Search results for: power cable
5145 Military Orchestrated Leadership Change in Zimbabwe and the Quest for Political Transition
Authors: Patrick Dzimiri
Abstract:
This chapter discusses the military-orchestrated leadership change in Zimbabwe that transpired in November 2017. Fundamentally, the chapter provides a critical examination of military interference in the country's politics and its implications for a political transition in the post-Mugabe dispensation. This chapter offers insight into Zimbabwe's political crises propelled by the lack of a succession plan. It emerged that the succession battle within ZANU-PF got complicated by the militarisation of factionalism. The chapter builds from an extensive review of primary and secondary data sources on political developments before and post-Mugabe era. Vilfredo Pareto's (1848-18923) theory on elite circulation is deployed herein to explain the absence of a succession mechanism within ZANU-PF and the militarisation of socio-politics life Zimbabwe. The chapter argues that what transpired in Zimbabwe’s power wrangle within the ZANU-PF political elites was triggered by a lack of a clear succession policy. Building from insights offered by Pareto's theory of elite circulation, it is averred that the removal of Mugabe by the military did not herald any form of political transition but rather a mere power play of one elite replacing another. In addition, it is argued that the lack of political reform by the Mnangagwa government affirms the position that political elites seek power for personal self-actualisation and not the public good. The chapter concludes that Mnangagwa's rise to power is nothing but a new elite displacing the old elite structure and does not herald a positive transition and transformation in the politics of Zimbabwe.Keywords: military, politics, zimbabwe, governance, political transition
Procedia PDF Downloads 975144 Instrumentation for Engine Start Cycle Characterization at Cold Weather High Altitude Condition
Authors: Amit Kumar Gupta, Rohit Vashistha, G. P. Ravishankar, Mahesh P. Padwale
Abstract:
A cold soaked gas turbine engine have known starting problems in high altitude and low temperature conditions. The high altitude results in lower ambient temperature, pressure, and density. Soaking at low temperature leads to higher oil viscosity, increasing the engine starter system torque requirement. Also, low temperature soaks results in a cold compressor rotor and casing. Since the thermal mass of rotor is higher than casing, casing expands faster, thereby, increasing the blade-casing tip clearance. The low pressure flow over the compressor blade coupled with the secondary flow through the compressor tip clearance during start result in stall inception. The present study discusses engine instrumentation required for capturing the stall inception event. The engine fan exit and combustion chamber were instrumented with dynamic pressure probes to capture the pressure characteristic and clamp-on current meter on primary igniter cable to capture ignition event during start cycle. The experiment was carried out at 10500 Ft. pressure altitude and -15°C ambient temperature. The high pressure compressor stall events were recorded during the starts.Keywords: compressor inlet, dynamic pressure probe, engine start cycle, flight test instrumentation
Procedia PDF Downloads 3225143 Convergence Analysis of Reactive Power Based Schemes Used in Sensorless Control of Induction Motors
Authors: N. Ben Si Ali, N. Benalia, N. Zerzouri
Abstract:
Many electronic drivers for the induction motor control are based on sensorless technologies. Speed and torque control is usually attained by application of a speed or position sensor which requires the additional mounting space, reduce the reliability and increase the cost. This paper seeks to analyze dynamical performances and sensitivity to motor parameter changes of reactive power based technique used in sensorless control of induction motors. Validity of theoretical results is verified by simulation.Keywords: adaptive observers, model reference adaptive system, RP-based estimator, sensorless control, stability analysis
Procedia PDF Downloads 5505142 Effect of Plasma Discharge Power on Activation Energies of Plasma Poly(Ethylene Oxide) Thin Films
Authors: Sahin Yakut, H. Kemal Ulutas, Deniz Deger
Abstract:
Plasma Assisted Physical Vapor Deposition (PAPVD) method used to produce Poly(ethylene oxide) (pPEO) thin films. Depositions were progressed at various plasma discharge powers as 0, 2, 5 and 30 W for pPEO at 500nm film thicknesses. The capacitance and dielectric dissipation of the thin films were measured at 0,1-107 Hz frequency range and 173-353 K temperature range by an impedance analyzer. Then, alternative conductivity (σac) and activation energies were derived from capacitance and dielectric dissipation. σac of conventional PEO (PEO precursor) was measured to determine the effect of plasma discharge. Differences were observed between the alternative conductivity of PEO’s and pPEO’s depending on plasma discharge power. By this purpose, structural characterization techniques such as Differential Scanning Calorimetry (DSC) and Fourier Transform Infrared Spectroscopy (FT-IR) were applied on pPEO thin films. Structural analysis showed that density of crosslinking is plasma power dependent. The crosslinking density increases with increasing plasma discharge power and this increase is displayed as increasing dynamic glass transition temperatures at DSC results. Also, shifting of frequencies of some type of bond vibrations, belonging to bond vibrations produced after fragmentation because of plasma discharge, were observed at FTIR results. The dynamic glass transition temperatures obtained from alternative conductivity results for pPEO consistent with the results of DSC. Activation energies exhibit Arrhenius behavior. Activation energies decrease with increasing plasma discharge power. This behavior supports the suggestion expressing that long polymer chains and long oligomers are fragmented into smaller oligomers or radicals.Keywords: activation energy, dielectric spectroscopy, organic thin films, plasma polymer
Procedia PDF Downloads 3035141 Optimal Planning of Transmission Line Charging Mode During Black Start of a Hydroelectric Unit
Authors: Mohammad Reza Esmaili
Abstract:
After the occurrence of blackouts, the most important subject is how fast the electric service is restored. Power system restoration is an immensely complex issue and there should be a plan to be executed within the shortest time period. This plan has three main stages of black start, network reconfiguration and load restoration. In the black start stage, operators and experts may face several problems, for instance, the unsuccessful connection of the long high-voltage transmission line connected to the electrical source. In this situation, the generator may be tripped because of the unsuitable setting of its line charging mode or high absorbed reactive power. In order to solve this problem, the line charging process is defined as a nonlinear programming problem, and it is optimized by using GAMS software in this paper. The optimized process is performed on a grid that includes a 250 MW hydroelectric unit and a 400 KV transmission system. Simulations and field test results show the effectiveness of optimal planning.Keywords: power system restoration, black start, line charging mode, nonlinear programming
Procedia PDF Downloads 845140 Modeling Battery Degradation for Electric Buses: Assessment of Lifespan Reduction from In-Depot Charging
Authors: Anaissia Franca, Julian Fernandez, Curran Crawford, Ned Djilali
Abstract:
A methodology to estimate the state-of-charge (SOC) of battery electric buses, including degradation effects, for a given driving cycle is presented to support long-term techno-economic analysis integrating electric buses and charging infrastructure. The degradation mechanisms, characterized by both capacity and power fade with time, have been modeled using an electrochemical model for Li-ion batteries. Iterative changes in the negative electrode film resistance and decrease in available lithium as a function of utilization is simulated for every cycle. The cycles are formulated to follow typical transit bus driving patterns. The power and capacity decay resulting from the degradation model are introduced as inputs to a longitudinal chassis dynamic analysis that calculates the power consumption of the bus for a given driving cycle to find the state-of-charge of the battery as a function of time. The method is applied to an in-depot charging scenario, for which the bus is charged exclusively at the depot, overnight and to its full capacity. This scenario is run both with and without including degradation effects over time to illustrate the significant impact of degradation mechanisms on bus performance when doing feasibility studies for a fleet of electric buses. The impact of battery degradation on battery lifetime is also assessed. The modeling tool can be further used to optimize component sizing and charging locations for electric bus deployment projects.Keywords: battery electric bus, E-bus, in-depot charging, lithium-ion battery, battery degradation, capacity fade, power fade, electric vehicle, SEI, electrochemical models
Procedia PDF Downloads 3285139 Flue Gas Characterisation for Conversion to Chemicals and Fuels
Authors: Adesola O. Orimoloye, Edward Gobina
Abstract:
Flue gas is the most prevalent source of carbon dioxide off-gas from numerous processes globally. Among the lion's share of this flue gas is the ever-present electric power plant, primarily fuelled by coal, and then secondly, natural gas. The carbon dioxide found in coal fired power plant off gas is among the dirtiest forms of carbon dioxide, even with many of the improvements in the plants; still this will yield sulphur and nitrogen compounds; among other rather nasty compounds and elements; all let to the atmosphere. This presentation will focus on the characterization of carbon dioxide-rich flue gas sources with a view of eventual conversion to chemicals and fuels using novel membrane reactors.Keywords: flue gas, carbon dioxide, membrane, catalyst, syngas
Procedia PDF Downloads 5275138 The Role of Journalism in Society, Informing, Educating, and Holding Power Accountable within the Yaoundé Region of Cameroon
Authors: Ita Noh Nkwain
Abstract:
Journalism plays a critical role in today's society by providing accurate and reliable information to the public. Through various mediums such as print, television, and online news outlets, journalists inform and educate the public on important issues and events happening around the world. Additionally, journalism serves as a watchdog by holding those in power accountable for their actions and decisions. However, with the rise of social media and the decline of traditional news sources, the future of journalism is uncertain. Despite these challenges, the importance of quality journalism cannot be overstated in a world where information is readily available but not always trustworthy.Keywords: journalism, accountability, education, television, public
Procedia PDF Downloads 475137 The Role of Journalism in Society, Informing, Educating, and Holding Power Accountable within the Yaoundé Region of Cameroon
Authors: Ita Noh Nkwain
Abstract:
Journalism plays a critical role in today's society by providing accurate and reliable information to the public. Through various mediums such as print, television, and online news outlets, journalists inform and educate the public on important issues and events happening around the world. Additionally, journalism serves as a watchdog by holding those in power accountable for their actions and decisions. However, with the rise of social media and the decline of traditional news sources, the future of journalism is uncertain. Despite these challenges, the importance of quality journalism cannot be overstated in a world where information is readily available but not always trustworthy.Keywords: Journalism, accountability, education, television, public
Procedia PDF Downloads 405136 Acoustic Partial Discharge Propagation and Perfectly Matched Layer in Acoustic Detection-Transformer
Authors: Nirav J. Patel, Kalpesh K. Dudani
Abstract:
Partial discharge (PD) is the dissipation of energy caused by localized breakdown of insulation. Power transformers are one of the most important components in the electrical energy network. Insulation degradation of transformer is frequently linked to PD. This is why PD detection is used in power system to monitor the health of high voltage transformer. If such problem are not detected and repaired, the strength and frequency of PD may increase and eventually lead to the catastrophic failure of the transformer. This can further cause external equipment damage, fires and loss of revenue due to an unscheduled outage. Hence, reliable online PD detection is a critical need for power companies to improve personnel safety and decrease the probability of loss of service. The PD phenomenon is manifested in a variety of physically observable signals including Ultra High Frequency (UHF) radiation and Acoustic Disturbances, Electrical pulses. Acoustic method is based on sensing the radiated acoustic emission from discharge sites in the insulation. Propagated wave from the PD fault site are captured sensor are consequently pre-amplified, filtered, recorded and analyze.Keywords: acoustic, partial discharge, perfectly matched layer, sensor
Procedia PDF Downloads 5305135 Power Recovery in Egyptian Natural Gas Pressure Reduction Stations Using Turboexpander Systems
Authors: Kamel A. Elshorbagy, Mohamed A. Hussein, Rola S. Afify
Abstract:
Natural gas pressure reduction is typically achieved using pressure reducing valves, where isenthalpic expansion takes place with considerable amount of wasted energy in an irreversible throttling process of the gas. Replacing gas-throttling process by an expansion process in a turbo expander (TE) converts the pressure of natural gas into mechanical energy transmitted to a loading device (i.e. an electric generator). This paper investigates the performance of a turboexpander system for power recovery at natural gas pressure reduction stations. There is a considerable temperature drop associated with the turboexpander process. Essential preheating is required, using gas fired boilers, to avoid undesirable effects of a low outlet temperature. Various system configurations were simulated by the general flow sheet simulator HYSYS and factors affecting the overall performance of the systems were investigated. Power outputs and fuel requirements were found using typical gas flow variation data. The simulation was performed for two case studies in which real input data are used. These case studies involve a domestic (commercial) and an industrial natural gas pressure reduction stations in Egypt. Economic studies of using the turboexpander system in both of the two natural gas pressure reduction stations are conducted using precise data obtained through communication with several companies working in this field. The results of economic analysis, for the two case studies, prove that using turboexpander systems in Egyptian natural gas reduction stations can be a successful project for energy conservation.Keywords: natural gas, power recovery, reduction stations, turboexpander systems
Procedia PDF Downloads 3305134 An Improved Photovolatic System Balancer Architecture
Authors: Chih-Chiang Hua, Yi-Hsiung Fang, Cyuan-Jyun Wong
Abstract:
An improved PV balancer for photovoltaic applications is proposed in this paper. The proposed PV balancer senses the voltage and current of PV module and adjusts the output voltage of converter. Thus, the PV system can implement maximum power point tracking (MPPT) independently for each module whether it is under shading, different irradiation or degradation of PV cell. In addition, the cost of PV balancer can be reduced due to the low power rating of converter. To assess the effectiveness of the proposed system, two PV balancers are designed and verified through simulation under different shading conditions. The proposed PV balancers can provide more energy than the traditional PV balancer.Keywords: MPPT, partial shading, PV System, converter
Procedia PDF Downloads 2975133 Building a Scalable Telemetry Based Multiclass Predictive Maintenance Model in R
Authors: Jaya Mathew
Abstract:
Many organizations are faced with the challenge of how to analyze and build Machine Learning models using their sensitive telemetry data. In this paper, we discuss how users can leverage the power of R without having to move their big data around as well as a cloud based solution for organizations willing to host their data in the cloud. By using ScaleR technology to benefit from parallelization and remote computing or R Services on premise or in the cloud, users can leverage the power of R at scale without having to move their data around.Keywords: predictive maintenance, machine learning, big data, cloud based, on premise solution, R
Procedia PDF Downloads 3805132 Impact of Combined Heat and Power (CHP) Generation Technology on Distribution Network Development
Authors: Sreto Boljevic
Abstract:
In the absence of considerable investment in electricity generation, transmission and distribution network (DN) capacity, the demand for electrical energy will quickly strain the capacity of the existing electrical power network. With anticipated growth and proliferation of Electric vehicles (EVs) and Heat pump (HPs) identified the likelihood that the additional load from EV changing and the HPs operation will require capital investment in the DN. While an area-wide implementation of EVs and HPs will contribute to the decarbonization of the energy system, they represent new challenges for the existing low-voltage (LV) network. Distributed energy resources (DER), operating both as part of the DN and in the off-network mode, have been offered as a means to meet growing electricity demand while maintaining and ever-improving DN reliability, resiliency and power quality. DN planning has traditionally been done by forecasting future growth in demand and estimating peak load that the network should meet. However, new problems are arising. These problems are associated with a high degree of proliferation of EVs and HPs as load imposes on DN. In addition to that, the promotion of electricity generation from renewable energy sources (RES). High distributed generation (DG) penetration and a large increase in load proliferation at low-voltage DNs may have numerous impacts on DNs that create issues that include energy losses, voltage control, fault levels, reliability, resiliency and power quality. To mitigate negative impacts and at a same time enhance positive impacts regarding the new operational state of DN, CHP system integration can be seen as best action to postpone/reduce capital investment needed to facilitate promotion and maximize benefits of EVs, HPs and RES integration in low-voltage DN. The aim of this paper is to generate an algorithm by using an analytical approach. Algorithm implementation will provide a way for optimal placement of the CHP system in the DN in order to maximize the integration of RES and increase in proliferation of EVs and HPs.Keywords: combined heat & power (CHP), distribution networks, EVs, HPs, RES
Procedia PDF Downloads 2065131 Power Production Performance of Different Wave Energy Converters in the Southwestern Black Sea
Authors: Ajab G. Majidi, Bilal Bingölbali, Adem Akpınar
Abstract:
This study aims to investigate the amount of energy (economic wave energy potential) that can be obtained from the existing wave energy converters in the high wave energy potential region of the Black Sea in terms of wave energy potential and their performance at different depths in the region. The data needed for this purpose were obtained using the calibrated nested layered SWAN wave modeling program version 41.01AB, which was forced with Climate Forecast System Reanalysis (CFSR) winds from 1979 to 2009. The wave dataset at a time interval of 2 hours was accumulated for a sub-grid domain for around Karaburun beach in Arnavutkoy, a district of Istanbul city. The annual sea state characteristic matrices for the five different depths along with a vertical line to the coastline were calculated for 31 years. According to the power matrices of different wave energy converter systems and characteristic matrices for each possible installation depth, the probability distribution tables of the specified mean wave period or wave energy period and significant wave height were calculated. Then, by using the relationship between these distribution tables, according to the present wave climate, the energy that the wave energy converter systems at each depth can produce was determined. Thus, the economically feasible potential of the relevant coastal zone was revealed, and the effect of different depths on energy converter systems is presented. The Oceantic at 50, 75 and 100 m depths and Oyster at 5 and 25 m depths presents the best performance. In the 31-year long period 1998 the most and 1989 is the least dynamic year.Keywords: annual power production, Black Sea, efficiency, power production performance, wave energy converter
Procedia PDF Downloads 1385130 Neural Network Supervisory Proportional-Integral-Derivative Control of the Pressurized Water Reactor Core Power Load Following Operation
Authors: Derjew Ayele Ejigu, Houde Song, Xiaojing Liu
Abstract:
This work presents the particle swarm optimization trained neural network (PSO-NN) supervisory proportional integral derivative (PID) control method to monitor the pressurized water reactor (PWR) core power for safe operation. The proposed control approach is implemented on the transfer function of the PWR core, which is computed from the state-space model. The PWR core state-space model is designed from the neutronics, thermal-hydraulics, and reactivity models using perturbation around the equilibrium value. The proposed control approach computes the control rod speed to maneuver the core power to track the reference in a closed-loop scheme. The particle swarm optimization (PSO) algorithm is used to train the neural network (NN) and to tune the PID simultaneously. The controller performance is examined using integral absolute error, integral time absolute error, integral square error, and integral time square error functions, and the stability of the system is analyzed by using the Bode diagram. The simulation results indicated that the controller shows satisfactory performance to control and track the load power effectively and smoothly as compared to the PSO-PID control technique. This study will give benefit to design a supervisory controller for nuclear engineering research fields for control application.Keywords: machine learning, neural network, pressurized water reactor, supervisory controller
Procedia PDF Downloads 1605129 A Theoretical Framework on International Voluntary Health Networks
Authors: Benet Reid, Nina Laurie, Matt Baillie-Smith
Abstract:
Trans-national and tropical medicine, historically associated with colonial power and missionary activity, is now central to discourses of global health and development, thrust into mainstream media by events like the 2014 Ebola crisis and enshrined in the Sustainable Development Goals. Research in this area remains primarily the province of health professional disciplines, and tends to be framed within a simple North-to-South model of development. The continued role of voluntary work in this field is bound up with a rhetoric of partnering and partnership. We propose, instead, the idea of International Voluntary Health Networks (IVHNs) as a means to de-centre global-North institutions in these debates. Drawing on our empirical work with IVHNs in countries both North and South, we explore geographical and sociological theories for mapping the multiple spatial and conceptual dynamics of power manifested in these phenomena. We make a radical break from conventional views of health as a de-politicised symptom or corollary of social development. In studying health work as it crosses between cultures and contexts, we demonstrate the inextricably political nature of health and health work everywhere.Keywords: development, global health, power, volunteering
Procedia PDF Downloads 3305128 Percentile Norms of Heart Rate Variability (HRV) of Indian Sportspersons Withdrawn from Competitive Games and Sports
Authors: Pawan Kumar, Dhananjoy Shaw
Abstract:
Heart rate variability (HRV) is the physiological phenomenon of variation in the time interval between heartbeats and is alterable with fitness, age and different medical conditions including withdrawal/retirement from games/sports. Objectives of the study were to develop (a) percentile norms of heart rate variability (HRV) variables derived from time domain analysis of the Indian sportspersons withdrawn from competitive games/sports pertaining to sympathetic and parasympathetic activity (b) percentile norms of heart rate variability (HRV) variables derived from frequency domain analysis of the Indian sportspersons withdrawn from competitive games/sports pertaining to sympathetic and parasympathetic activity. The study was conducted on 430 males. Ages of the sample ranged from 30 to 35 years of same socio-economic status. Date was collected using ECG polygraphs. Data were processed and extracted using frequency domain analysis and time domain analysis. Collected data were computed with percentile from one to hundred. The finding showed that the percentile norms of heart rate variability (HRV) variables derived from time domain analysis of the Indian sportspersons withdrawn from competitive games/sports pertaining to sympathetic and parasympathetic activity namely, NN50 count (ranged from 1 to 189 score as percentile range). pNN50 count (ranged from .24 to 60.80 score as percentile range). SDNN (ranged from 17.34 to 167.29 score as percentile range). SDSD (ranged from 11.14 to 120.46 score as percentile range). RMMSD (ranged from 11.19 to 120.24 score as percentile range) and SDANN (ranged from 4.02 to 88.75 score as percentile range). The percentile norms of heart rate variability (HRV) variables derived from frequency domain analysis of the Indian sportspersons withdrawn from competitive games/sports pertaining to sympathetic and parasympathetic activity namely Low Frequency (Normalized Power) ranged from 20.68 to 90.49 score as percentile range. High Frequency (Normalized Power) ranged from 14.37 to 81.60 score as percentile range. LF/ HF ratio(ranged from 0.26 to 9.52 score as percentile range). LF (Absolute Power) ranged from 146.79 to 5669.33 score as percentile range. HF (Absolute Power) ranged from 102.85 to 10735.71 score as percentile range and Total Power (Absolute Power) ranged from 471.45 to 25879.23 score as percentile range. Conclusion: The analysis documented percentile norms for time domain analysis and frequency domain analysis for versatile use and evaluation.Keywords: RMSSD, Percentile, SDANN, HF, LF
Procedia PDF Downloads 4235127 Realization of Sustainable Urban Society by Personal Electric Transporter and Natural Energy
Authors: Yuichi Miyamoto
Abstract:
In regards to the energy sector in the modern period, two points were raised. First is a vast and growing energy demand, and second is an environmental impact associated with it. The enormous consumption of fossil fuel to the mobile unit is leading to its rapid depletion. Nuclear power is not the only problem. A modal shift that utilizes personal transporters and independent power, in order to realize a sustainable society, is very effective. The paper proposes that the world will continue to work on this. Energy of the future society, innovation in battery technology and the use of natural energy is a big key. And it is also necessary in order to save on energy consumption.Keywords: natural energy, modal shift, personal transportation, battery
Procedia PDF Downloads 4145126 Sensor Network Routing Optimization by Simulating Eurygaster Life in Wheat Farms
Authors: Fariborz Ahmadi, Hamid Salehi, Khosrow Karimi
Abstract:
A sensor network is set of sensor nodes that cooperate together to perform a predefined tasks. The important problem in this network is power consumption. So, in this paper one algorithm based on the eurygaster life is introduced to minimize power consumption by the nodes of these networks. In this method the search space of problem is divided into several partitions and each partition is investigated separately. The evaluation results show that our approach is more efficient in comparison to other evolutionary algorithm like genetic algorithm.Keywords: evolutionary computation, genetic algorithm, particle swarm optimization, sensor network optimization
Procedia PDF Downloads 4345125 Design Manufacture and Testing of a Combined Alpha-Beta Double Piston Stirling Engine
Authors: A. Calvin Antony, Sakthi Kumar Arul Prakash, V. R. Sanal Kumar
Abstract:
In this paper a unique alpha-beta double piston 'stirling engine' is designed, manufactured and conducted laboratory test to ameliorate the efficiency of the stirling engine. The paper focuses on alpha and beta type engines, capturing their benefits and eradicating their short comings; along with the output observed from the flywheel. In this model alpha engine is kinematically with a piston cylinder arrangement which works quite like a beta engine. The piston of the new cylinder is so designed that it replicates a glued displacer and power piston as similar to that of beta engine. The bigger part of the piston is the power piston, which has a gap around it, while the smaller part of the piston is tightly fit in the cylinder and acts like the displacer piston. We observed that the alpha-beta double piston stirling engine produces 25% increase in power compare to a conventional alpha stirling engine. This working model is a pointer towards for the design and development of an alpha-beta double piston Stirling engine for industrial applications for producing electricity from the heat producing exhaust gases.Keywords: alpha-beta double piston stirling engine , alpha stirling engine , beta double piston stirling engine , electricity from stirling engine
Procedia PDF Downloads 5365124 International Relations and the Transformation of Political Regimes in Post-Soviet States
Authors: Sergey Chirun
Abstract:
Using of a combination of institutional analysis and network access has allowed the author to identify the characteristics of the informal institutions of regional political power and political regimes. According to the author, ‘field’ of activity of post-Soviet regimes, formed under the influence of informal institutions, often contradicts democratic institutional regional changes which are aimed at creating of a legal-rational type of political domination and balanced model of separation of powers. This leads to the gap between the formal structure of institutions and the real nature of power, predetermining the specific character of the existing political regimes.Keywords: authoritarianism, institutions, political regime, social networks, transformation
Procedia PDF Downloads 4965123 Feature Evaluation and Applications of Various Advanced Conductors with High Conductivity and Low Flash in Overhead Lines
Authors: Atefeh Pourshafie, Homayoun Bakhtiari
Abstract:
In power transmission lines, electricity conductors are main tools to carry electric power. Thus, other devices such as shield wires, insulators, towers, foundations etc. should be designed in a way that the conductors be able to successfully do their task which is appropriate power delivery to the customers. Non-stop increase of energy demand has led to saturated capacity of transmission lines which, in turn, causing line flash to exceed acceptable limits in some points. An approach which may be used to solve this issue is replacement of current conductors with new ones having the capability of withstanding higher heating such that reduced flash would be observed when heating increases. These novel conductors are able to transfer higher currents and operate in higher heating conditions while line flash will remain within standard limits. In this paper, we will attempt to introduce three types of advanced overhead conductors and analyze the replacement of current conductors by new ones technically and economically in transmission lines. In this regard, progressive conductors of transmission lines are introduced such as ACC (Aluminum Conductor Composite Core), AAAC-UHC (Ultra High Conductivity, All Aluminum Alloy Conductors), and G(Z)TACSR-Gap Type.Keywords: ACC, AAAC-UHC, gap type, transmission lines
Procedia PDF Downloads 2725122 Automation of Savitsky's Method for Power Calculation of High Speed Vessel and Generating Empirical Formula
Authors: M. Towhidur Rahman, Nasim Zaman Piyas, M. Sadiqul Baree, Shahnewaz Ahmed
Abstract:
The design of high-speed craft has recently become one of the most active areas of naval architecture. Speed increase makes these vehicles more efficient and useful for military, economic or leisure purpose. The planing hull is designed specifically to achieve relatively high speed on the surface of the water. Speed on the water surface is closely related to the size of the vessel and the installed power. The Savitsky method was first presented in 1964 for application to non-monohedric hulls and for application to stepped hulls. This method is well known as a reliable comparative to CFD analysis of hull resistance. A computer program based on Savitsky’s method has been developed using MATLAB. The power of high-speed vessels has been computed in this research. At first, the program reads some principal parameters such as displacement, LCG, Speed, Deadrise angle, inclination of thrust line with respect to keel line etc. and calculates the resistance of the hull using empirical planning equations of Savitsky. However, some functions used in the empirical equations are available only in the graphical form, which is not suitable for the automatic computation. We use digital plotting system to extract data from nomogram. As a result, value of wetted length-beam ratio and trim angle can be determined directly from the input of initial variables, which makes the power calculation automated without manually plotting of secondary variables such as p/b and other coefficients and the regression equations of those functions are derived by using data from different charts. Finally, the trim angle, mean wetted length-beam ratio, frictional coefficient, resistance, and power are computed and compared with the results of Savitsky and good agreement has been observed.Keywords: nomogram, planing hull, principal parameters, regression
Procedia PDF Downloads 4075121 Mongolia’s Road to Independence: The Power Bargains between China and Russia
Authors: Zhengyang Ma
Abstract:
Mongolia is a significant country bordered by China and Russia. The Mongolian people are the descendants of Genghis Khan. Mongolia has a glorious history and possesses strategic mineral resources. Throughout history, the Qing empire of China has always considered this region as part of China’s hegemony. Due to a series of historical events, Mongolia successfully achieved its independence from China in 1945. In order to clearly understand the status quo in Mongolia today better, it is necessary to explore the reasons that caused Mongolia to achieve its independence from a historical context. Therefore, this essay will analyze and describe the crucial events and reasons that led to the independence of Mongolia through different historical periods.Keywords: Mongolia, history, power bargain, Sino-Russia relations
Procedia PDF Downloads 1005120 The Performance Improvement of Solar Aided Power Generation System by Introducing the Second Solar Field
Authors: Junjie Wu, Hongjuan Hou, Eric Hu, Yongping Yang
Abstract:
Solar aided power generation (SAPG) technology has been proven as an efficient way to make use of solar energy for power generation purpose. In an SAPG plant, a solar field consisting of parabolic solar collectors is normally used to supply the solar heat in order to displace the high pressure/temperature extraction steam. To understand the performance of such a SAPG plant, a new simulation model was developed by the authors recently, in which the boiler was treated, as a series of heat exchangers unlike other previous models. Through the simulations using the new model, it was found the outlet properties of reheated steam, e.g. temperature, would decrease due to the introduction of the solar heat. The changes make the (lower stage) turbines work under off-design condition. As a result, the whole plant’s performance may not be optimal. In this paper, the second solar filed was proposed to increase the inlet temperature of steam to be reheated, in order to bring the outlet temperature of reheated steam back to the designed condition. A 600MW SAPG plant was simulated as a case study using the new model to understand the impact of the second solar field on the plant performance. It was found in the study, the 2nd solar field would improve the plant’s performance in terms of cycle efficiency and solar-to-electricity efficiency by 1.91% and 6.01%. The solar-generated electricity produced by per aperture area under the design condition was 187.96W/m2, which was 26.14% higher than the previous design.Keywords: solar-aided power generation system, off-design performance, coal-saving performance, boiler modelling, integration schemes
Procedia PDF Downloads 2935119 Chemical Hazards Impact on Efficiency of Energy Storage Battery and its Possible Mitigation's
Authors: Abirham Simeneh Ayalew, Seada Hussen Adem, Frie Ayalew Yimam
Abstract:
Battery energy storage has a great role on storing energy harnessed from different alternative resources and greatly benefit the power sector by supply energy back to the system during outage and regular operation in power sectors. Most of the study shows that there is an exponential increase in the quantity of lithium - ion battery energy storage system due to their power density, economical aspects and its performance. But this lithium ion battery failures resulted in fire and explosion due to its having flammable electrolytes (chemicals) which can create those hazards. Hazards happen in these energy storage system lead to minimize battery life spans or efficiency. Identifying the real cause of these hazards and its mitigation techniques can be the solution to improve the efficiency of battery technologies and the electrode materials should have high electrical conductivity, large surface area, stable structure and low resistance. This paper asses the real causes of chemical hazards, its impact on efficiency, proposed solution for mitigating those hazards associated with efficiency improvement and summery of researchers new finding related to the field.Keywords: battery energy storage, battery energy storage efficiency, chemical hazards, lithium ion battery
Procedia PDF Downloads 875118 Increasing System Adequacy Using Integration of Pumped Storage: Renewable Energy to Reduce Thermal Power Generations Towards RE100 Target, Thailand
Authors: Mathuravech Thanaphon, Thephasit Nat
Abstract:
The Electricity Generating Authority of Thailand (EGAT) is focusing on expanding its pumped storage hydropower (PSH) capacity to increase the reliability of the system during peak demand and allow for greater integration of renewables. To achieve this requirement, Thailand will have to double its current renewable electricity production. To address the challenges of balancing supply and demand in the grid with increasing levels of RE penetration, as well as rising peak demand, EGAT has already been studying the potential for additional PSH capacity for several years to enable an increased share of RE and replace existing fossil fuel-fired generation. In addition, the role that pumped-storage hydropower would play in fulfilling multiple grid functions and renewable integration. The proposed sites for new PSH would help increase the reliability of power generation in Thailand. However, most of the electricity generation will come from RE, chiefly wind and photovoltaic, and significant additional Energy Storage capacity will be needed. In this paper, the impact of integrating the PSH system on the adequacy of renewable rich power generating systems to reduce the thermal power generating units is investigated. The variations of system adequacy indices are analyzed for different PSH-renewables capacities and storage levels. Power Development Plan 2018 rev.1 (PDP2018 rev.1), which is modified by integrating a six-new PSH system and RE planning and development aftermath in 2030, is the very challenge. The system adequacy indices through power generation are obtained using Multi-Objective Genetic Algorithm (MOGA) Optimization. MOGA is a probabilistic heuristic and stochastic algorithm that is able to find the global minima, which have the advantage that the fitness function does not necessarily require the gradient. In this sense, the method is more flexible in solving reliability optimization problems for a composite power system. The optimization with hourly time step takes years of planning horizon much larger than the weekly horizon that usually sets the scheduling studies. The objective function is to be optimized to maximize RE energy generation, minimize energy imbalances, and minimize thermal power generation using MATLAB. The PDP2018 rev.1 was set to be simulated based on its planned capacity stepping into 2030 and 2050. Therefore, the four main scenario analyses are conducted as the target of renewables share: 1) Business-As-Usual (BAU), 2) National Targets (30% RE in 2030), 3) Carbon Neutrality Targets (50% RE in 2050), and 5) 100% RE or full-decarbonization. According to the results, the generating system adequacy is significantly affected by both PSH-RE and Thermal units. When a PSH is integrated, it can provide hourly capacity to the power system as well as better allocate renewable energy generation to reduce thermal generations and improve system reliability. These results show that a significant level of reliability improvement can be obtained by PSH, especially in renewable-rich power systems.Keywords: pumped storage hydropower, renewable energy integration, system adequacy, power development planning, RE100, multi-objective genetic algorithm
Procedia PDF Downloads 615117 FACTS Based Stabilization for Smart Grid Applications
Authors: Adel. M. Sharaf, Foad H. Gandoman
Abstract:
Nowadays, Photovoltaic-PV Farms/ Parks and large PV-Smart Grid Interface Schemes are emerging and commonly utilized in Renewable Energy distributed generation. However, PV-hybrid-Dc-Ac Schemes using interface power electronic converters usually has negative impact on power quality and stabilization of modern electrical network under load excursions and network fault conditions in smart grid. Consequently, robust FACTS based interface schemes are required to ensure efficient energy utilization and stabilization of bus voltages as well as limiting switching/fault onrush current condition. FACTS devices are also used in smart grid-Battery Interface and Storage Schemes with PV-Battery Storage hybrid systems as an elegant alternative to renewable energy utilization with backup battery storage for electric utility energy and demand side management to provide needed energy and power capacity under heavy load conditions. The paper presents a robust interface PV-Li-Ion Battery Storage Interface Scheme for Distribution/Utilization Low Voltage Interface using FACTS stabilization enhancement and dynamic maximum PV power tracking controllers. Digital simulation and validation of the proposed scheme is done using MATLAB/Simulink software environment for Low Voltage- Distribution/Utilization system feeding a hybrid Linear-Motorized inrush and nonlinear type loads from a DC-AC Interface VSC-6-pulse Inverter Fed from the PV Park/Farm with a back-up Li-Ion Storage Battery.Keywords: AC FACTS, smart grid, stabilization, PV-battery storage, Switched Filter-Compensation (SFC)
Procedia PDF Downloads 4155116 Impact of Increasing Distributed Solar PV Systems on Distribution Networks in South Africa
Authors: Aradhna Pandarum
Abstract:
South Africa is experiencing an exponential growth of distributed solar PV installations. This is due to various factors with the predominant one being increasing electricity tariffs along with decreasing installation costs, resulting in attractive business cases to some end-users. Despite there being a variety of economic and environmental advantages associated with the installation of PV, their potential impact on distribution grids has yet to be thoroughly investigated. This is especially true since the locations of these units cannot be controlled by Network Service Providers (NSPs) and their output power is stochastic and non-dispatchable. This report details two case studies that were completed to determine the possible voltage and technical losses impact of increasing PV penetration in the Northern Cape of South Africa. Some major impacts considered for the simulations were ramping of PV generation due to intermittency caused by moving clouds, the size and overall hosting capacity and the location of the systems. The main finding is that the technical impact is different on a constrained feeder vs a non-constrained feeder. The acceptable PV penetration level is much lower for a constrained feeder than a non-constrained feeder, depending on where the systems are located.Keywords: medium voltage networks, power system losses, power system voltage, solar photovoltaic
Procedia PDF Downloads 159