Search results for: plant classification
4350 Weed Classification Using a Two-Dimensional Deep Convolutional Neural Network
Authors: Muhammad Ali Sarwar, Muhammad Farooq, Nayab Hassan, Hammad Hassan
Abstract:
Pakistan is highly recognized for its agriculture and is well known for producing substantial amounts of wheat, cotton, and sugarcane. However, some factors contribute to a decline in crop quality and a reduction in overall output. One of the main factors contributing to this decline is the presence of weed and its late detection. This process of detection is manual and demands a detailed inspection to be done by the farmer itself. But by the time detection of weed, the farmer will be able to save its cost and can increase the overall production. The focus of this research is to identify and classify the four main types of weeds (Small-Flowered Cranesbill, Chick Weed, Prickly Acacia, and Black-Grass) that are prevalent in our region’s major crops. In this work, we implemented three different deep learning techniques: YOLO-v5, Inception-v3, and Deep CNN on the same Dataset, and have concluded that deep convolutions neural network performed better with an accuracy of 97.45% for such classification. In relative to the state of the art, our proposed approach yields 2% better results. We devised the architecture in an efficient way such that it can be used in real-time.Keywords: deep convolution networks, Yolo, machine learning, agriculture
Procedia PDF Downloads 1174349 A More Sustainable Decellularized Plant Scaffold for Lab Grown Meat with Ocean Water
Authors: Isabella Jabbour
Abstract:
The world's population is expected to reach over 10 billion by 2050, creating a significant demand for food production, particularly in the agricultural industry. Cellular agriculture presents a solution to this challenge by producing meat that resembles traditionally produced meat, but with significantly less land use. Decellularized plant scaffolds, such as spinach leaves, have been shown to be a suitable edible scaffold for growing animal muscle, enabling cultured cells to grow and organize into three-dimensional structures that mimic the texture and flavor of conventionally produced meat. However, the use of freshwater to remove the intact extracellular material from these plants remains a concern, particularly when considering scaling up the production process. In this study, two protocols were used, 1X SDS and Boom Sauce, to decellularize spinach leaves with both distilled water and ocean water. The decellularization process was confirmed by histology, which showed an absence of cell nuclei, DNA and protein quantification. Results showed that spinach decellularized with ocean water contained 9.9 ± 1.4 ng DNA/mg tissue, which is comparable to the 9.2 ± 1.1 ng DNA/mg tissue obtained with DI water. These findings suggest that decellularized spinach leaves using ocean water hold promise as an eco-friendly and cost-effective scaffold for laboratory-grown meat production, which could ultimately transform the meat industry by providing a sustainable alternative to traditional animal farming practices while reducing freshwater use.Keywords: cellular agriculture, plant scaffold, decellularization, ocean water usage
Procedia PDF Downloads 944348 Investigation of Drought Resistance in Iranian Sesamum Germpelasm
Authors: Fatemeh Najafi
Abstract:
The major stress factor limiting crop growth and development of sesame (Sesamum indicum L.) is drought stress in arid and semiarid regions of the world. For this study the effects of water stress on some qualitative and quantitative traits in sesame germplasm was conducted in the Research Farm of Seed and Plant Improvement Institute, Karaj, in the crop year. Genotypes in a randomized complete block design with three replications in two environments (moisture stress and normal) were studied in regard of the seed weight, capsule weight, grain yield, biomass, plant height, number of capsules per plant, etc. The characteristics were evaluated based on the combined analysis. Irrigation was based on first class evaporation basin. After flowering stage drought stress was applied. The water deficit reduced growth period. Days to reach full ripening decreased so that the reduction was significant at the five percent level. Drought stress reduces yield and plant biomass. Genotypes based on combined analysis of these two traits were significant at the one percent level. Genotypes differ in terms of yield stress in terms of density plots, grain yield, days to first flowering and days to the half of the cap on the confidence level of five percent and traits of days to emergence of the first capsule and days to reach full ripening at the one percent level were significant. Other traits were not significant. The correlation of traits in circumstances of stress the number of seeds per capsule has the greatest impact on performance. The sensitivity and stress tolerance index was calculated. Based on the indicators, (Fars variety) and variety Karaj were identified as the most tolerant genotypes among the studied genotypes to drought stress. The highest sensitivity indicator of stress was related to genotype (FARS).Keywords: sesamum, drought, stress, germplasm, resistance
Procedia PDF Downloads 724347 A Novel Heuristic for Analysis of Large Datasets by Selecting Wrapper-Based Features
Authors: Bushra Zafar, Usman Qamar
Abstract:
Large data sample size and dimensions render the effectiveness of conventional data mining methodologies. A data mining technique are important tools for collection of knowledgeable information from variety of databases and provides supervised learning in the form of classification to design models to describe vital data classes while structure of the classifier is based on class attribute. Classification efficiency and accuracy are often influenced to great extent by noisy and undesirable features in real application data sets. The inherent natures of data set greatly masks its quality analysis and leave us with quite few practical approaches to use. To our knowledge first time, we present a new approach for investigation of structure and quality of datasets by providing a targeted analysis of localization of noisy and irrelevant features of data sets. Machine learning is based primarily on feature selection as pre-processing step which offers us to select few features from number of features as a subset by reducing the space according to certain evaluation criterion. The primary objective of this study is to trim down the scope of the given data sample by searching a small set of important features which may results into good classification performance. For this purpose, a heuristic for wrapper-based feature selection using genetic algorithm and for discriminative feature selection an external classifier are used. Selection of feature based on its number of occurrence in the chosen chromosomes. Sample dataset has been used to demonstrate proposed idea effectively. A proposed method has improved average accuracy of different datasets is about 95%. Experimental results illustrate that proposed algorithm increases the accuracy of prediction of different diseases.Keywords: data mining, generic algorithm, KNN algorithms, wrapper based feature selection
Procedia PDF Downloads 3164346 Effect of Compost Application on Uptake and Allocation of Heavy Metals and Plant Nutrients and Quality of Oriental Tobacco Krumovgrad 90
Authors: Violina R. Angelova, Venelina T. Popova, Radka V. Ivanova, Givko T. Ivanov, Krasimir I. Ivanov
Abstract:
A comparative research on the impact of compost on uptake and allocation of nutrients and heavy metals and quality of Oriental tobacco Krumovgrad 90 has been carried out. The experiment was performed on an agricultural field contaminated by the lead zinc smelter near the town of Kardzali, Bulgaria, after closing the lead production. The compost treatments had significant effects on the uptake and allocation of plant nutrients and heavy metals. The incorporation of compost leads to decrease in the amount of heavy metals present in the tobacco leaves, with Cd, Pb and Zn having values of 36%, 12% and 6%, respectively. Application of the compost leads to increased content of potassium, calcium and magnesium in the leaves of tobacco, and therefore, may favorably affect the burning properties of tobacco. The incorporation of compost in the soil has a negative impact on the quality and typicality of the oriental tobacco variety of Krumovgrad 90. The incorporation of compost leads to an increase in the size of the tobacco plant leaves, the leaves become darker in colour, less fleshy and undergo a change in form, becoming (much) broader in the second, third and fourth stalk position. This is accompanied by a decrease in the quality of the tobacco. The incorporation of compost also results in an increase in the mineral substances (pure ash), total nicotine and nitrogen, and a reduction in the amount of reducing sugars, which causes the quality of the tobacco leaves to deteriorate (particularly in the third and fourth harvests).Keywords: chemical composition, compost, heavy metals, oriental tobacco, quality
Procedia PDF Downloads 2734345 Effect of Different Chemical Concentrations on Control of Dodder (Cuscuta campestris Yunck.) in Vitex (Agnus castus)
Authors: Aliyu B. Mustapha, Poul A. Gida
Abstract:
Pot experiment was conducted at the landscape unit of Modibbo Adama University of Technology, Yola in 2015 and 2016 to determine the effect of some chemicals namely glyphosate, salt and detergent on Golden dodder (Cuscuta campestris Yunk). The experiment was laid in a completely randomized design (CRD) with three replications. The treatments include the following: glyphosate-T0= (control),(Og a.i/ha-1) T1=35g a.i/ha-1, T2=70g a.i/ha-1, T3=105g a.i/ha-1, T4=140 a.i/ha-1 and T5=175g a.i/ha-1: Salt (T0=control O mole/ha-1 T1=1mole/ha-1 T2=2mole/ha-1, T3=3mole/ha-1 , T4=4mole/ha-1 and T5=5mole/ha-1:washing detergent T0=Og/ha-1(control), T1=30ml detergent +70ml distilled water T2=45ml detergent+65ml distilled water T3=60ml detergent+40ml distilled water, T4=75ml detergent+25ml distilled water and T5=90ml detergent +10mldistilled water, the treatments were replicated three times. Data were collected include: plant height, number of leaves, leaf area, leaf area index and Cuscuta cover score at 3,6,9and 12 weeks after sprouting(WAS). Biomas of Vitex was also collected at the end of the experiment. Data collected were analyzed using software Genstat version 8.0. Results showed that glyphosate gave the least Cuscuta cover score and the tallest Vitex plant. However, detergent mildly controlled Cuscuta, while salt has no effect on Cuscuta campestris indicating that glyphosate could be used in the control of parasitic dodder (Cuscuta campestris) on Vitex plant.Keywords: chemical, control, dudder, Vitex
Procedia PDF Downloads 1884344 Performance Evaluation and Cost Analysis of Standby Systems
Authors: Mohammed A. Hajeeh
Abstract:
Pumping systems are an integral part of water desalination plants, their effective functioning is vital for the operation of a plant. In this research work, the reliability and availability of pressurized pumps in a reverse osmosis desalination plant are studied with the objective of finding configurations that provides optimal performance. Six configurations of a series system with different number of warm and cold standby components were examined. Closed form expressions for the mean time to failure (MTTF) and the long run availability are derived and compared under the assumption that the time between failures and repair times of the primary and standby components are exponentially distributed. Moreover, a cost/ benefit analysis is conducted in order to identify a configuration with the best performance and least cost. It is concluded that configurations with cold standby components are preferable especially when the pumps are of the size.Keywords: availability, cost/benefit, mean time to failure, pumps
Procedia PDF Downloads 2834343 From Restraint to Obligation: The Protection of the Environment in Times of Armed Conflict
Authors: Aaron Walayat
Abstract:
Protection of the environment in international law has been one of the most developed in the context of international humanitarian law. This paper examines the history of the protection of the environment in times of armed conflict, beginning with the traditional notion of restraint observed in antiquity towards the obligation to protect the environment, examining the treaties and agreements, both binding and non-binding which have contributed to environmental protection in war. The paper begins with a discussion of the ancient concept of restraint. This section examines the social norms in favor of protection of the environment as observed in the Bible, Greco-Roman mythology, and even more contemporary literature. The study of the traditional rejection of total war establishes the social foundation on which the current legal regime has stemmed. The paper then studies the principle of restraint as codified in international humanitarian law. It mainly examines Additional Protocol I of the Geneva Convention of 1949 and existing international law concerning civilian objects and the principles of international humanitarian law in the classification between civilian objects and military objectives. The paper then explores the environment’s classification as both a military objective and as a civilian object as well as explores arguments in favor of the classification of the whole environment as a civilian object. The paper will then discuss the current legal regime surrounding the protection of the environment, discussing some declarations and conventions including the 1868 Declaration of St. Petersburg, the 1907 Hague Convention No. IV, the Geneva Conventions, and the 1976 Environmental Modification Convention. The paper concludes with the outline noting the movement from codification of the principles of restraint into the various treaties, agreements, and declarations of the current regime of international humanitarian law. This paper provides an analysis of the history and significance of the relationship between international humanitarian law as a major contributor to the growing field of international environmental law.Keywords: armed conflict, environment, legal regime, restraint
Procedia PDF Downloads 2044342 Comparison of Support Vector Machines and Artificial Neural Network Classifiers in Characterizing Threatened Tree Species Using Eight Bands of WorldView-2 Imagery in Dukuduku Landscape, South Africa
Authors: Galal Omer, Onisimo Mutanga, Elfatih M. Abdel-Rahman, Elhadi Adam
Abstract:
Threatened tree species (TTS) play a significant role in ecosystem functioning and services, land use dynamics, and other socio-economic aspects. Such aspects include ecological, economic, livelihood, security-based, and well-being benefits. The development of techniques for mapping and monitoring TTS is thus critical for understanding the functioning of ecosystems. The advent of advanced imaging systems and supervised learning algorithms has provided an opportunity to classify TTS over fragmenting landscape. Recently, vegetation maps have been produced using advanced imaging systems such as WorldView-2 (WV-2) and robust classification algorithms such as support vectors machines (SVM) and artificial neural network (ANN). However, delineation of TTS in a fragmenting landscape using high resolution imagery has widely remained elusive due to the complexity of the species structure and their distribution. Therefore, the objective of the current study was to examine the utility of the advanced WV-2 data for mapping TTS in the fragmenting Dukuduku indigenous forest of South Africa using SVM and ANN classification algorithms. The results showed the robustness of the two machine learning algorithms with an overall accuracy (OA) of 77.00% (total disagreement = 23.00%) for SVM and 75.00% (total disagreement = 25.00%) for ANN using all eight bands of WV-2 (8B). This study concludes that SVM and ANN classification algorithms with WV-2 8B have the potential to classify TTS in the Dukuduku indigenous forest. This study offers relatively accurate information that is important for forest managers to make informed decisions regarding management and conservation protocols of TTS.Keywords: artificial neural network, threatened tree species, indigenous forest, support vector machines
Procedia PDF Downloads 5154341 The Wear Recognition on Guide Surface Based on the Feature of Radar Graph
Authors: Youhang Zhou, Weimin Zeng, Qi Xie
Abstract:
Abstract: In order to solve the wear recognition problem of the machine tool guide surface, a new machine tool guide surface recognition method based on the radar-graph barycentre feature is presented in this paper. Firstly, the gray mean value, skewness, projection variance, flat degrees and kurtosis features of the guide surface image data are defined as primary characteristics. Secondly, data Visualization technology based on radar graph is used. The visual barycentre graphical feature is demonstrated based on the radar plot of multi-dimensional data. Thirdly, a classifier based on the support vector machine technology is used, the radar-graph barycentre feature and wear original feature are put into the classifier separately for classification and comparative analysis of classification and experiment results. The calculation and experimental results show that the method based on the radar-graph barycentre feature can detect the guide surface effectively.Keywords: guide surface, wear defects, feature extraction, data visualization
Procedia PDF Downloads 5194340 Combined Analysis of Land use Change and Natural Flow Path in Flood Analysis
Authors: Nowbuth Manta Devi, Rasmally Mohammed Hussein
Abstract:
Flood is one of the most devastating climate impacts that many countries are facing. Many different causes have been associated with the intensity of floods being recorded over time. Unplanned development, low carrying capacity of drains, clogged drains, construction in flood plains or increasing intensity of rainfall events. While a combination of these causes can certainly aggravate the flood conditions, in many cases, increasing drainage capacity has not reduced flood risk to the level that was expected. The present study analyzed the extent to which land use is contributing to aggravating impacts of flooding in a city. Satellite images have been analyzed over a period of 20 years at intervals of 5 years. Both unsupervised and supervised classification methods have been used with the image processing module of ArcGIS. The unsupervised classification was first compared to the basemap available in ArcGIS to get a first overview of the results. These results also aided in guiding data collection on-site for the supervised classification. The island of Mauritius is small, and there are large variations in land use over small areas, both within the built areas and in agricultural zones involving food crops. Larger plots of agricultural land under sugar cane plantations are relatively more easily identified. However, the growth stage and health of plants vary and this had to be verified during ground truthing. The results show that although there have been changes in land use as expected over a span of 20 years, this was not significant enough to cause a major increase in flood risk levels. A digital elevation model was analyzed for further understanding. It could not be noted that overtime, development tampered with natural flow paths in addition to increasing the impermeable areas. This situation results in backwater flows, hence increasing flood risks.Keywords: climate change, flood, natural flow paths, small islands
Procedia PDF Downloads 74339 Heritability and Diversity Analysis of Blast Resistant Upland Rice Genotypes Based on Quantitative Traits
Authors: Mst. Tuhina-Khatun, Mohamed Hanafi Musa, Mohd Rafii Yosup, Wong Mui Yun, Md. Aktar-Uz-Zaman, Mahbod Sahebi
Abstract:
Rice is a staple crop of economic importance of most Asian people, and blast is the major constraints for its higher yield. Heritability of plants traits helps plant breeders to make an appropriate selection and to assess the magnitude of genetic improvement through hybridization. Diversity of crop plants is necessary to manage the continuing genetic erosion and address the issues of genetic conservation for successfully meet the future food requirements. Therefore, an experiment was conducted to estimate heritability and to determine the diversity of 27 blast resistant upland rice genotypes based on 18 quantitative traits using randomized complete block design. Heritability value was found to vary from 38 to 93%. The lowest heritability belonged to the character total number of tillers/plant (38%). In contrast, number of filled grains/panicle, and yield/plant (g) was recorded for their highest heritability value viz. 93 and 91% correspondingly. Cluster analysis based on 18 traits grouped 27 rice genotypes into six clusters. Cluster I was the biggest, which comprised 17 genotypes, accounted for about 62.96% of total population. The multivariate analysis suggested that the genotype ‘Chokoto 14’ could be hybridized with ‘IR 5533-55-1-11’ and ‘IR 5533-PP 854-1’ for broadening the gene pool of blast resistant upland rice germplasms for yield and other favorable characters.Keywords: blast resistant, diversity analysis, heritability, upland rice
Procedia PDF Downloads 3694338 Classification of Echo Signals Based on Deep Learning
Authors: Aisulu Tileukulova, Zhexebay Dauren
Abstract:
Radar plays an important role because it is widely used in civil and military fields. Target detection is one of the most important radar applications. The accuracy of detecting inconspicuous aerial objects in radar facilities is lower against the background of noise. Convolutional neural networks can be used to improve the recognition of this type of aerial object. The purpose of this work is to develop an algorithm for recognizing aerial objects using convolutional neural networks, as well as training a neural network. In this paper, the structure of a convolutional neural network (CNN) consists of different types of layers: 8 convolutional layers and 3 layers of a fully connected perceptron. ReLU is used as an activation function in convolutional layers, while the last layer uses softmax. It is necessary to form a data set for training a neural network in order to detect a target. We built a Confusion Matrix of the CNN model to measure the effectiveness of our model. The results showed that the accuracy when testing the model was 95.7%. Classification of echo signals using CNN shows high accuracy and significantly speeds up the process of predicting the target.Keywords: radar, neural network, convolutional neural network, echo signals
Procedia PDF Downloads 3534337 A Machine Learning Approach for Assessment of Tremor: A Neurological Movement Disorder
Authors: Rajesh Ranjan, Marimuthu Palaniswami, A. A. Hashmi
Abstract:
With the changing lifestyle and environment around us, the prevalence of the critical and incurable disease has proliferated. One such condition is the neurological disorder which is rampant among the old age population and is increasing at an unstoppable rate. Most of the neurological disorder patients suffer from some movement disorder affecting the movement of their body parts. Tremor is the most common movement disorder which is prevalent in such patients that infect the upper or lower limbs or both extremities. The tremor symptoms are commonly visible in Parkinson’s disease patient, and it can also be a pure tremor (essential tremor). The patients suffering from tremor face enormous trouble in performing the daily activity, and they always need a caretaker for assistance. In the clinics, the assessment of tremor is done through a manual clinical rating task such as Unified Parkinson’s disease rating scale which is time taking and cumbersome. Neurologists have also affirmed a challenge in differentiating a Parkinsonian tremor with the pure tremor which is essential in providing an accurate diagnosis. Therefore, there is a need to develop a monitoring and assistive tool for the tremor patient that keep on checking their health condition by coordinating them with the clinicians and caretakers for early diagnosis and assistance in performing the daily activity. In our research, we focus on developing a system for automatic classification of tremor which can accurately differentiate the pure tremor from the Parkinsonian tremor using a wearable accelerometer-based device, so that adequate diagnosis can be provided to the correct patient. In this research, a study was conducted in the neuro-clinic to assess the upper wrist movement of the patient suffering from Pure (Essential) tremor and Parkinsonian tremor using a wearable accelerometer-based device. Four tasks were designed in accordance with Unified Parkinson’s disease motor rating scale which is used to assess the rest, postural, intentional and action tremor in such patient. Various features such as time-frequency domain, wavelet-based and fast-Fourier transform based cross-correlation were extracted from the tri-axial signal which was used as input feature vector space for the different supervised and unsupervised learning tools for quantification of severity of tremor. A minimum covariance maximum correlation energy comparison index was also developed which was used as the input feature for various classification tools for distinguishing the PT and ET tremor types. An automatic system for efficient classification of tremor was developed using feature extraction methods, and superior performance was achieved using K-nearest neighbors and Support Vector Machine classifiers respectively.Keywords: machine learning approach for neurological disorder assessment, automatic classification of tremor types, feature extraction method for tremor classification, neurological movement disorder, parkinsonian tremor, essential tremor
Procedia PDF Downloads 1544336 A Comparative Study of k-NN and MLP-NN Classifiers Using GA-kNN Based Feature Selection Method for Wood Recognition System
Authors: Uswah Khairuddin, Rubiyah Yusof, Nenny Ruthfalydia Rosli
Abstract:
This paper presents a comparative study between k-Nearest Neighbour (k-NN) and Multi-Layer Perceptron Neural Network (MLP-NN) classifier using Genetic Algorithm (GA) as feature selector for wood recognition system. The features have been extracted from the images using Grey Level Co-Occurrence Matrix (GLCM). The use of GA based feature selection is mainly to ensure that the database used for training the features for the wood species pattern classifier consists of only optimized features. The feature selection process is aimed at selecting only the most discriminating features of the wood species to reduce the confusion for the pattern classifier. This feature selection approach maintains the ‘good’ features that minimizes the inter-class distance and maximizes the intra-class distance. Wrapper GA is used with k-NN classifier as fitness evaluator (GA-kNN). The results shows that k-NN is the best choice of classifier because it uses a very simple distance calculation algorithm and classification tasks can be done in a short time with good classification accuracy.Keywords: feature selection, genetic algorithm, optimization, wood recognition system
Procedia PDF Downloads 5454335 Effect of Inflorescence Removal and Earthing-Up Times on Growth and Yield of Potato (Solanum tuberosum L.) at Jimma Southwestern Ethiopia
Authors: Dessie Fisseha, Derbew Belew, Ambecha Olika
Abstract:
Potato is a high-potential food security crop in Ethiopia. However, the yield and productivity of the crop have been far below the world average. This is due to several factors, including appropriate agronomic practices, such as time of earthing-up and inflorescence management. A field experiment was conducted at Jimma, Southwest Ethiopia, during 2016/17 under irrigation to determine the effect of time of earthing-up and inflorescence removal on the growth, yield, and quality of potatoes. The treatments consisted of a time of earthing-up (no earthing-up, earthing-up at 15, 30, and 45 days after complete plant emergence) and inflorescence removal (inflorescence removed and not removed). Potato variety (Belete) was used for this experiment. A 2x4 factorial experiment was laid out with three replications. Data collected on the growth, yield, and quality components of potatoes were analyzed using SAS Version 9.3 statistical software. Inflorescence removal affected the majority of the growth and yield parameters, while the time of earthing-up affected all growth, yield, and quality (green tuber number) parameters. Earthing-up at 15 days in combination with inflorescence removal (at 60 days after complete plant emergence) gave better plant growth and maximum tuber yield of the Belete potato variety under irrigated conditions. Since the current research was conducted at one location, in one season, and with one potato cultivar (Belete), it would be advisable to repeat the experiment so as to arrive at a final conclusion and subsequent recommendation.Keywords: Belete, earthing-up, inflorescence, yield
Procedia PDF Downloads 764334 Screening of Plant Growth Promoting Rhizobacteria in the Rhizo- and Endosphere of Sunflower (Helianthus anus) and Their Role in Enhancing Growth and Yield Attriburing Trairs and Colonization Studies
Authors: A. Majeed, M.K. Abbasi, S. Hameed, A. Imran, T. Naqqash, M. K. Hanif
Abstract:
Plant growth-promoting rhizobacteria (PGPR) are free-living soil bacteria that aggressively colonize the rhizosphere/plant roots, and enhance the growth and yield of plants when applied to seed or crops. Root associated (endophytic and rhizospheric) PGPR were isolated from Sunflower (Helianthus anus) grown in soils collected from 16 different sites of sub division Dhirkot, Poonch, Azad Jammu & Kashmir, Pakistan. A total of 150 bacterial isolates were isolated, purified, screened in vitro for their plant growth promoting (PGP) characteristics. 11 most effective isolates were selected on the basis of biochemical assays (nitrogen fixation, phosphate solubilization, growth hormone production, biocontrol assay, and carbon substrates utilization assay through gas chromatography (GCMS), spectrophotometry, high performance liquid chromatography HPLC, fungal and bacterial dual plate assay and BIOLOG GN2/GP2 microplate assay respectively) and were tested on the crop under controlled and field conditions. From the inoculation assay, the most promising 4 strains (on the basis of increased root/shoot weight, root/shoot length, seed oil content, and seed yield) were than selected for colonization studies through confocal laser scanning and transmission electron microscope. 16Sr RNA gene analysis showed that these bacterial isolates belong to Pseudononas, Enterobacter, Azospirrilum, and Citobacter genera. This study is the clear evident that such isolates have the potential for application as inoculants adapted to poor soils and local crops to minimize the chemical fertilizers harmful for soil and environmentKeywords: PGPR, nitrogen fixation, phosphate solubilization, colonization
Procedia PDF Downloads 3404333 Analysis of Patent Protection of Bone Tissue Engineering Scaffold Technology
Authors: Yunwei Zhang, Na Li, Yuhong Niu
Abstract:
Bone tissue engineering scaffold was regarded as an important clinical technology of curing bony defect. The patent protection of bone tissue engineering scaffold had been paid more attention and strengthened all over the world. This study analyzed the future development trends of international technologies in the field of bone tissue engineering scaffold and its patent protection. This study used the methods of data classification and classification indexing to analyze 2718 patents retrieved in the patent database. Results showed that the patents coming from United States had a competitive advantage over other countiries in the field of bone tissue engineering scaffold. The number of patent applications by a single company in U.S. was a quarter of that of the world. However, the capability of R&D in China was obviously weaker than global level, patents mainly coming from universities and scientific research institutions. Moreover, it would be predicted that synthetic organic materials as new materials would be gradually replaced by composite materials. The patent technology protections of composite materials would be more strengthened in the future.Keywords: bone tissue engineering, patent analysis, Scaffold material, patent protection
Procedia PDF Downloads 1334332 Ecophysiological Features of Acanthosicyos horridus (!Nara) to Survive the Namib Desert
Authors: Jacques M. Berner, Monja Gerber, Gillian L. Maggs-Kolling, Stuart J. Piketh
Abstract:
The enigmatic melon species, Acanthosicyos horridus Welw. ex Hook. f., locally known as !nara, is endemic to the hyper-arid Namib Desert, where it thrives in sandy dune areas and dry river banks. The Namib Desert is characterized by extreme weather conditions which include high temperatures, very low rainfall, and extremely dry air. Plant and animals that have made the Namib Dessert their home are dependent on non-rainfall water inputs, like fog, dew and water vapor, for survival. Fog is believed to be the most important non-rainfall water input for most of the coastal Namib Desert and is a life line to many Namib plants and animals. It is commonly assumed that the !nara plant is adapted and dependent upon coastal fog events. The !nara plant shares many comparable adaptive features with other organisms that are known to exploit fog as a source of moisture. These include groove-like structures on the stems and the cone-like structures of thorns. These structures are believed to be the driving forces behind directional water flow that allow plants to take advantage of fog events. The !nara-fog interaction was investigated in this study to determine the dependence of !nara on these fog events, as it would illustrate strategies to benefit from non-rainfall water inputs. The direct water uptake capacity of !nara shoots was investigated through absorption tests. Furthermore, the movement and behavior of fluorescent water droplets on a !nara stem were investigated through time-lapse macrophotography. The shoot water potential was measured to investigate the effect of fog on the water status of !nara stems. These tests were used to determine whether the morphology of !nara has evolved to exploit fog as a non-rainfall water input and whether the !nara plant has adapted physiologically in response to fog. Chlorophyll a fluorescence was used to compare the photochemical efficiency of !nara plants on days with fog events to that on non-foggy days. The results indicate that !nara plants do have the ability to take advantage of fog events as commonly believed. However, the !nara plant did not exhibit visible signs of drought stress and this, together with the strong shoot water potential, indicates that these plants are reliant on permanent underground water sources. Chlorophyll a fluorescence data indicated that temperature stress and wind were some of the main abiotic factors influencing the plants’ overall vitality.Keywords: Acanthosicyos horridus, chlorophyll a fluorescence, fog, foliar absorption, !nara
Procedia PDF Downloads 1584331 Classifying Affective States in Virtual Reality Environments Using Physiological Signals
Authors: Apostolos Kalatzis, Ashish Teotia, Vishnunarayan Girishan Prabhu, Laura Stanley
Abstract:
Emotions are functional behaviors influenced by thoughts, stimuli, and other factors that induce neurophysiological changes in the human body. Understanding and classifying emotions are challenging as individuals have varying perceptions of their environments. Therefore, it is crucial that there are publicly available databases and virtual reality (VR) based environments that have been scientifically validated for assessing emotional classification. This study utilized two commercially available VR applications (Guided Meditation VR™ and Richie’s Plank Experience™) to induce acute stress and calm state among participants. Subjective and objective measures were collected to create a validated multimodal dataset and classification scheme for affective state classification. Participants’ subjective measures included the use of the Self-Assessment Manikin, emotional cards and 9 point Visual Analogue Scale for perceived stress, collected using a Virtual Reality Assessment Tool developed by our team. Participants’ objective measures included Electrocardiogram and Respiration data that were collected from 25 participants (15 M, 10 F, Mean = 22.28 4.92). The features extracted from these data included heart rate variability components and respiration rate, both of which were used to train two machine learning models. Subjective responses validated the efficacy of the VR applications in eliciting the two desired affective states; for classifying the affective states, a logistic regression (LR) and a support vector machine (SVM) with a linear kernel algorithm were developed. The LR outperformed the SVM and achieved 93.8%, 96.2%, 93.8% leave one subject out cross-validation accuracy, precision and recall, respectively. The VR assessment tool and data collected in this study are publicly available for other researchers.Keywords: affective computing, biosignals, machine learning, stress database
Procedia PDF Downloads 1424330 Growing Evaluation Process in Chamaedorea Linearis with Humus from Biosolids of the Wastewater Treatment Plant, Nueva Granada Military University Cajica
Authors: J. Gonzalez, P. Jimenez, C. Isaza
Abstract:
Palms have different characteristics that make them vulnerable; that is the case of the Chamaedorea linearis, with the presence of solitary stems of small diameter and medium leaves, culturally harvested, and in religious festivities used. Additionally, they present a weak apical meristem as the only emergency point, slow development and growth, and an affectation due to the high rate of deforestation in Colombia. Propagation of this species can improve the pressure on wild populations and help their survival in the environment. In this study was used in 177 plants biosolids humus from the Wastewater Treatment Plant (WWTP), located at the UMNG Campus Cajica (Cundinamarca, Colombia). The experiment used a control and two treatments with 10% and 20% of humus. During the process, the variables evaluated were number of leaves, percentage of chlorophyll, stem length, and estimated leaf area. The data set were taking during 14 weeks before the reproductive maturity, evidencing that the most representative development of the palms was in the treatment of 20%, plants in this treatment presented major number of leaves, larger stems, a high quantity of chlorophyll, and was a first treatment that present pinnate leaves them represent an important point in maturity process. The research gives an opportunity to improve times of growth in another species of palms and plants (Product result from INV ING 2986 UMNG).Keywords: biosolids, humus, growth, palms, wastewater treatment plant, WWTP
Procedia PDF Downloads 1254329 Design of Agricultural Machinery Factory Facility Layout
Authors: Nilda Tri Putri, Muhammad Taufik
Abstract:
Tools and agricultural machinery (Alsintan) is a tool used in agribusiness activities. Alsintan used to change the traditional farming systems generally use manual equipment into modern agriculture with mechanization. CV Nugraha Chakti Consultant make an action plan for industrial development Alsintan West Sumatra in 2012 to develop medium industries of Alsintan become a major industry of Alsintan, one of efforts made is increase the production capacity of the industry Alsintan. Production capacity for superior products as hydrotiller and threshers set each for 2.000 units per year. CV Citra Dragon as one of the medium industry alsintan in West Sumatra has a plan to relocate the existing plant to meet growing consumer demand each year. Increased production capacity and plant relocation plan has led to a change in the layout; therefore need to design the layout of the plant facility CV Citra Dragon. First step the to design of plant layout is design the layout of the production floor. The design of the production floor layout is done by applying group technology layout. The initial step is to do a machine grouping and part family using the Average Linkage Clustering (ALC) and Rank Order Clustering (ROC). Furthermore done independent work station design and layout design using the Modified Spanning Tree (MST). Alternative selection layout is done to select the best production floor layout between ALC and ROC cell grouping. Furthermore, to design the layout of warehouses, offices and other production support facilities. Activity Relationship Chart methods used to organize the placement of factory facilities has been designed. After structuring plan facilities, calculated cost manufacturing facility plant establishment. Type of layout is used on the production floor layout technology group. The production floor is composed of four cell machinery, assembly area and painting area. The total distance of the displacement of material in a single production amounted to 1120.16 m which means need 18,7minutes of transportation time for one time production. Alsintan Factory has designed a circular flow pattern with 11 facilities. The facilities were designed consisting of 10 rooms and 1 parking space. The measure of factory building is 84 m x 52 m.Keywords: Average Linkage Clustering (ALC), Rank Order Clustering (ROC), Modified Spanning Tree (MST), Activity Relationship Chart (ARC)
Procedia PDF Downloads 4964328 Plants and Microorganisms for Phytoremediation of Soils Polluted with Organochlorine Pesticides
Authors: Maritsa Kurashvili, George Adamia, Tamar Ananiashvili, Lia Amiranasvili, Tamar Varazi, Marina Pruidze, Marlen Gordeziani, Gia Khatisashvili
Abstract:
The goal of presented work is the development phytoremediation method targeted to cleaning environment polluted with organochlorine pesticides, based on joint application of plants and microorganisms. For this aim the selection of plants and microorganisms with corresponding capabilities towards three organochlorine pesticides (Lindane, DDT and PCP) has been carried out. The tolerance of plants to tested pesticides and induction degree of plant detoxification enzymes by these compounds have been used as main criteria for estimating the applicability of plants in proposed technology. Obtained results show that alfalfa, maize and soybean among tested six plant species have highest tolerance to pesticides. As a result of screening, more than 30 strains from genera Pseudomonas have been selected. As a result of GC analysis of incubation area, 11 active cultures for investigated pesticides are carefully chosen.Keywords: DDT, Lindane, organochlorine pesticides, PCP, phytoremediation
Procedia PDF Downloads 3154327 Gamma Irradiated Sodium Alginate and Phosphorus Fertilizer Enhances Seed Trigonelline Content, Biochemical Parameters and Yield Attributes of Fenugreek (Trigonella foenum-graecum L.)
Authors: Tariq Ahmad Dar, Moinuddin, M. Masroor A. Khan
Abstract:
There is considerable need in enhancing the content and yield of active constituents of medicinal plants keeping in view their massive demand worldwide. Different strategies have been employed to enhance the active constituents of medicinal plants and the use of phytohormones has been proved effective in this regard. Gamma-irradiated Sodium alginate (ISA) is known to elicit an array of plant defense responses and biological activities in plants. Considering the medicinal importance, a pot experiment was conducted to explore the effect of ISA and phosphorus on growth, yield and quality of fenugreek (Trigonella foenum-graecum L.). ISA spray treatments (0, 40, 80 and 120 mg L-1) were applied alone and in combination with 40 kg P ha-1 (P40). Crop performance was assessed in terms of plant growth characteristics, physiological attributes, seed yield and the content of seed trigonelline. Of the ten-treatments, P40 + 80 mg L−1 of ISA proved the best. The results showed that foliar spray of ISA alone or in combination with P40 augmented the plant vegetative growth, enzymatic activities, trigonelline content, trigonelline yield and economic yield of fenugreek. Application of 80 mg L−1 of ISA applied with P40 gave the best results for almost all the parameters studied compared to control or to 80 mg L−1 of ISA applied alone. This treatment increased the total content of chlorophyll, carotenoids, leaf -N, -P and -K and trigonelline compared to the control by 24.85 and 27.40%, 15 and 23.52%, 18.70 and 16.84%, 15.88 and 18.92%, 12 and 14.44%, at 60 and 90 DAS respectively. The combined application of 80 mg L−1 of ISA along with P40 resulted in the maximum increase in seed yield, trigonelline content and trigonelline yield by146, 34 and 232.41%, respectively, over the control. Gel permeation chromatography revealed the formation of low molecular weight fractions in ISA samples, containing even less than 20,000 molecular weight oligomers, which might be responsible for plant growth promotion in this study. Trigonelline content was determined by reverse phase high performance liquid chromatography (HPLC) with C-18 column.Keywords: gamma-irradiated sodium alginate, phosphorus, gel permeation chromatography, HPLC, trigonelline content, yield
Procedia PDF Downloads 3214326 A Tool for Assessing Performance and Structural Quality of Business Process
Authors: Mariem Kchaou, Wiem Khlif, Faiez Gargouri
Abstract:
Modeling business processes is an essential task when evaluating, improving, or documenting existing business processes. To be efficient in such tasks, a business process model (BPM) must have high structural quality and high performance. Evidently, evaluating the performance of a business process model is a necessary step to reduce time, cost, while assessing the structural quality aims to improve the understandability and the modifiability of the BPMN model. To achieve these objectives, a set of structural and performance measures have been proposed. Since the diversity of measures, we propose a framework that integrates both structural and performance aspects for classifying them. Our measure classification is based on business process model perspectives (e.g., informational, functional, organizational, behavioral, and temporal), and the elements (activity, event, actor, etc.) involved in computing the measures. Then, we implement this framework in a tool assisting the structural quality and the performance of a business process. The tool helps the designers to select an appropriate subset of measures associated with the corresponding perspective and to calculate and interpret their values in order to improve the structural quality and the performance of the model.Keywords: performance, structural quality, perspectives, tool, classification framework, measures
Procedia PDF Downloads 1574325 Optimization of Beneficiation Process for Upgrading Low Grade Egyptian Kaolin
Authors: Nagui A. Abdel-Khalek, Khaled A. Selim, Ahmed Hamdy
Abstract:
Kaolin is naturally occurring ore predominantly containing kaolinite mineral in addition to some gangue minerals. Typical impurities present in kaolin ore are quartz, iron oxides, titanoferrous minerals, mica, feldspar, organic matter, etc. The main coloring impurity, particularly in the ultrafine size range, is titanoferrous minerals. Kaolin is used in many industrial applications such as sanitary ware, table ware, ceramic, paint, and paper industries, each of which should be of certain specifications. For most industrial applications, kaolin should be processed to obtain refined clay so as to match with standard specifications. For example, kaolin used in paper and paint industries need to be of high brightness and low yellowness. Egyptian kaolin is not subjected to any beneficiation process and the Egyptian companies apply selective mining followed by, in some localities, crushing and size reduction only. Such low quality kaolin can be used in refractory and pottery production but not in white ware and paper industries. This paper aims to study the amenability of beneficiation of an Egyptian kaolin ore of El-Teih locality, Sinai, to be suitable for different industrial applications. Attrition scrubbing and classification followed by magnetic separation are applied to remove the associated impurities. Attrition scrubbing and classification are used to separate the coarse silica and feldspars. Wet high intensity magnetic separation was applied to remove colored contaminants such as iron oxide and titanium oxide. Different variables affecting of magnetic separation process such as solid percent, magnetic field, matrix loading capacity, and retention time are studied. The results indicated that substantial decrease in iron oxide (from 1.69% to 0.61% ) and TiO2 (from 3.1% to 0.83%) contents as well as improving iso-brightness (from 63.76% to 75.21% and whiteness (from 79.85% to 86.72%) of the product can be achieved.Keywords: Kaolin, titanoferrous minerals, beneficiation, magnetic separation, attrition scrubbing, classification
Procedia PDF Downloads 3604324 Studying Medicinal Plants of Rajasthan Used by Tribes for Different Diseases
Authors: Rekha Vijayvergia
Abstract:
Around seven percent of tribal population of India lives in Rajasthan. Rajasthan has rich cultural diversity and biodiversity. Ethno-botany can be defined as the total natural and traditional relationship and the interactions between man and his surrounding plant wealth from times immemorial, due to sheer, necessity, intuition, observation, and experimentation. Medicinal plants are valuable and are used for the production of various drugs. These plants produce a high diversity of natural products or secondary metabolites like Mahanimbicine, Andrographine, murrayaline, lupeol, and limonin etc. with a prominent function in the protection against diseases like diabetes, kidney stones, osteoporosis, tumours, opthalmia, leucorrhoea, bronchial asthma, diarrhea, cancer, etc. The present report gives an account of traditional medicinal uses of common medicinal plants of Rajasthan. A total of 18 plant species belonging to 13 families are reported, that are being used for various purposes.Keywords: ethno botany, Rajasthan, secondary metabolites, traditional medicines
Procedia PDF Downloads 4914323 Evaluation of Classification Algorithms for Diagnosis of Asthma in Iranian Patients
Authors: Taha SamadSoltani, Peyman Rezaei Hachesu, Marjan GhaziSaeedi, Maryam Zolnoori
Abstract:
Introduction: Data mining defined as a process to find patterns and relationships along data in the database to build predictive models. Application of data mining extended in vast sectors such as the healthcare services. Medical data mining aims to solve real-world problems in the diagnosis and treatment of diseases. This method applies various techniques and algorithms which have different accuracy and precision. The purpose of this study was to apply knowledge discovery and data mining techniques for the diagnosis of asthma based on patient symptoms and history. Method: Data mining includes several steps and decisions should be made by the user which starts by creation of an understanding of the scope and application of previous knowledge in this area and identifying KD process from the point of view of the stakeholders and finished by acting on discovered knowledge using knowledge conducting, integrating knowledge with other systems and knowledge documenting and reporting.in this study a stepwise methodology followed to achieve a logical outcome. Results: Sensitivity, Specifity and Accuracy of KNN, SVM, Naïve bayes, NN, Classification tree and CN2 algorithms and related similar studies was evaluated and ROC curves were plotted to show the performance of the system. Conclusion: The results show that we can accurately diagnose asthma, approximately ninety percent, based on the demographical and clinical data. The study also showed that the methods based on pattern discovery and data mining have a higher sensitivity compared to expert and knowledge-based systems. On the other hand, medical guidelines and evidence-based medicine should be base of diagnostics methods, therefore recommended to machine learning algorithms used in combination with knowledge-based algorithms.Keywords: asthma, datamining, classification, machine learning
Procedia PDF Downloads 4474322 A Semi-supervised Classification Approach for Trend Following Investment Strategy
Authors: Rodrigo Arnaldo Scarpel
Abstract:
Trend following is a widely accepted investment strategy that adopts a rule-based trading mechanism that rather than striving to predict market direction or on information gathering to decide when to buy and when to sell a stock. Thus, in trend following one must respond to market’s movements that has recently happen and what is currently happening, rather than on what will happen. Optimally, in trend following strategy, is to catch a bull market at its early stage, ride the trend, and liquidate the position at the first evidence of the subsequent bear market. For applying the trend following strategy one needs to find the trend and identify trade signals. In order to avoid false signals, i.e., identify fluctuations of short, mid and long terms and to separate noise from real changes in the trend, most academic works rely on moving averages and other technical analysis indicators, such as the moving average convergence divergence (MACD) and the relative strength index (RSI) to uncover intelligible stock trading rules following trend following strategy philosophy. Recently, some works has applied machine learning techniques for trade rules discovery. In those works, the process of rule construction is based on evolutionary learning which aims to adapt the rules to the current environment and searches for the global optimum rules in the search space. In this work, instead of focusing on the usage of machine learning techniques for creating trading rules, a time series trend classification employing a semi-supervised approach was used to early identify both the beginning and the end of upward and downward trends. Such classification model can be employed to identify trade signals and the decision-making procedure is that if an up-trend (down-trend) is identified, a buy (sell) signal is generated. Semi-supervised learning is used for model training when only part of the data is labeled and Semi-supervised classification aims to train a classifier from both the labeled and unlabeled data, such that it is better than the supervised classifier trained only on the labeled data. For illustrating the proposed approach, it was employed daily trade information, including the open, high, low and closing values and volume from January 1, 2000 to December 31, 2022, of the São Paulo Exchange Composite index (IBOVESPA). Through this time period it was visually identified consistent changes in price, upwards or downwards, for assigning labels and leaving the rest of the days (when there is not a consistent change in price) unlabeled. For training the classification model, a pseudo-label semi-supervised learning strategy was used employing different technical analysis indicators. In this learning strategy, the core is to use unlabeled data to generate a pseudo-label for supervised training. For evaluating the achieved results, it was considered the annualized return and excess return, the Sortino and the Sharpe indicators. Through the evaluated time period, the obtained results were very consistent and can be considered promising for generating the intended trading signals.Keywords: evolutionary learning, semi-supervised classification, time series data, trading signals generation
Procedia PDF Downloads 894321 Antihyperglycaemic and Antihyperlipidemic Activities of Pleiogynium timorense Seeds and Identification of Bioactive Compounds
Authors: Ataa A. Said, Elsayed A. Abuotabl, Gehan F. Abdel Raoof, Khaled Y. Mohamed
Abstract:
The aim of this study is to evaluate antihyperglycaemic and antihyperlipidemic activities of Pleiogynium timorense (DC.) Leenh (Anacardiaceae) seeds as well as to isolate and identify the bioactive compounds. Antihyperglycaemic effect was evaluated by measuring the effect of two dose levels (150 and 300 mg/kg) of 70% methanol extract of Pleiogynium timorense seeds on blood glucose level when administered 45 minutes before glucose loading. In addition, the effect of the plant extract on the lipid profile was determined by measuring serum total lipids (TL), total cholesterol (TC), triglycerides (TG), high density lipoprotein cholesterol (HDL-C) and low density lipoprotein cholesterol (LDL-C). Furthermore, the bioactive compounds were isolated and identified by chromatographic and spectrometric methods.The results showed that the methanolic extract of the seeds significantly reduced the levels of blood glucose,(TL), (TC), (TG) and (LDL-C) but no significant effect on (HDL-C) comparing with control group. Furthermore, four phenolic compound were isolated which were identified as; catechin, gallic acid, para methoxy benzaldehyde and pyrogallol which were isolated for the first time from the plant. In addition sulphur -containing compound (sulpholane) was isolated for the first time from the plant and from the family. To our knowledge, this is the first study about antihyperglycaemicand antihyperlipidemic activities of the seeds of Pleiogyniumtimorense and its bioactive compounds. So, the methanolic extract of the seeds of Pleiogynium timorense could be a step towards the development of new antihyperglycaemic and antihyperlipidemic drugs.Keywords: antihyperglycaemic, bioactive compounds, phenolic, Pleiogynium timorense, seeds
Procedia PDF Downloads 219