads 378
2109 Shaping of World-Class Delhi: Politics of Marginalization and Inclusion

Authors: Aparajita Santra

Abstract:

In the context of the government's vision of turning Delhi into a green, privatized and slum free city, giving it a world-class image at par with the global cities of the world, this paper investigates into the various processes and politics of things that went behind defining spaces in the city and attributing an aesthetic image to it. The paper will explore two cases that were forged primarily through the forces of one particular type of power relation. One would be to look at the modernist movement adopted by the Nehruvian government post-independence and the next case will look at special periods like Emergency and Commonwealth games. The study of these cases will help understand the ambivalence embedded in the different rationales of the Government and different powerful agencies adopted in order to build world-classness. Through the study, it will be easier to discern how city spaces were reconfigured in the name of 'good governance'. In this process, it also became important to analyze the double nature of law, both as a protector of people’s rights and as a threat to people. What was interesting to note through the study was that in the process of nation building and creating an image for the city, the government’s policies and programs were mostly aimed at the richer sections of the society and the poorer sections and people from lower income groups kept getting marginalized, subdued, and pushed further away (These marginalized people were pushed away even geographically!). The reconfiguration of city space and attributing an aesthetic character to it, led to an alteration not only in the way in which citizens perceived and engaged with these spaces, but also brought about changes in the way they envisioned their place in the city. Ironically, it was found that every attempt to build any kind of facility for the city’s elite in turn led to an inevitable removal of the marginalized sections of the society as a necessary step to achieve a clean, green and world-class city. The paper questions the claim made by the government for creating a just, equitable city and granting rights to all. An argument is put forth that in the politics of redistribution of space, the city that has been designed is meant for the aspirational middle-class and elite only, who are ideally primed to live in world-class cities. Thus, the aim is to study city spaces, urban form, the associated politics and power plays involved within and understand whether segmented cities are being built in the name of creating sensible, inclusive cities.

Keywords: aesthetics, ambivalence, governmentality, power, World-class

Procedia PDF Downloads 117
2108 Optimal Data Selection in Non-Ergodic Systems: A Tradeoff between Estimator Convergence and Representativeness Errors

Authors: Jakob Krause

Abstract:

Past Financial Crisis has shown that contemporary risk management models provide an unjustified sense of security and fail miserably in situations in which they are needed the most. In this paper, we start from the assumption that risk is a notion that changes over time and therefore past data points only have limited explanatory power for the current situation. Our objective is to derive the optimal amount of representative information by optimizing between the two adverse forces of estimator convergence, incentivizing us to use as much data as possible, and the aforementioned non-representativeness doing the opposite. In this endeavor, the cornerstone assumption of having access to identically distributed random variables is weakened and substituted by the assumption that the law of the data generating process changes over time. Hence, in this paper, we give a quantitative theory on how to perform statistical analysis in non-ergodic systems. As an application, we discuss the impact of a paragraph in the last iteration of proposals by the Basel Committee on Banking Regulation. We start from the premise that the severity of assumptions should correspond to the robustness of the system they describe. Hence, in the formal description of physical systems, the level of assumptions can be much higher. It follows that every concept that is carried over from the natural sciences to economics must be checked for its plausibility in the new surroundings. Most of the probability theory has been developed for the analysis of physical systems and is based on the independent and identically distributed (i.i.d.) assumption. In Economics both parts of the i.i.d. assumption are inappropriate. However, only dependence has, so far, been weakened to a sufficient degree. In this paper, an appropriate class of non-stationary processes is used, and their law is tied to a formal object measuring representativeness. Subsequently, that data set is identified that on average minimizes the estimation error stemming from both, insufficient and non-representative, data. Applications are far reaching in a variety of fields. In the paper itself, we apply the results in order to analyze a paragraph in the Basel 3 framework on banking regulation with severe implications on financial stability. Beyond the realm of finance, other potential applications include the reproducibility crisis in the social sciences (but not in the natural sciences) and modeling limited understanding and learning behavior in economics.

Keywords: banking regulation, non-ergodicity, risk management, semimartingale modeling

Procedia PDF Downloads 148
2107 A Mixed Methodology of the Social and Spatial Fragmentation of the City of Beirut Leading to the Creation of Internal Boundaries

Authors: Hala Obeid

Abstract:

Among the cities that have been touched by hard events and have been experiencing this polemic of existence, one can quote Beirut. A city that defies and confronts itself for its own existence. Beirut materialized all the social complexity; it has also preserved the memory of a society that has been able to build and reflect a certain unique identity. In spite of its glory, Lebanon’s civil war has marked a turning point in Beirut’s history. It has caused many deaths and opposed religious communities. Once this civil war has ended, the reconstruction of the city center, however, saw the spatial exclusion of manual labor, small local commerce, and middle-class residences. The urban functions that characterized the pre-war center were removed, and the city’s spontaneous evolutions were replaced by a historical urban planning, which neglected the city’s memory and identity. The social and spatial fragmentation that has erupted since the war has led to a breakdown of spatial and social boundaries within the city. The aim of this study is to evaluate the impact of fragmentation and boundaries on the city of Beirut in spatial, social, religious and ethnic terms. The method used in this research is what we call the mixed method which is a combination between the quantitative method and the qualitative one. These two approaches, in this case, do not oppose but complement each other in order to study the city of Beirut physically and socially. The main purpose of the qualitative approach is to describe and analyze the social phenomenon of the fragmentation of the city; this method can be summarized by the field observation and study. While the quantitative approach is based on filling out questionnaires that leads to statistics analyzes. Together, these two approaches will mark the course of the research. As a result, Beirut is not only a divided city but is fragmented spatially into many fragments and socially into many groups. This fragmentation is creating immaterial boundaries between fragments and therefore between groups. These urban and social boundaries are specifically religious and ethnic limits. As a conclusion, one of the most important and discussed boundary in Beirut is a spatial and religious boundary called ‘the green line’ or the demarcation line, a true caesura within the city. It marks the opposition of two urban groups and the aggravated fragmentation between them. This line divided Beirut into two compartments: East Beirut (for Christians) and West Beirut (for Muslims). This green line has become an urban void that holds the past in suspension. Finally, to think of Beirut as an urban unit becomes an insoluble problem.

Keywords: Beirut, boundaries, fragmentation, identity

Procedia PDF Downloads 178
2106 Evaluation of Natural Waste Materials for Ammonia Removal in Biofilters

Authors: R. F. Vieira, D. Lopes, I. Baptista, S. A. Figueiredo, V. F. Domingues, R. Jorge, C. Delerue-matos, O. M. Freitas

Abstract:

Odours are generated in municipal solid wastes management plants as a result of decomposition of organic matter, especially when anaerobic degradation occurs. Information was collected about the substances and respective concentration in the surrounding atmosphere of some management plants. The main components which are associated with these unpleasant odours were identified: ammonia, hydrogen sulfide and mercaptans. The first is the most common and the one that presents the highest concentrations, reaching values of 700 mg/m3. Biofiltration, which involves simultaneously biodegradation, absorption and adsorption processes, is a sustainable technology for the treatment of these odour emissions when a natural packing material is used. The packing material should ideally be cheap, durable, and allow the maximum microbiological activity and adsorption/absorption. The presence of nutrients and water is required for biodegradation processes. Adsorption and absorption are enhanced by high specific surface area, high porosity and low density. The main purpose of this work is the exploitation of natural waste materials, locally available, as packing media: heather (Erica lusitanica), chestnut bur (from Castanea sativa), peach pits (from Prunus persica) and eucalyptus bark (from Eucalyptus globulus). Preliminary batch tests of ammonia removal were performed in order to select the most interesting materials for biofiltration, which were then characterized. The following physical and chemical parameters were evaluated: density, moisture, pH, buffer and water retention capacity. The determination of equilibrium isotherms and the adjustment to Langmuir and Freundlich models was also performed. Both models can fit the experimental results. Based both in the material performance as adsorbent and in its physical and chemical characteristics, eucalyptus bark was considered the best material. It presents a maximum adsorption capacity of 0.78±0.45 mol/kg for ammonia. The results from its characterization are: 121 kg/m3 density, 9.8% moisture, pH equal to 5.7, buffer capacity of 0.370 mmol H+/kg of dry matter and water retention capacity of 1.4 g H2O/g of dry matter. The application of natural materials locally available, with little processing, in biofiltration is an economic and sustainable alternative that should be explored.

Keywords: ammonia removal, biofiltration, natural materials, odour control

Procedia PDF Downloads 368
2105 Skin-Dose Mapping for Patients Undergoing Interventional Radiology Procedures: Clinical Experimentations versus a Mathematical Model

Authors: Aya Al Masri, Stefaan Carpentier, Fabrice Leroy, Thibault Julien, Safoin Aktaou, Malorie Martin, Fouad Maaloul

Abstract:

Introduction: During an 'Interventional Radiology (IR)' procedure, the patient's skin-dose may become very high for a burn, necrosis and ulceration to appear. In order to prevent these deterministic effects, an accurate calculation of the patient skin-dose mapping is essential. For most machines, the 'Dose Area Product (DAP)' and fluoroscopy time are the only information available for the operator. These two parameters are a very poor indicator of the peak skin dose. We developed a mathematical model that reconstructs the magnitude (delivered dose), shape, and localization of each irradiation field on the patient skin. In case of critical dose exceeding, the system generates warning alerts. We present the results of its comparison with clinical studies. Materials and methods: Two series of comparison of the skin-dose mapping of our mathematical model with clinical studies were performed: 1. At a first time, clinical tests were performed on patient phantoms. Gafchromic films were placed on the table of the IR machine under of PMMA plates (thickness = 20 cm) that simulate the patient. After irradiation, the film darkening is proportional to the radiation dose received by the patient's back and reflects the shape of the X-ray field. After film scanning and analysis, the exact dose value can be obtained at each point of the mapping. Four experimentation were performed, constituting a total of 34 acquisition incidences including all possible exposure configurations. 2. At a second time, clinical trials were launched on real patients during real 'Chronic Total Occlusion (CTO)' procedures for a total of 80 cases. Gafchromic films were placed at the back of patients. We performed comparisons on the dose values, as well as the distribution, and the shape of irradiation fields between the skin dose mapping of our mathematical model and Gafchromic films. Results: The comparison between the dose values shows a difference less than 15%. Moreover, our model shows a very good geometric accuracy: all fields have the same shape, size and location (uncertainty < 5%). Conclusion: This study shows that our model is a reliable tool to warn physicians when a high radiation dose is reached. Thus, deterministic effects can be avoided.

Keywords: clinical experimentation, interventional radiology, mathematical model, patient's skin-dose mapping.

Procedia PDF Downloads 140
2104 Observing the Observers: Journalism and the Gendered Newsroom

Authors: M. Silveirinha, P. Lobo

Abstract:

In the last few decades, many studies have documented a systematic under-representation of women in the news. Aside from being fewer than men, research has also shown that they are frequently portrayed according to traditional stereotypes that have been proven to be disadvantageous for women. When considering this problem, it has often been argued that news content will be more gender balanced when the number of female journalists increases. However, the recent so-called ‘feminization’ of media professions has shown that this assumption is too simplistic. If we want to better grasp gender biases in news content we will need to take a deeper approach into the processes of news production and into journalism culture itself, taking the study of newsmaking as a starting point and theoretical framework, with the purpose of examining the actual newsroom routines, professional values, structures and news access that eventually lead to an unbalanced media representation of women. If journalists consider themselves to be observers of everyday social and political life, of specific importance, as a vast body of research shows, is the observation of women journalist’s believes and of their roles and practices in a gendered newsroom. In order to better understand the professional and organizational context of news production, and the gender power relations in decision-making processes, we conducted a participant observation in two television newsrooms. Our approach involved a combination of methods, including overt observation itself, formal and informal interviews and the writing-up and analysis of our own diaries. Drawing insights in organizational sociology, we took newsroom practices to be a result of professional routines and socialization and focused on how women and men respond to newsroom dynamics and structures. We also analyzed the gendered organization of the newsmaking process and the subtle and/or obvious glass-ceiling obstacles often reported on. In our paper we address two levels of research: first, we look at our results and establish an overview of the patterns of continuity between the gendering of organizations, working conditions and professional journalist beliefs. At this level, the study not only interrogates how journalists handle views on gender and the practice of the profession but also highlights the structural inequalities in journalism and the pervasiveness of family–work tensions for female journalists. Secondly, we reflect on our observation method, and establish a critical assessment of the method itself.

Keywords: gender, journalism, participant observation, women

Procedia PDF Downloads 354
2103 Investigating the Effects of Cylinder Disablement on Diesel Engine Fuel Economy and Exhaust Temperature Management

Authors: Hasan Ustun Basaran

Abstract:

Diesel engines are widely used in transportation sector due to their high thermal efficiency. However, they also release high rates of NOₓ and PM (particulate matter) emissions into the environment which have hazardous effects on human health. Therefore, environmental protection agencies have issued strict emission regulations on automotive diesel engines. Recently, these regulations are even increasingly strengthened. Engine producers search novel on-engine methods such as advanced combustion techniques, utilization of renewable fuels, exhaust gas recirculation, advanced fuel injection methods or use exhaust after-treatment (EAT) systems in order to reduce emission rates on diesel engines. Although those aforementioned on-engine methods are effective to curb emission rates, they result in inefficiency or cannot decrease emission rates satisfactorily at all operating conditions. Therefore, engine manufacturers apply both on-engine techniques and EAT systems to meet the stringent emission norms. EAT systems are highly effective to diminish emission rates, however, they perform inefficiently at low loads due to low exhaust gas temperatures (below 250°C). Therefore, the objective of this study is to demonstrate that engine-out temperatures can be elevated above 250°C at low-loaded cases via cylinder disablement. The engine studied and modeled via Lotus Engine Simulation (LES) software is a six-cylinder turbocharged and intercooled diesel engine. Exhaust temperatures and mass flow rates are predicted at 1200 rpm engine speed and several low loaded conditions using LES program. It is seen that cylinder deactivation results in a considerable exhaust temperature rise (up to 100°C) at low loads which ensures effective EAT management. The method also improves fuel efficiency through reduced total pumping loss. Decreased total air induction due to inactive cylinders is thought to be responsible for improved engine pumping loss. The technique reduces exhaust gas flow rate as air flow is cut off on disabled cylinders. Still, heat transfer rates to the after-treatment catalyst bed do not decrease that much since exhaust temperatures are increased sufficiently. Simulation results are promising; however, further experimental studies are needed to identify the true potential of the method on fuel consumption and EAT improvement.

Keywords: cylinder disablement, diesel engines, exhaust after-treatment, exhaust temperature, fuel efficiency

Procedia PDF Downloads 176
2102 The Effect of Motivation of Chinese Tourists to Visit North Korea on Their Revisit Intention: Focused on the Tourists with the Experience of Visiting North Korea

Authors: Kim Jin-OK, Lee Jin-Eui, Han Seung-Hoon, Kim Nam-Jo

Abstract:

This study aimed to analyze the effect of the motivation of Chinese tourists to visit North Korea on their decision making process. Chinese tourists account for a considerable portion of foreign tourists in the world, while North Korea is the favorite tourist attraction of Chinese tourists. The motivation to visit North Korea was divided into three factors: the redness, which is the modern cultural heritage of Communism based on the red tourism accounting for the significant portion of domestic tourism, the novelty of the special environment of North Korean society, and the convenience of tour to North Korea in terms of geographical distance and policy of China. Red tourism refers to visiting the places of revolutionary events, monuments, artifacts and the residences of previous communist leaders, and other places related to the past Chinese Communist Party. As a revolutionary tourism, red tourism has recently been taking place in the old communist countries to recall their memories on the revolutionary places in China, as well as in North Korea, Vietnam, Cambodia, Russia, Bulgaria, Cuba, etc. In order to examine the effect of the segmented motivations on the revisit intention of Chinese tourists who have experienced a tour to North Korea, this study employed the model of goal-directed behavior, a model developed by adding a variable of emotion to the theory of planned behavior, which has a strong explanatory power on the decision making process of people in social science. For achieving the aim of the study, the data was collected through the survey in Dandong, China against Chinese tourists who have visited North Korea. The results of this study found that not only the novelty of North Korea, but also the redness, which accounts for the largest proportion in the domestic tourism, are significantly affecting overseas tour of Chinese tourists at this time point where overseas tour of Chinese tourists continue to increase. The results, therefore, suggest that the old communist countries, including those in Asia, need an emotional promotion strategy that stimulates nostalgia by focusing on the redness of the modern cultural heritage of Communism to attract Chinese tourists.

Keywords: model of goal-directed behavior, modern cultural heritage, North Korea, red tourism

Procedia PDF Downloads 309
2101 Education for Sustainable Development Pedagogies: Examining the Influences of Context on South African Natural Sciences and Technology Teaching and Learning

Authors: A. U. Ugwu

Abstract:

Post-Apartheid South African education system had witnessed waves of curriculum reforms. Accordingly, there have been evidences of responsiveness towards local and global challenges of sustainable development over the past decade. In other words, the curriculum shows sensitivity towards issues of Sustainable Development (SD). Moreover, the paradigm of Sustainable Development Goals (SDGs) was introduced by the UNESCO in year 2015. The SDGs paradigm is essentially a vision towards actualizing sustainability in all aspects of the global society. Education for Sustainable Development (ESD) in retrospect entails teaching and learning to actualize the intended UNESCO 2030 SDGs. This paper explores how teaching and learning of ESD can be improved, by drawing from local context of the South African schooling system. Preservice natural sciences and technology teachers in their 2nd to 4th years of study at a university’s college of education in South Africa were contacted as participants of the study. Using qualitative case study research design, the study drew from the views and experiences of five (5) purposively selected participants from a broader study, aiming to closely understating how ESD is implemented pedagogically in teaching and learning. The inquiry employed questionnaires and a focus group discussion as qualitative data generation tools. A qualitative data analysis of generated data was carried out using content and thematic analysis, underpinned by interpretive paradigm. The result of analyzed data, suggests that ESD pedagogy at the location where this research was conducted is largely influenced by contextual factors. Furthermore, the result of the study shows that there is a critical need to employ/adopt local experiences or occurrences while teaching sustainable development. Certain pedagogical approaches such as the use of videos relative to local context should also be considered in order to achieve a more realistic application. The paper recommends that educational institutions through teaching and learning should implement ESD by drawing on local contexts and problems, thereby foregrounding constructivism, appreciating and fostering students' prior knowledge and lived experiences.

Keywords: context, education for sustainable development, natural sciences and technology preservice teachers, qualitative research, sustainable development goals

Procedia PDF Downloads 169
2100 Evidence of a Negativity Bias in the Keywords of Scientific Papers

Authors: Kseniia Zviagintseva, Brett Buttliere

Abstract:

Science is fundamentally a problem-solving enterprise, and scientists pay more attention to the negative things, that cause them dissonance and negative affective state of uncertainty or contradiction. While this is agreed upon by philosophers of science, there are few empirical demonstrations. Here we examine the keywords from those papers published by PLoS in 2014 and show with several sentiment analyzers that negative keywords are studied more than positive keywords. Our dataset is the 927,406 keywords of 32,870 scientific articles in all fields published in 2014 by the journal PLOS ONE (collected from Altmetric.com). Counting how often the 47,415 unique keywords are used, we can examine whether those negative topics are studied more than positive. In order to find the sentiment of the keywords, we utilized two sentiment analysis tools, Hu and Liu (2004) and SentiStrength (2014). The results below are for Hu and Liu as these are the less convincing results. The average keyword was utilized 19.56 times, with half of the keywords being utilized only 1 time and the maximum number of uses being 18,589 times. The keywords identified as negative were utilized 37.39 times, on average, with the positive keywords being utilized 14.72 times and the neutral keywords - 19.29, on average. This difference is only marginally significant, with an F value of 2.82, with a p of .05, but one must keep in mind that more than half of the keywords are utilized only 1 time, artificially increasing the variance and driving the effect size down. To examine more closely, we looked at those top 25 most utilized keywords that have a sentiment. Among the top 25, there are only two positive words, ‘care’ and ‘dynamics’, in position numbers 5 and 13 respectively, with all the rest being identified as negative. ‘Diseases’ is the most studied keyword with 8,790 uses, with ‘cancer’ and ‘infectious’ being the second and fourth most utilized sentiment-laden keywords. The sentiment analysis is not perfect though, as the words ‘diseases’ and ‘disease’ are split by taking 1st and 3rd positions. Combining them, they remain as the most common sentiment-laden keyword, being utilized 13,236 times. More than just splitting the words, the sentiment analyzer logs ‘regression’ and ‘rat’ as negative, and these should probably be considered false positives. Despite these potential problems, the effect is apparent, as even the positive keywords like ‘care’ could or should be considered negative, since this word is most commonly utilized as a part of ‘health care’, ‘critical care’ or ‘quality of care’ and generally associated with how to improve it. All in all, the results suggest that negative concepts are studied more, also providing support for the notion that science is most generally a problem-solving enterprise. The results also provide evidence that negativity and contradiction are related to greater productivity and positive outcomes.

Keywords: bibliometrics, keywords analysis, negativity bias, positive and negative words, scientific papers, scientometrics

Procedia PDF Downloads 186
2099 Molecular Dynamics Simulation of Irradiation-Induced Damage Cascades in Graphite

Authors: Rong Li, Brian D. Wirth, Bing Liu

Abstract:

Graphite is the matrix, and structural material in the high temperature gas-cooled reactor exhibits an irradiation response. It is of significant importance to analyze the defect production and evaluate the role of graphite under irradiation. A vast experimental literature exists for graphite on the dimensional change, mechanical properties, and thermal behavior. However, simulations have not been applied to the atomistic perspective. Remarkably few molecular dynamics simulations have been performed to study the irradiation response in graphite. In this paper, irradiation-induced damage cascades in graphite were investigated with molecular dynamics simulation. Statistical results of the graphite defects were obtained by sampling a wide energy range (1–30 KeV) and 10 different runs for every cascade simulation with different random number generator seeds to the velocity scaling thermostat function. The chemical bonding in carbon was described using the adaptive intermolecular reactive empirical bond-order potential (AIREBO) potential coupled with the standard Ziegler–Biersack–Littmack (ZBL) potential to describe close-range pair interactions. This study focused on analyzing the number of defects, the final cascade morphology and the distribution of defect clusters in space, the length-scale cascade properties such as the cascade length and the range of primary knock-on atom (PKA), and graphite mechanical properties’ variation. It can be concluded that the number of surviving Frenkel pairs increased remarkably with the increasing initial PKA energy but did not exhibit a thermal spike at slightly lower energies in this paper. The PKA range and cascade length approximately linearly with energy which indicated that increasing the PKA initial energy will come at expensive computation cost such as 30KeV in this study. The cascade morphology and the distribution of defect clusters in space mainly related to the PKA energy meanwhile the temperature effect was relatively negligible. The simulations are in agreement with known experimental results and the Kinchin-Pease model, which can help to understand the graphite damage cascades and lifetime span under irradiation and provide a direction to the designs of these kinds of structural materials in the future reactors.

Keywords: graphite damage cascade, molecular dynamics, cascade morphology, cascade distribution

Procedia PDF Downloads 154
2098 Identification of Accumulated Hydrocarbon Based on Heat Propagation Analysis in Order to Develop Mature Field: Case Study in South Sumatra Basin, Indonesia

Authors: Kukuh Suprayogi, Muhamad Natsir, Olif Kurniawan, Hot Parulian, Bayu Fitriana, Fery Mustofa

Abstract:

The new approach by utilizing the heat propagation analysis carried out by studying and evaluating the effect of the presence of hydrocarbons to the flow of heat that goes from the bottom surface to surface. Heat propagation is determined by the thermal conductivity of rocks. The thermal conductivity of rock itself is a quantity that describes the ability of a rock to deliver heat. This quantity depends on the constituent rock lithology, large porosity, and pore fluid filler. The higher the thermal conductivity of a rock, the more easily the flow of heat passing through these rocks. With the same sense, the heat flow will more easily pass through the rock when the rock is filled with water than hydrocarbons, given the nature of the hydrocarbons having more insulator against heat. The main objective of this research is to try to make the model the heat propagation calculations in degrees Celsius from the subsurface to the surface which is then compared with the surface temperature is measured directly at the point of location. In calculating the propagation of heat, we need to first determine the thermal conductivity of rocks, where the rocks at the point calculation are not composed of homogeneous but consist of strata. Therefore, we need to determine the mineral constituent and porosity values of each stratum. As for the parameters of pore fluid filler, we assume that all the pores filled with water. Once we get a thermal conductivity value of each unit of the rock, then we begin to model the propagation of heat profile from the bottom to the surface. The initial value of the temperature that we use comes from the data bottom hole temperature (BHT) is obtained from drilling results. Results of calculations per depths the temperature is displayed in plotting temperature versus depth profiles that describe the propagation of heat from the bottom of the well to the surface, note that pore fluid is water. In the technical implementation, we can identify the magnitude of the effect of hydrocarbons in reducing the amount of heat that crept to the surface based on the calculation of propagation of heat at a certain point and compared with measurements of surface temperature at that point, assuming that the surface temperature measured is the temperature that comes from the asthenosphere. This publication proves that the accumulation of hydrocarbon can be identified by analysis of heat propagation profile which could be a method for identifying the presence of hydrocarbons.

Keywords: thermal conductivity, rock, pore fluid, heat propagation

Procedia PDF Downloads 108
2097 In-situ and Laboratory Characterization of Fiji Lateritic Soils

Authors: Faijal Ali, Darga Kumar N., Ravikant Singh, Rajnil Lal

Abstract:

Fiji has three major landforms such as plains, low mountains, and hills. The low land soils are formed on beach sand. Fiji soils contain high concentration of iron (III), aluminum oxides and hydroxides. The soil possesses reddish or yellowish colour. The characterization of lateritic soils collected from different locations along the national highway in Viti Levu, Fiji Islands. The research has been carried out mainly to understand the physical and strength properties to assess their suitability for the highway and building construction. In this paper, the field tests such as dynamic cone penetrometer test, field vane shear, field density and laboratory tests such as unconfined compression stress, compaction, grain size analysis and Atterberg limits are conducted. The test results are analyzed and presented. From the results, it is revealed that the soils are having more percentage of silt and clay which is more than 80% and 5 to 15% of fine to medium sand is noticed. The dynamic cone penetrometer results up to 3m depth had similar penetration resistance. For the first 1m depth, the rate of penetration is found 300mm per 3 to 4 blows. In all the sites it is further noticed that the rate of penetration at depths beyond 1.5 m is decreasing for the same number of blows as compared to the top soil. From the penetration resistance measured through dynamic cone penetrometer test, the California bearing ratio and allowable bearing capacities are 4 to 5% and 50 to 100 kPa for the top 1m layer and below 1m these values are increasing. The California bearing ratio of these soils for below 1m depth is in the order of 10% to 20%. The safe bearing capacity of these soils below 1m and up to 3m depth is varying from 150 kPa to 250 kPa. The field vane shear was measured within a depth of 1m from the surface and the values were almost similar varying from 60 kPa to 120 kPa. The liquid limit and plastic limits of these soils are in the range of 40 to 60% and 20 to 25%. Overall it is found that the top 1m soil along the national highway in majority places possess a soft to medium stiff behavior with low to medium bearing capacity as well low California bearing ratio values. It is recommended to ascertain these soils behavior in terms of geotechnical parameters before taking up any construction activity.

Keywords: California bearing ratio, dynamic cone penetrometer test, field vane shear, unconfined compression stress.

Procedia PDF Downloads 186
2096 Process Performance and Nitrogen Removal Kinetics in Anammox Hybrid Reactor

Authors: Swati Tomar, Sunil Kumar Gupta

Abstract:

Anammox is a promising and cost effective alternative to conventional treatment systems that facilitates direct oxidation of ammonium nitrogen under anaerobic conditions with nitrite as an electron acceptor without addition of any external carbon sources. The present study investigates the process kinetics of laboratory scale anammox hybrid reactor (AHR) which combines the dual advantages of attached and suspended growth. The performance & behaviour of AHR was studied under varying hydraulic retention time (HRTs) and nitrogen loading rate (NLRs). The experimental unit consisted of 4 numbers of 5L capacity anammox hybrid reactor inoculated with mixed seed culture containing anoxic and activated sludge. Pseudo steady state (PSS) ammonium and nitrite removal efficiencies of 90.6% and 95.6%, respectively, were achieved during acclimation phase. After establishment of PSS, the performance of AHR was monitored at seven different HRTs of 3.0, 2.5, 2.0, 1.5, 1.0, 0.5 and 0.25 d with increasing NLR from 0.4 to 4.8 kg N/m3d. The results showed that with increase in NLR and decrease in HRT (3.0 to 0.25 d), AHR registered appreciable decline in nitrogen removal efficiency from 92.9% to 67.4 %, respectively. The HRT of 2.0 d was considered optimal to achieve substantial nitrogen removal of 89%, because on further decrease in HRT below 1.5 days, remarkable decline in the values of nitrogen removal efficiency were observed. Analysis of data indicated that attached growth system contributes an additional 15.4 % ammonium removal and reduced the sludge washout rate (additional 29% reduction). This enhanced performance may be attributed to 25% increase in sludge retention time due to the attached growth media. Three kinetic models, namely, first order, Monod and Modified Stover-Kincannon model were applied to assess the substrate removal kinetics of nitrogen removal in AHR. Validation of the models were carried out by comparing experimental set of data with the predicted values obtained from the respective models. For substrate removal kinetics, model validation revealed that Modified Stover-Kincannon is most precise (R2=0.943) and can be suitably applied to predict the kinetics of nitrogen removal in AHR. Lawrence and McCarty model described the kinetics of bacterial growth. The predicted value of yield coefficient and decay constant were in line with the experimentally observed values.

Keywords: anammox, kinetics, modelling, nitrogen removal, sludge wash out rate, AHR

Procedia PDF Downloads 314
2095 Logistics and Supply Chain Management Using Smart Contracts on Blockchain

Authors: Armen Grigoryan, Milena Arakelyan

Abstract:

The idea of smart logistics is still quite a complicated one. It can be used to market products to a large number of customers or to acquire raw materials of the highest quality at the lowest cost in geographically dispersed areas. The use of smart contracts in logistics and supply chain management has the potential to revolutionize the way that goods are tracked, transported, and managed. Smart contracts are simply computer programs written in one of the blockchain programming languages (Solidity, Rust, Vyper), which are capable of self-execution once the predetermined conditions are met. They can be used to automate and streamline many of the traditional manual processes that are currently used in logistics and supply chain management, including the tracking and movement of goods, the management of inventory, and the facilitation of payments and settlements between different parties in the supply chain. Currently, logistics is a core area for companies which is concerned with transporting products between parties. Still, the problem of this sector is that its scale may lead to detainments and defaults in the delivery of goods, as well as other issues. Moreover, large distributors require a large number of workers to meet all the needs of their stores. All this may contribute to big detainments in order processing and increases the potentiality of losing orders. In an attempt to break this problem, companies have automated all their procedures, contributing to a significant augmentation in the number of businesses and distributors in the logistics sector. Hence, blockchain technology and smart contracted legal agreements seem to be suitable concepts to redesign and optimize collaborative business processes and supply chains. The main purpose of this paper is to examine the scope of blockchain technology and smart contracts in the field of logistics and supply chain management. This study discusses the research question of how and to which extent smart contracts and blockchain technology can facilitate and improve the implementation of collaborative business structures for sustainable entrepreneurial activities in smart supply chains. The intention is to provide a comprehensive overview of the existing research on the use of smart contracts in logistics and supply chain management and to identify any gaps or limitations in the current knowledge on this topic. This review aims to provide a summary and evaluation of the key findings and themes that emerge from the research, as well as to suggest potential directions for future research on the use of smart contracts in logistics and supply chain management.

Keywords: smart contracts, smart logistics, smart supply chain management, blockchain and smart contracts in logistics, smart contracts for controlling supply chain management

Procedia PDF Downloads 95
2094 Applying the Underwriting Technique to Analyze and Mitigate the Credit Risks in Construction Project Management

Authors: Hai Chien Pham, Thi Phuong Anh Vo, Chansik Park

Abstract:

Risks management in construction projects is important to ensure the positive feasibility of the projects in which financial risks are most concerned while construction projects always run on a credit basis. Credit risks, therefore, require unique and technical tools to be well managed. Underwriting technique in credit risks, in its most basic sense, refers to the process of evaluating the risks and the potential exposure of losses. Risks analysis and underwriting are applied as a must in banks and financial institutions who are supporters for constructions projects when required. Recently, construction organizations, especially contractors, have recognized the significant increasing of credit risks which caused negative impacts to project performance and profit of construction firms. Despite the successful application of underwriting in banks and financial institutions for many years, there are few contractors who are applying this technique to analyze and mitigate the credit risks of their potential owners before signing contracts with them for delivering their performed services. Thus, contractors have taken credit risks during project implementation which might be not materialized due to the bankruptcy and/or protracted default made by their owners. With this regard, this study proposes a model using the underwriting technique for contractors to analyze and assess credit risks of their owners before making final decisions for the potential construction contracts. Contractor’s underwriters are able to analyze and evaluate the subjects such as owner, country, sector, payment terms, financial figures and their related concerns of the credit limit requests in details based on reliable information sources, and then input into the proposed model to have the Overall Assessment Score (OAS). The OAS is as a benchmark for the decision makers to grant the proper limits for the project. The proposed underwriting model is validated by 30 subjects in Asia Pacific region within 5 years to achieve their OAS, and then compare output OAS with their own practical performance in order to evaluate the potential of underwriting model for analyzing and assessing credit risks. The results revealed that the underwriting would be a powerful method to assist contractors in making precise decisions. The contribution of this research is to allow the contractors firstly to develop their own credit risk management model for proactively preventing the credit risks of construction projects and continuously improve and enhance the performance of this function during project implementation.

Keywords: underwriting technique, credit risk, risk management, construction project

Procedia PDF Downloads 208
2093 Kinetic Energy Recovery System Using Spring

Authors: Mayuresh Thombre, Prajyot Borkar, Mangirish Bhobe

Abstract:

New advancement of technology and never satisfying demands of the civilization are putting huge pressure on the natural fuel resources and these resources are at a constant threat to its sustainability. To get the best out of the automobile, the optimum balance between performance and fuel economy is important. In the present state of art, either of the above two aspects are taken into mind while designing and development process which puts the other in the loss as increase in fuel economy leads to decrement in performance and vice-versa. In-depth observation of the vehicle dynamics apparently shows that large amount of energy is lost during braking and likewise large amount of fuel is consumed to reclaim the initial state, this leads to lower fuel efficiency to gain the same performance. Current use of Kinetic Energy Recovery System is only limited to sports vehicles only because of the higher cost of this system. They are also temporary in nature as power can be squeezed only during a small time duration and use of superior parts leads to high cost, which results on concentration on performance only and neglecting the fuel economy. In this paper Kinetic Energy Recovery System for storing the power and then using the same while accelerating has been discussed. The major storing element in this system is a Flat Spiral Spring that will store energy by compression and torsion. The use of spring ensure the permanent storage of energy until used by the driver unlike present mechanical regeneration system in which the energy stored decreases with time and is eventually lost. A combination of internal gears and spur gears will be used in order to make the energy release uniform which will lead to safe usage. The system can be used to improve the fuel efficiency by assisting in overcoming the vehicle’s inertia after braking or to provide instant acceleration whenever required by the driver. The performance characteristics of the system including response time, mechanical efficiency and overall increase in efficiency are demonstrated. This technology makes the KERS (Kinetic Energy Recovery System) more flexible and economical allowing specific application while at the same time increasing the time frame and ease of usage.

Keywords: electric control unit, energy, mechanical KERS, planetary gear system, power, smart braking, spiral spring

Procedia PDF Downloads 201
2092 Hydrogeochemical Assessment, Evaluation and Characterization of Groundwater Quality in Ore, South-Western, Nigeria

Authors: Olumuyiwa Olusola Falowo

Abstract:

One of the objectives of the Millennium Development Goals is to have sustainable access to safe drinking water and basic sanitation. In line with this objective, an assessment of groundwater quality was carried out in Odigbo Local Government Area of Ondo State in November – February, 2019 to assess the drinking, domestic and irrigation uses of the water. Samples from 30 randomly selected ground water sources; 16 shallow wells and 14 from boreholes and analyzed using American Public Health Association method for the examination of water and wastewater. Water quality index calculation, and diagrams such as Piper diagram, Gibbs diagram and Wilcox diagram have been used to assess the groundwater in conjunction with irrigation indices such as % sodium, sodium absorption ratio, permeability index, magnesium ratio, Kelly ratio, and electrical conductivity. In addition statistical Principal component analysis were used to determine the homogeneity and source(s) influencing the chemistry of the groundwater. The results show that all the parameters are within the permissible limit of World Health Organization. The physico-chemical analysis of groundwater samples indicates that the dominant major cations are in decreasing order of Na+, Ca2+, Mg2+, K+ and the dominant anions are HCO-3, Cl-, SO-24, NO-3. The values of water quality index varies suggest a Good water (WQI of 50-75) accounts for 70% of the study area. The dominant groundwater facies revealed in this study are the non-carbonate alkali (primary salinity) exceeds 50% (zone 7); and transition zone with no one cation-anion pair exceeds 50% (zone 9), while evaporation; rock–water interaction, and precipitation; and silicate weathering process are the dominant processes in the hydrogeochemical evolution of the groundwater. The study indicates that waters were found within the permissible limits of irrigation indices adopted, and plot on excellent category on Wilcox plot. In conclusion, the water in the study area are good/suitable for drinking, domestic and irrigation purposes with low equivalent salinity concentrate and moderate electrical conductivity.

Keywords: equivalent salinity concentration, groundwater quality, hydrochemical facies, principal component analysis, water-rock interaction

Procedia PDF Downloads 148
2091 Controlled Doping of Graphene Monolayer

Authors: Vedanki Khandenwal, Pawan Srivastava, Kartick Tarafder, Subhasis Ghosh

Abstract:

We present here the experimental realization of controlled doping of graphene monolayers through charge transfer by trapping selected organic molecules between the graphene layer and underlying substrates. This charge transfer between graphene and trapped molecule leads to controlled n-type or p-type doping in monolayer graphene (MLG), depending on whether the trapped molecule acts as an electron donor or an electron acceptor. Doping controllability has been validated by a shift in corresponding Raman peak positions and a shift in Dirac points. In the transfer characteristics of field effect transistors, a significant shift of Dirac point towards positive or negative gate voltage region provides the signature of p-type or n-type doping of graphene, respectively, as a result of the charge transfer between graphene and the organic molecules trapped within it. In order to facilitate the charge transfer interaction, it is crucial for the trapped molecules to be situated in close proximity to the graphene surface, as demonstrated by findings in Raman and infrared spectroscopies. However, the mechanism responsible for this charge transfer interaction has remained unclear at the microscopic level. Generally, it is accepted that the dipole moment of adsorbed molecules plays a crucial role in determining the charge-transfer interaction between molecules and graphene. However, our findings clearly illustrate that the doping effect primarily depends on the reactivity of the constituent atoms in the adsorbed molecules rather than just their dipole moment. This has been illustrated by trapping various molecules at the graphene−substrate interface. Dopant molecules such as acetone (containing highly reactive oxygen atoms) promote adsorption across the entire graphene surface. In contrast, molecules with less reactive atoms, such as acetonitrile, tend to adsorb at the edges due to the presence of reactive dangling bonds. In the case of low-dipole moment molecules like toluene, there is a lack of substantial adsorption anywhere on the graphene surface. Observation of (i) the emergence of the Raman D peak exclusively at the edges for trapped molecules without reactive atoms and throughout the entire basal plane for those with reactive atoms, and (ii) variations in the density of attached molecules (with and without reactive atoms) to graphene with their respective dipole moments provides compelling evidence to support our claim. Additionally, these observations were supported by first principle density functional calculations.

Keywords: graphene, doping, charge transfer, liquid phase exfoliation

Procedia PDF Downloads 65
2090 Scaling Up Psychosocial Wellbeing of Orphans and Vulnerable Learners in Rural Schools in Lesotho: An Ethnopsychology Approach

Authors: Fumane Portia Khanare

Abstract:

This paper explores strategies to improve the psychosocial wellbeing of orphans and vulnerable learners (OVLs) in rural schools in Lesotho that seem essential for their success, in anticipation of, and in the context of global education. Various strategies to improve psychosocial wellbeing are considered necessary in that they are inclusive and buffer other forms of conditions beyond traditional and Eurocentric forms in orientation. Furthermore, they bring about the local experiences and particularly of the learners and schools in rural areas – all of which constitute ethnopsychology. COVID-19 pandemic has enthused the demands for collaboration and responsive support for learners within rural and many deprived contexts in Lesotho. However, the increase of OVLs in the education sector has also sparked the debate of how many rural schools with a lack of resources, inadequate teacher training, declining unemployment and the detriment of COVID-19 throughout Lesotho affected the psychosocial wellbeing of these learners. In some cases, the pandemic has created opportunities to explore existing, forgotten or ignored resources dated back to the pre-colonial era in Lesotho, and emphasizing to have an optimistic outlook on life as a result of collaboration and appreciating local knowledge. In order to scale up the psychosocial wellbeing of OVLs, there is a need to explore various strategies to improve their psychosocial wellbeing, in which all learners can succeed during the COVID-19 pandemic and beyond, thereby promoting the agency of young people from the rural areas towards building supportive learning environments. The paper draws on qualitative participatory arts-based study data generated by 30 learners in two rural secondary schools in Lesotho. Thematic analysis was employed to provide an in-depth understanding of learners' psychosocial needs and strategies to improve their psychosocial wellbeing. The paper is guided by ethnopsychology – a strength-based perspective, which posits that in the most difficult situations, individuals including, young people have strengths, can collaborate and find solutions that respond to their challenges. This was done by examining how various facets of their environments such as peers, teachers, schools’ environment, family and community played out in creating supportive strategies to improve the psychosocial wellbeing of OVLs which buffer the successful completion of their secondary school education. It is recommended that ethnopsychology should recognise and be used under the realm of positive wellbeing in rural schools in Lesotho.

Keywords: arts-based research, ethnopsychology, Lesotho, orphans and vulnerable learners, psychosocial wellbeing, rural schools.

Procedia PDF Downloads 207
2089 Scaling Up Psychosocial Wellbeing of Orphans and Vulnerable Learners in Rural Schools in Lesotho: An Ethnopsychology Approach

Authors: Fumane Portia Khanare

Abstract:

This paper explores strategies to improve the psychosocial wellbeing of orphans and vulnerable learners (OVLs) in rural schools in Lesotho that seem essential for their success, in anticipation of, and in the context of global education. Various strategies to improve the psychosocial wellbeing are considered necessary in that they are inclusive and buffer other forms of conditions beyond traditional and Eurocentric forms in orientation. Furthermore, they bring about the local experiences and particularly of the learners and schools in rural areas – all of which constitute ethnopsychology. COVID-19 pandemic has enthused the demands for collaboration and responsive support for learners within rural and many deprived contexts in Lesotho. However, the increase of OVLs in the education sector has also sparked the debate of how much rural schools with lack of resources, inadequate teacher training, declining unemployment and the detriment of COVID-19 throughout Lesotho affected the psychosocial wellbeing of these learners. In some cases, the pandemic has created opportunities to explore existing, forgotten or ignored resources dated back to pre-colonial era in Lesotho, and emphasizing to have an optimistic outlook on life as a result of collaboration and appreciating local knowledge. In order to scale up the psychosocial wellbeing of OVLs there is a need to explore various strategies to improve their psychosocial wellbeing, in which all learners can succeed during COVID-19 pandemic and beyond, thereby promoting agency of young people from the rural areas towards building supportive learning environments. The paper draws on a qualitative participatory arts-based study data generated by 30 learners in two rural secondary schools in Lesotho. Thematic analysis was employed to provide an in-depth understanding of learners' psychosocial needs and strategies to improve their psychosocial wellbeing. The paper is guided by ethnopsychology – a strength-based perspective, which posit that in the most difficult situations, individual including, young people have strengths, can collaborate and find solutions that respond to their challenges. This was done by examining how various facets of their environments such as peers, teachers, schools’ environment, family and community played out in creating supportive strategies to improve the psychosocial wellbeing of OVLs which buffer their successful completion of their secondary school education. It is recommended that ethnopsychology should recognised and be used under the realm of positive wellbeing in rural schools in Lesotho.

Keywords: arts-based research, ethnopsychology, orphans and vulnerable learners, Lesotho, psychosocial wellbeing, rural schools

Procedia PDF Downloads 155
2088 Insight2OSC: Using Electroencephalography (EEG) Rhythms from the Emotiv Insight for Musical Composition via Open Sound Control (OSC)

Authors: Constanza Levicán, Andrés Aparicio, Rodrigo F. Cádiz

Abstract:

The artistic usage of Brain-computer interfaces (BCI), initially intended for medical purposes, has increased in the past few years as they become more affordable and available for the general population. One interesting question that arises from this practice is whether it is possible to compose or perform music by using only the brain as a musical instrument. In order to approach this question, we propose a BCI for musical composition, based on the representation of some mental states as the musician thinks about sounds. We developed software, called Insight2OSC, that allows the usage of the Emotiv Insight device as a musical instrument, by sending the EEG data to audio processing software such as MaxMSP through the OSC protocol. We provide two compositional applications bundled with the software, which we call Mapping your Mental State and Thinking On. The signals produced by the brain have different frequencies (or rhythms) depending on the level of activity, and they are classified as one of the following waves: delta (0.5-4 Hz), theta (4-8 Hz), alpha (8-13 Hz), beta (13-30 Hz), gamma (30-50 Hz). These rhythms have been found to be related to some recognizable mental states. For example, the delta rhythm is predominant in a deep sleep, while beta and gamma rhythms have higher amplitudes when the person is awake and very concentrated. Our first application (Mapping your Mental State) produces different sounds representing the mental state of the person: focused, active, relaxed or in a state similar to a deep sleep by the selection of the dominants rhythms provided by the EEG device. The second application relies on the physiology of the brain, which is divided into several lobes: frontal, temporal, parietal and occipital. The frontal lobe is related to abstract thinking and high-level functions, the parietal lobe conveys the stimulus of the body senses, the occipital lobe contains the primary visual cortex and processes visual stimulus, the temporal lobe processes auditory information and it is important for memory tasks. In consequence, our second application (Thinking On) processes the audio output depending on the users’ brain activity as it activates a specific area of the brain that can be measured using the Insight device.

Keywords: BCI, music composition, emotiv insight, OSC

Procedia PDF Downloads 322
2087 Biomimetic Systems to Reveal the Action Mode of Epigallocatechin-3-Gallate in Lipid Membrane

Authors: F. Pires, V. Geraldo, O. N. Oliveira Jr., M. Raposo

Abstract:

Catechins are powerful antioxidants which have attractive properties useful for tumor therapy. Considering their antioxidant activity, these molecules can act as a scavenger of the reactive oxygen species (ROS), alleviating the damage of cell membrane induced by oxidative stress. The complexity and dynamic nature of the cell membrane compromise the analysis of the biophysical interactions between drug and cell membrane and restricts the transport or uptake of the drug by intracellular targets. To avoid the cell membrane complexity, we used biomimetic systems as liposomes and Langmuir monolayers to study the interaction between catechin and membranes at the molecular level. Liposomes were formed after the dispersion of anionic 1,2-dipalmitoyl-sn-glycero-3-[phospho-rac-(1-glycerol)(sodium salt) (DPPG) phospholipids in an aqueous solution, which mimic the arrangement of lipids in natural cell membranes and allows the entrapment of catechins. Langmuir monolayers were formed after dropping amphiphilic molecules, DPPG phospholipids, dissolved in an organic solvent onto the water surface. In this work, we mixed epigallocatechin-3-gallate (EGCG) with DPPG liposomes and exposed them to ultra-violet radiation in order to evaluate the antioxidant potential of these molecules against oxidative stress induced by radiation. The presence of EGCG in the mixture decreased the rate of lipid peroxidation, proving that EGCG protects membranes through the quenching of the reactive oxygen species. Considering the high amount of hydroxyl groups (OH groups) on structure of EGCG, a possible mechanism to these molecules interact with membrane is through hydrogen bonding. We also investigated the effect of EGCG at various concentrations on DPPG Langmuir monolayers. The surface pressure isotherms and infrared reflection-absorption spectroscopy (PM-IRRAS) results corroborate with absorbance results preformed on liposome-model, showing that EGCG interacts with polar heads of the monolayers. This study elucidates the physiological action of EGCG which can be incorporated in lipid membrane. These results are also relevant for the improvement of the current protocols used to incorporate catechins in drug delivery systems.

Keywords: catechins, lipid membrane, anticancer agent, molecular interactions

Procedia PDF Downloads 233
2086 Relation Between Traffic Mix and Traffic Accidents in a Mixed Industrial Urban Area

Authors: Michelle Eliane Hernández-García, Angélica Lozano

Abstract:

The traffic accidents study usually contemplates the relation between factors such as the type of vehicle, its operation, and the road infrastructure. Traffic accidents can be explained by different factors, which have a greater or lower relevance. Two zones are studied, a mixed industrial zone and the extended zone of it. The first zone has mainly residential (57%), and industrial (23%) land uses. Trucks are mainly on the roads where industries are located. Four sensors give information about traffic and speed on the main roads. The extended zone (which includes the first zone) has mainly residential (47%) and mixed residential (43%) land use, and just 3% of industrial use. The traffic mix is composed mainly of non-trucks. 39 traffic and speed sensors are located on main roads. The traffic mix in a mixed land use zone, could be related to traffic accidents. To understand this relation, it is required to identify the elements of the traffic mix which are linked to traffic accidents. Models that attempt to explain what factors are related to traffic accidents have faced multiple methodological problems for obtaining robust databases. Poisson regression models are used to explain the accidents. The objective of the Poisson analysis is to estimate a vector to provide an estimate of the natural logarithm of the mean number of accidents per period; this estimate is achieved by standard maximum likelihood procedures. For the estimation of the relation between traffic accidents and the traffic mix, the database is integrated of eight variables, with 17,520 observations and six vectors. In the model, the dependent variable is the occurrence or non-occurrence of accidents, and the vectors that seek to explain it, correspond to the vehicle classes: C1, C2, C3, C4, C5, and C6, respectively, standing for car, microbus, and van, bus, unitary trucks (2 to 6 axles), articulated trucks (3 to 6 axles) and bi-articulated trucks (5 to 9 axles); in addition, there is a vector for the average speed of the traffic mix. A Poisson model is applied, using a logarithmic link function and a Poisson family. For the first zone, the Poisson model shows a positive relation among traffic accidents and C6, average speed, C3, C2, and C1 (in a decreasing order). The analysis of the coefficient shows a high relation with bi-articulated truck and bus (C6 and the C3), indicating an important participation of freight trucks. For the expanded zone, the Poisson model shows a positive relation among traffic accidents and speed average, biarticulated truck (C6), and microbus and vans (C2). The coefficients obtained in both Poisson models shows a higher relation among freight trucks and traffic accidents in the first industrial zone than in the expanded zone.

Keywords: freight transport, industrial zone, traffic accidents, traffic mix, trucks

Procedia PDF Downloads 127
2085 Composition Dependence of Ni 2p Core Level Shift in Fe1-xNix Alloys

Authors: Shakti S. Acharya, V. R. R. Medicherla, Rajeev Rawat, Komal Bapna, Deepnarayan Biswas, Khadija Ali, K. Maiti

Abstract:

The discovery of invar effect in 35% Ni concentration Fe1-xNix alloy has stimulated enormous experimental and theoretical research. Elemental Fe and low Ni concentration Fe1-xNix alloys which possess body centred cubic (bcc) crystal structure at ambient temperature and pressure transform to hexagonally close packed (hcp) phase at around 13 GPa. Magnetic order was found to be absent at 11K for Fe92Ni8 alloy when subjected to a high pressure of 26 GPa. The density functional theoretical calculations predicted substantial hyperfine magnetic fields, but were not observed in Mossbaur spectroscopy. The bulk modulus of fcc Fe1-xNix alloys with Ni concentration more than 35%, is found to be independent of pressure. The magnetic moment of Fe is also found be almost same in these alloys from 4 to 10 GPa pressure. Fe1-xNix alloys exhibit a complex microstructure which is formed by a series of complex phase transformations like martensitic transformation, spinodal decomposition, ordering, mono-tectoid reaction, eutectoid reaction at temperatures below 400°C. Despite the existence of several theoretical models the field is still in its infancy lacking full knowledge about the anomalous properties exhibited by these alloys. Fe1-xNix alloys have been prepared by arc melting the high purity constituent metals in argon ambient. These alloys have annealed at around 3000C in vacuum sealed quartz tube for two days to make the samples homogeneous. These alloys have been structurally characterized by x-ray diffraction and were found to exhibit a transition from bcc to fcc for x > 0.3. Ni 2p core levels of the alloys have been measured using high resolution (0.45 eV) x-ray photoelectron spectroscopy. Ni 2p core level shifts to lower binding energy with respect to that of pure Ni metal giving rise to negative core level shifts (CLSs). Measured CLSs exhibit a linear dependence in fcc region (x > 0.3) and were found to deviate slightly in bcc region (x < 0.3). ESCA potential model fails correlate CLSs with site potentials or charges in metallic alloys. CLSs in these alloys occur mainly due to shift in valence bands with composition due to intra atomic charge redistribution.

Keywords: arc melting, core level shift, ESCA potential model, valence band

Procedia PDF Downloads 380
2084 Effects of a Head Mounted Display Adaptation on Reaching Behaviour: Implications for a Therapeutic Approach in Unilateral Neglect

Authors: Taku Numao, Kazu Amimoto, Tomoko Shimada, Kyohei Ichikawa

Abstract:

Background: Unilateral spatial neglect (USN) is a common syndrome following damage to one hemisphere of the brain (usually the right side), in which a patient fails to report or respond to stimulation from the contralesional side. These symptoms are not due to primary sensory or motor deficits, but instead, reflect an inability to process input from that side of their environment. Prism adaptation (PA) is a therapeutic treatment for USN, wherein a patient’s visual field is artificially shifted laterally, resulting in a sensory-motor adaptation. However, patients with USN also tend to perceive a left-leaning subjective vertical in the frontal plane. The traditional PA cannot be used to correct a tilt in the subjective vertical, because a prism can only polarize, not twist, the surroundings. However, this can be accomplished using a head mounted display (HMD) and a web-camera. Therefore, this study investigated whether an HMD system could be used to correct the spatial perception of USN patients in the frontal as well as the horizontal plane. We recruited healthy subjects in order to collect data for the refinement of USN patient therapy. Methods: Eight healthy subjects sat on a chair wearing a HMD (Oculus rift DK2), with a web-camera (Ovrvision) displaying a 10 degree leftward rotation and a 10 degree counter-clockwise rotation along the frontal plane. Subjects attempted to point a finger at one of four targets, assigned randomly, a total of 48 times. Before and after the intervention, each subject’s body-centre judgment (BCJ) was tested by asking them to point a finger at a touch panel straight in front of their xiphisternum, 10 times sight unseen. Results: Intervention caused the location pointed to during the BCJ to shift 35 ± 17 mm (Ave ± SD) leftward in the horizontal plane, and 46 ± 29 mm downward in the frontal plane. The results in both planes were significant by paired-t-test (p<.01). Conclusions: The results in the horizontal plane are consistent with those observed following PA. Furthermore, the HMD and web-camera were able to elicit 3D effects, including in both the horizontal and frontal planes. Future work will focus on applying this method to patients with and without USN, and investigating whether subject posture is also affected by the HMD system.

Keywords: head mounted display, posture, prism adaptation, unilateral spatial neglect

Procedia PDF Downloads 280
2083 Sedimentological and Petrographical Studies on the Cored samples from Bentiu Formation Muglad Basin

Authors: Yousif M. Makeen

Abstract:

This study presents the results of the sedimentological and petrographical analyses on the cored samples from the Bentiu Formation. The cored intervals consist of thick beds of sandstone, which are sometimes intercalated with beds of fine-grained sandstone and, in a minor case, with a siltstone bed. Detailed sedimentological facies analysis revealed the presence of six facies types, which can be clarified in order of their great percentage occurrences as follows: (i) Massive sandstone, (ii) Planar cross-bedded sandstone, (iii) Trough cross-bedded sandstone, (iv) Fine laminated sandstone (v) Fine laminated siltstone and (vi) Horizontally parted sandstone. The petrographical analyses under the plane polarized microscope and the scanning electron microscope (SEM) for the sandstone lithofacies types that exist within the cored intervals allowed classifying these lithofacies into Kaolinitic Subfeldspathic Arenites. Among the detrital components, quartz grains are the most abundant (mainly monocrystalline quartz), followed by feldspars, micas, detrital and authigenic clays, and carbonaceous debris. However, traces of lithic fragments, iron oxides and heavy minerals were observed in some of the analyzed samples, where they occur in minor amounts. Kaolinite is present mainly as an authigenic component in most of the analyzed samples, while quartz overgrowths occur in variable amounts in most of the investigated samples. Carbonates (calcite & siderite) are present in considerable amounts. The grain roundness in most of the investigated sandstone samples ranges from well-rounded to round, and, in fewer samples, is sub-angular to angular. Most of the sandstone samples are moderately compacted and display point, concavo-convex and long grain contacts, whereas the sutured grain contacts, which reflect a higher degree of compaction, are relatively observed in lesser amounts, while the float grain contact has also been observed in minor quantity. Pore types in the analyzed samples are dominantly primary and secondary interparticle forms. Point-counted porosity values range from 19.6% to 30%. Average pore sizes are highly variable and range from 20 to 350 microns. Pore interconnectivity ranges from good to very good.

Keywords: sandstone, sedimentological facies, porosity, quartz overgrowths

Procedia PDF Downloads 48