Search results for: asynchronous input
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2282

Search results for: asynchronous input

1022 An Insite to the Probabilistic Assessment of Reserves in Conventional Reservoirs

Authors: Sai Sudarshan, Harsh Vyas, Riddhiman Sherlekar

Abstract:

The oil and gas industry has been unwilling to adopt stochastic definition of reserves. Nevertheless, Monte Carlo simulation methods have gained acceptance by engineers, geoscientists and other professionals who want to evaluate prospects or otherwise analyze problems that involve uncertainty. One of the common applications of Monte Carlo simulation is the estimation of recoverable hydrocarbon from a reservoir.Monte Carlo Simulation makes use of random samples of parameters or inputs to explore the behavior of a complex system or process. It finds application whenever one needs to make an estimate, forecast or decision where there is significant uncertainty. First, the project focuses on performing Monte-Carlo Simulation on a given data set using U. S Department of Energy’s MonteCarlo Software, which is a freeware e&p tool. Further, an algorithm for simulation has been developed for MATLAB and program performs simulation by prompting user for input distributions and parameters associated with each distribution (i.e. mean, st.dev, min., max., most likely, etc.). It also prompts user for desired probability for which reserves are to be calculated. The algorithm so developed and tested in MATLAB further finds implementation in Python where existing libraries on statistics and graph plotting have been imported to generate better outcome. With PyQt designer, codes for a simple graphical user interface have also been written. The graph so plotted is then validated with already available results from U.S DOE MonteCarlo Software.

Keywords: simulation, probability, confidence interval, sensitivity analysis

Procedia PDF Downloads 382
1021 A Mixed Integer Programming Model for Optimizing the Layout of an Emergency Department

Authors: Farhood Rismanchian, Seong Hyeon Park, Young Hoon Lee

Abstract:

During the recent years, demand for healthcare services has dramatically increased. As the demand for healthcare services increases, so does the necessity of constructing new healthcare buildings and redesigning and renovating existing ones. Increasing demands necessitate the use of optimization techniques to improve the overall service efficiency in healthcare settings. However, high complexity of care processes remains the major challenge to accomplish this goal. This study proposes a method based on process mining results to address the high complexity of care processes and to find the optimal layout of the various medical centers in an emergency department. ProM framework is used to discover clinical pathway patterns and relationship between activities. Sequence clustering plug-in is used to remove infrequent events and to derive the process model in the form of Markov chain. The process mining results served as an input for the next phase which consists of the development of the optimization model. Comparison of the current ED design with the one obtained from the proposed method indicated that a carefully designed layout can significantly decrease the distances that patients must travel.

Keywords: Mixed Integer programming, Facility layout problem, Process Mining, Healthcare Operation Management

Procedia PDF Downloads 339
1020 Predicting the Diagnosis of Alzheimer’s Disease: Development and Validation of Machine Learning Models

Authors: Jay L. Fu

Abstract:

Patients with Alzheimer's disease progressively lose their memory and thinking skills and, eventually, the ability to carry out simple daily tasks. The disease is irreversible, but early detection and treatment can slow down the disease progression. In this research, publicly available MRI data and demographic data from 373 MRI imaging sessions were utilized to build models to predict dementia. Various machine learning models, including logistic regression, k-nearest neighbor, support vector machine, random forest, and neural network, were developed. Data were divided into training and testing sets, where training sets were used to build the predictive model, and testing sets were used to assess the accuracy of prediction. Key risk factors were identified, and various models were compared to come forward with the best prediction model. Among these models, the random forest model appeared to be the best model with an accuracy of 90.34%. MMSE, nWBV, and gender were the three most important contributing factors to the detection of Alzheimer’s. Among all the models used, the percent in which at least 4 of the 5 models shared the same diagnosis for a testing input was 90.42%. These machine learning models allow early detection of Alzheimer’s with good accuracy, which ultimately leads to early treatment of these patients.

Keywords: Alzheimer's disease, clinical diagnosis, magnetic resonance imaging, machine learning prediction

Procedia PDF Downloads 143
1019 CTHTC: A Convolution-Backed Transformer Architecture for Temporal Knowledge Graph Embedding with Periodicity Recognition

Authors: Xinyuan Chen, Mohd Nizam Husen, Zhongmei Zhou, Gongde Guo, Wei Gao

Abstract:

Temporal Knowledge Graph Completion (TKGC) has attracted increasing attention for its enormous value; however, existing models lack capabilities to capture both local interactions and global dependencies simultaneously with evolutionary dynamics, while the latest achievements in convolutions and Transformers haven't been employed in this area. What’s more, periodic patterns in TKGs haven’t been fully explored either. To this end, a multi-stage hybrid architecture with convolution-backed Transformers is introduced in TKGC tasks for the first time combining the Hawkes process to model evolving event sequences in a continuous-time domain. In addition, the seasonal-trend decomposition is adopted to identify periodic patterns. Experiments on six public datasets are conducted to verify model effectiveness against state-of-the-art (SOTA) methods. An extensive ablation study is carried out accordingly to evaluate architecture variants as well as the contributions of independent components in addition, paving the way for further potential exploitation. Besides complexity analysis, input sensitivity and safety challenges are also thoroughly discussed for comprehensiveness with novel methods.

Keywords: temporal knowledge graph completion, convolution, transformer, Hawkes process, periodicity

Procedia PDF Downloads 78
1018 Non-Targeted Adversarial Image Classification Attack-Region Modification Methods

Authors: Bandar Alahmadi, Lethia Jackson

Abstract:

Machine Learning model is used today in many real-life applications. The safety and security of such model is important, so the results of the model are as accurate as possible. One challenge of machine learning model security is the adversarial examples attack. Adversarial examples are designed by the attacker to cause the machine learning model to misclassify the input. We propose a method to generate adversarial examples to attack image classifiers. We are modifying the successfully classified images, so a classifier misclassifies them after the modification. In our method, we do not update the whole image, but instead we detect the important region, modify it, place it back to the original image, and then run it through a classifier. The algorithm modifies the detected region using two methods. First, it will add abstract image matrix on back of the detected image matrix. Then, it will perform a rotation attack to rotate the detected region around its axes, and embed the trace of image in image background. Finally, the attacked region is placed in its original position, from where it was removed, and a smoothing filter is applied to smooth the background with foreground. We test our method in cascade classifier, and the algorithm is efficient, the classifier confident has dropped to almost zero. We also try it in CNN (Convolutional neural network) with higher setting and the algorithm was successfully worked.

Keywords: adversarial examples, attack, computer vision, image processing

Procedia PDF Downloads 339
1017 Modeling Pan Evaporation Using Intelligent Methods of ANN, LSSVM and Tree Model M5 (Case Study: Shahroud and Mayamey Stations)

Authors: Hamidreza Ghazvinian, Khosro Ghazvinian, Touba Khodaiean

Abstract:

The importance of evaporation estimation in water resources and agricultural studies is undeniable. Pan evaporation are used as an indicator to determine the evaporation of lakes and reservoirs around the world due to the ease of interpreting its data. In this research, intelligent models were investigated in estimating pan evaporation on a daily basis. Shahroud and Mayamey were considered as the studied cities. These two cities are located in Semnan province in Iran. The mentioned cities have dry weather conditions that are susceptible to high evaporation potential. Meteorological data of 11 years of synoptic stations of Shahrood and Mayamey cities were used. The intelligent models used in this study are Artificial Neural Network (ANN), Least Squares Support Vector Machine (LSSVM), and M5 tree models. Meteorological parameters of minimum and maximum air temperature (Tmax, Tmin), wind speed (WS), sunshine hours (SH), air pressure (PA), relative humidity (RH) as selected input data and evaporation data from pan (EP) to The output data was considered. 70% of data is used at the education level, and 30 % of the data is used at the test level. Models used with explanation coefficient evaluation (R2) Root of Mean Squares Error (RMSE) and Mean Absolute Error (MAE). The results for the two Shahroud and Mayamey stations showed that the above three models' operations are rather appropriate.

Keywords: pan evaporation, intelligent methods, shahroud, mayamey

Procedia PDF Downloads 74
1016 Reducing Support Structures in Design for Additive Manufacturing: A Neural Networks Approach

Authors: Olivia Borgue, Massimo Panarotto, Ola Isaksson

Abstract:

This article presents a neural networks-based strategy for reducing the need for support structures when designing for additive manufacturing (AM). Additive manufacturing is a relatively new and immature industrial technology, and the information to make confident decisions when designing for AM is limited. This lack of information impacts especially the early stages of engineering design, for instance, it is difficult to actively consider the support structures needed for manufacturing a part. This difficulty is related to the challenge of designing a product geometry accounting for customer requirements, manufacturing constraints and minimization of support structure. The approach presented in this article proposes an automatized geometry modification technique for reducing the use of the support structures while designing for AM. This strategy starts with a neural network-based strategy for shape recognition to achieve product classification, using an STL file of the product as input. Based on the classification, an automatic part geometry modification based on MATLAB© is implemented. At the end of the process, the strategy presents different geometry modification alternatives depending on the type of product to be designed. The geometry alternatives are then evaluated adopting a QFD-like decision support tool.

Keywords: additive manufacturing, engineering design, geometry modification optimization, neural networks

Procedia PDF Downloads 253
1015 Towards Human-Interpretable, Automated Learning of Feedback Control for the Mixing Layer

Authors: Hao Li, Guy Y. Cornejo Maceda, Yiqing Li, Jianguo Tan, Marek Morzynski, Bernd R. Noack

Abstract:

We propose an automated analysis of the flow control behaviour from an ensemble of control laws and associated time-resolved flow snapshots. The input may be the rich database of machine learning control (MLC) optimizing a feedback law for a cost function in the plant. The proposed methodology provides (1) insights into the control landscape, which maps control laws to performance, including extrema and ridge-lines, (2) a catalogue of representative flow states and their contribution to cost function for investigated control laws and (3) visualization of the dynamics. Key enablers are classification and feature extraction methods of machine learning. The analysis is successfully applied to the stabilization of a mixing layer with sensor-based feedback driving an upstream actuator. The fluctuation energy is reduced by 26%. The control replaces unforced Kelvin-Helmholtz vortices with subsequent vortex pairing by higher-frequency Kelvin-Helmholtz structures of lower energy. These efforts target a human interpretable, fully automated analysis of MLC identifying qualitatively different actuation regimes, distilling corresponding coherent structures, and developing a digital twin of the plant.

Keywords: machine learning control, mixing layer, feedback control, model-free control

Procedia PDF Downloads 223
1014 Economics and Management Information Systems: Institute of Management and Technology Enugu a Case Study

Authors: Cletus Agbowo

Abstract:

Standard principles, rules, regulations, norms and guides are necessities in practice especially in the Economics and management information system Institute of management of and technology (IMT) Enugu a case sturdy as presented by the presenter. Without mincing words, the fundamental bottle neck of management is economics, how to select to engage merger productivity resources to achieve uncountable objectives without tears. Management information system inevitably become bound up in organizational politics because the influence access to a key resource – namely information. Economics and management information can effect who does what to whom, when, where and how in an organization. In great institutions like the Institute of Management and Technology (IMT) Enugu a case study many new information systems require changes in personnel, individual routines that can be painful for those involved and require retraining and additional effort may or may not be compensated. In a nut shell, because management information system potentially change an organization’s structure, culture, business processes, and strategy, there is often considerable resistance to them when they are introduced. The case study have many schools, departments, divisions and units which needs research on economics and management information systems. A system can be defined as a set of interrelated components and / or elements, which reacts with input to produce output. A department in an organization is a system. The researcher is faced to itemize the practical challenges encountered and solution adopted by the Institute Management and Enugu state government.

Keywords: economics, information, management, productivity, regulations

Procedia PDF Downloads 381
1013 19th Century Exam, 21st Century Policing: An Examination of the New York State Civil Service and Police Officer Recruitment Efforts

Authors: A. Edwards

Abstract:

The civil service was created to reform the hiring process for public officials, changing the patronage system to a merit-based system. Though exam reforms continued throughout the 20th century, there have been few during the 21st century, particularly in New York state. In the case of police departments, the civil service exam has acted as a hindrance to its ‘21st Century Policing’ goals and new exam reform efforts have left out officers voices and concerns. Through in-depth interviews of current and retired police officers and local and state civil service administrators in Albany County in New York, this study seeks to understand police influence and insight regarding the civil service exam, placing some of the voice and input for civil service reform on police departments, instead of local and state bureaucrats. The study also looks at the relationship between civil service administrators and police departments. Using practice theory, the study seeks to understand the ways in which the civil service exam was defined in the 20th century and how it is out of step with current thinking while examining possible changes to the civil service exam that would lead to a more equitable hiring process and successful police departments.

Keywords: civil service, hiring, merit, policing

Procedia PDF Downloads 203
1012 Effects of Near-Fault Ground Motions on Earthquake-Induced Pounding Response of RC Buildings

Authors: Mehmet Akköse

Abstract:

In ground motions recorded in recent major earthquakes such as 1994 Northridge earthquake in US, 1995 Kobe earthquake in Japan, 1999 Chi-Chi earthquake in Taiwan, and 1999 Kocaeli earthquake in Turkey, it is noticed that they have large velocity pulses. The ground motions with the velocity pulses recorded in the vicinity of an earthquake fault are quite different from the usual far-fault earthquake ground motions. The velocity pulse duration in the near-fault ground motions is larger than 1.0 sec. In addition, the ratio of the peak ground velocity (PGV) to the peak ground acceleration (PGA) of the near-fault ground motions is larger than 0.1 sec. The ground motions having these characteristics expose the structure to high input energy in the beginning of the earthquake and cause large structural responses. Therefore, structural response to near-fault ground motions has received much attention in recent years. Interactions between neighboring, inadequately separated buildings have been repeatedly observed during earthquakes. This phenomenon often referred to as earthquake-induced structural pounding, may result in substantial damage or even total destruction of colliding structures during strong ground motions. This study focuses on effects of near-fault ground motions on earthquake-induced pounding response of RC buildings. The program SAP2000 is employed in the response calculations. The results obtained from the pounding analyses for near-fault and far-fault ground motions are compared with each other.

Keywords: near-fault ground motion, pounding analysis, RC buildings, SAP2000

Procedia PDF Downloads 263
1011 Metallurgical Analysis of Surface Defect in Telescopic Front Fork

Authors: Souvik Das, Janak Lal, Arthita Dey, Goutam Mukhopadhyay, Sandip Bhattacharya

Abstract:

Telescopic Front Fork (TFF) used in two wheelers, mainly motorcycle, is made from high strength steel, and is manufactured by high frequency induction welding process wherein hot rolled and pickled coils are used as input raw material for rolling of hollow tubes followed by heat treatment, surface treatment, cold drawing, tempering, etc. The final application demands superior quality TFF tubes w.r.t. surface finish and dimensional tolerances. This paper presents the investigation of two different types of failure of fork during operation. The investigation consists of visual inspection, chemical analysis, characterization of microstructure, and energy dispersive spectroscopy. In this paper, comprehensive investigations of two failed tube samples were investigated. In case of Sample #1, the result revealed that there was a pre-existing crack, known as hook crack, which leads to the cracking of the tube. Metallographic examination exhibited that during field operation the pre-existing hook crack was surfaced out leading to crack in the pipe. In case of Sample #2, presence of internal oxidation with decarburised grains inside the material indicates origin of the defect from slab stage.

Keywords: telescopic front fork, induction welding, hook crack, internal oxidation

Procedia PDF Downloads 131
1010 Numerical Response of Planar HPGe Detector for 241Am Contamination of Various Shapes

Authors: M. Manohari, Himanshu Gupta, S. Priyadharshini, R. Santhanam, S. Chandrasekaran, B. Venkatraman

Abstract:

Injection is one of the potential routes of intake in a radioactive facility. The internal dose due to this intake is monitored at the radiation emergency medical centre, IGCAR using a portable planar HPGe detector. The contaminated wound may be having different shapes. In a reprocessing potential of wound contamination with actinide is more. Efficiency is one of the input parameters for estimation of internal dose. Estimating these efficiencies experimentally would be tedious and cumbersome. Numerical estimation can be a supplement to experiment. As an initial step in this study 241Am contamination of different shapes are studied. In this study portable planar HPGe detector was modeled using Monte Carlo code FLUKA and the effect of different parameters like distance of the contamination from the detector, radius of the circular contamination were studied. Efficiency values for point and surface contamination located at different distances were estimated. The effect of efficiency on the radius of the surface source was more predominant when the source is at 1 cm distance compared to when the source to detector distance is 10 cm. At 1 cm the efficiency decreased quadratically as the radius increased and at 10 cm it decreased linearly. The point source efficiency varied exponentially with source to detector distance.

Keywords: Planar HPGe, efficiency value, injection, surface source

Procedia PDF Downloads 42
1009 Contrastive Learning for Unsupervised Object Segmentation in Sequential Images

Authors: Tian Zhang

Abstract:

Unsupervised object segmentation aims at segmenting objects in sequential images and obtaining the mask of each object without any manual intervention. Unsupervised segmentation remains a challenging task due to the lack of prior knowledge about these objects. Previous methods often require manually specifying the action of each object, which is often difficult to obtain. Instead, this paper does not need action information of objects and automatically learns the actions and relations among objects from the structured environment. To obtain the object segmentation of sequential images, the relationships between objects and images are extracted to infer the action and interaction of objects based on the multi-head attention mechanism. Three types of objects’ relationships in the object segmentation task are proposed: the relationship between objects in the same frame, the relationship between objects in two frames, and the relationship between objects and historical information. Based on these relationships, the proposed model (1) is effective in multiple objects segmentation tasks, (2) just needs images as input, and (3) produces better segmentation results as more relationships are considered. The experimental results on multiple datasets show that this paper’s method achieves state-of-art performance. The quantitative and qualitative analyses of the result are conducted. The proposed method could be easily extended to other similar applications.

Keywords: unsupervised object segmentation, attention mechanism, contrastive learning, structured environment

Procedia PDF Downloads 110
1008 A Reinforcement Learning Based Method for Heating, Ventilation, and Air Conditioning Demand Response Optimization Considering Few-Shot Personalized Thermal Comfort

Authors: Xiaohua Zou, Yongxin Su

Abstract:

The reasonable operation of heating, ventilation, and air conditioning (HVAC) is of great significance in improving the security, stability, and economy of power system operation. However, the uncertainty of the operating environment, thermal comfort varies by users and rapid decision-making pose challenges for HVAC demand response optimization. In this regard, this paper proposes a reinforcement learning-based method for HVAC demand response optimization considering few-shot personalized thermal comfort (PTC). First, an HVAC DR optimization framework based on few-shot PTC model and DRL is designed, in which the output of few-shot PTC model is regarded as the input of DRL. Then, a few-shot PTC model that distinguishes between awake and asleep states is established, which has excellent engineering usability. Next, based on soft actor criticism, an HVAC DR optimization algorithm considering the user’s PTC is designed to deal with uncertainty and make decisions rapidly. Experiment results show that the proposed method can efficiently obtain use’s PTC temperature, reduce energy cost while ensuring user’s PTC, and achieve rapid decision-making under uncertainty.

Keywords: HVAC, few-shot personalized thermal comfort, deep reinforcement learning, demand response

Procedia PDF Downloads 86
1007 Surface Coatings of Boards Made from Alternative Materials

Authors: Stepan Hysek, Petra Gajdacova

Abstract:

In recent years, alternative materials, such as annual plants or recycled and waste materials are becoming more and more popular input material for the production of composite materials. They can be used for the production of insulation boards, construction boards or furniture boards. Surface finishing of those boards is essential for utilization in furniture. However, some difficulties could occur during coating of boards from alternative materials; physical and chemical differences from conventional particleboards need to be considered. From the physical aspects, surface soundness and surface roughness mainly determine the quality of the surface. Since surface layers of boards from alternative materials have often lower density, these characteristics could be deteriorated and thus the production process needs to be optimized. Also, chemical reactions of board’s material with coating could be undesirable. The objective of this study is to evaluate the parameters affecting the surface quality of boards made form alternative materials and to find possibilities of the coating of these boards. In this study, boards of particles from rapeseed stems were produced using a laboratory press. Surface soundness, as representatives of mechanical properties and surface roughness, as representative of physical properties, were measured on boards from rapeseed stems. Results clearly indicated that produced boards had lower surface quality than commercially produced particle boards from wood. Therefore, higher thickness of surface coating on rapeseed based boards is needed.

Keywords: coating, surface, annual plant, composites, particleboard

Procedia PDF Downloads 265
1006 The Failure and Energy Mechanism of Rock-Like Material with Single Flaw

Authors: Yu Chen

Abstract:

This paper investigates the influence of flaw on failure process of rock-like material under uniaxial compression. In laboratory, the uniaxial compression tests of intact specimens and a series of specimens within single flaw were conducted. The inclination angle of flaws includes 0°, 15°, 30°, 45°, 60°, 75° and 90°. Based on the laboratory tests, the corresponding models of numerical simulation were built and loaded in PFC2D. After analysing the crack initiation and failure modes, deformation field, and energy mechanism for both laboratory tests and numerical simulation, it can be concluded that the influence of flaws on the failure process is determined by its inclination. The characteristic stresses increase as flaw angle rising basically. The tensile cracks develop from gentle flaws (α ≤ 30°) and the shear cracks develop from other flaws. The propagation of cracks changes during failure process and the failure mode of a specimen corresponds to the orientation of the flaw. A flaw has significant influence on the transverse deformation field at the middle of the specimen, except the 75° and 90° flaw sample. The input energy, strain energy and dissipation energy of specimens show approximate increase trends with flaw angle rising and it presents large difference on the energy distribution.

Keywords: failure pattern, particle deformation field, energy mechanism, PFC

Procedia PDF Downloads 213
1005 An Improved Data Aided Channel Estimation Technique Using Genetic Algorithm for Massive Multi-Input Multiple-Output

Authors: M. Kislu Noman, Syed Mohammed Shamsul Islam, Shahriar Hassan, Raihana Pervin

Abstract:

With the increasing rate of wireless devices and high bandwidth operations, wireless networking and communications are becoming over crowded. To cope with such crowdy and messy situation, massive MIMO is designed to work with hundreds of low costs serving antennas at a time as well as improve the spectral efficiency at the same time. TDD has been used for gaining beamforming which is a major part of massive MIMO, to gain its best improvement to transmit and receive pilot sequences. All the benefits are only possible if the channel state information or channel estimation is gained properly. The common methods to estimate channel matrix used so far is LS, MMSE and a linear version of MMSE also proposed in many research works. We have optimized these methods using genetic algorithm to minimize the mean squared error and finding the best channel matrix from existing algorithms with less computational complexity. Our simulation result has shown that the use of GA worked beautifully on existing algorithms in a Rayleigh slow fading channel and existence of Additive White Gaussian Noise. We found that the GA optimized LS is better than existing algorithms as GA provides optimal result in some few iterations in terms of MSE with respect to SNR and computational complexity.

Keywords: channel estimation, LMMSE, LS, MIMO, MMSE

Procedia PDF Downloads 191
1004 Analysis of the Impact of Climate Change on Maize (Zea Mays) Yield in Central Ethiopia

Authors: Takele Nemomsa, Girma Mamo, Tesfaye Balemi

Abstract:

Climate change refers to a change in the state of the climate that can be identified (e.g. using statistical tests) by changes in the mean and/or variance of its properties and that persists for an extended period, typically decades or longer. In Ethiopia; Maize production in relation to climate change at regional and sub- regional scales have not been studied in detail. Thus, this study was aimed to analyse the impact of climate change on maize yield in Ambo Districts, Central Ethiopia. To this effect, weather data, soil data and maize experimental data for Arganne hybrid were used. APSIM software was used to investigate the response of maize (Zea mays) yield to different agronomic management practices using current and future (2020s–2080s) climate data. The climate change projections data which were downscaled using SDSM were used as input of climate data for the impact analysis. Compared to agronomic practices the impact of climate change on Arganne in Central Ethiopia is minute. However, within 2020s-2080s in Ambo area; the yield of Arganne hybrid is projected to reduce by 1.06% to 2.02%, and in 2050s it is projected to reduce by 1.56 While in 2080s; it is projected to increase by 1.03% to 2.07%. Thus, to adapt to the changing climate; farmers should consider increasing plant density and fertilizer rate per hectare.

Keywords: APSIM, downscaling, response, SDSM

Procedia PDF Downloads 383
1003 Efficient Solid Oxide Electrolysers for Syn-Gas Generation Using Renewable Energy

Authors: G. Kaur, A. P. Kulkarni, S. Giddey

Abstract:

Production of fuels and chemicals using renewable energy is a promising way for large-scale energy storage and export. Solid oxide electrolysers (SOEs) integrated with renewable source of energy can produce 'Syngas' H₂/CO from H₂O/CO₂ in the desired ratio for further conversion to liquid fuels. As only a waste CO₂ from industrial and power generation processes is utilized in these processes, this approach is CO₂ neutral compared to using fossil fuel feedstock. In addition, the waste heat from industrial processes or heat from solar thermal concentrators can be effectively utilised in SOEs to further reduce the electrical requirements by up to 30% which boosts overall energy efficiency of the process. In this paper, the electrochemical performance of various novel steam/CO₂ reduction electrodes (cathode) would be presented. The efficiency and lifetime degradation data for single cells and a stack would be presented along with the response of cells to variable electrical load input mimicking the intermittent nature of the renewable energy sources. With such optimisation, newly developed electrodes have been tested for 500+ hrs with Faraday efficiency (electricity to fuel conversion efficiency) up to 95%, and thermal efficiency in excess of 70% based upon energy content of the syngas produced.

Keywords: carbon dioxide, steam conversion, electrochemical system, energy storage, fuel production, renewable energy

Procedia PDF Downloads 237
1002 Finite Difference Based Probabilistic Analysis to Evaluate the Impact of Correlation Length on Long-Term Settlement of Soft Soils

Authors: Mehrnaz Alibeikloo, Hadi Khabbaz, Behzad Fatahi

Abstract:

Probabilistic analysis has become one of the most popular methods to quantify and manage geotechnical risks due to the spatial variability of soil input parameters. The correlation length is one of the key factors of quantifying spatial variability of soil parameters which is defined as a distance within which the random variables are correlated strongly. This paper aims to assess the impact of correlation length on the long-term settlement of soft soils improved with preloading. The concept of 'worst-case' spatial correlation length was evaluated by determining the probability of failure of a real case study of Vasby test fill. For this purpose, a finite difference code was developed based on axisymmetric consolidation equations incorporating the non-linear elastic visco-plastic model and the Karhunen-Loeve expansion method. The results show that correlation length has a significant impact on the post-construction settlement of soft soils in a way that by increasing correlation length, probability of failure increases and the approach to asymptote.

Keywords: Karhunen-Loeve expansion, probability of failure, soft soil settlement, 'worst case' spatial correlation length

Procedia PDF Downloads 168
1001 Pilot Induced Oscillations Adaptive Suppression in Fly-By-Wire Systems

Authors: Herlandson C. Moura, Jorge H. Bidinotto, Eduardo M. Belo

Abstract:

The present work proposes the development of an adaptive control system which enables the suppression of Pilot Induced Oscillations (PIO) in Digital Fly-By-Wire (DFBW) aircrafts. The proposed system consists of a Modified Model Reference Adaptive Control (M-MRAC) integrated with the Gain Scheduling technique. The PIO oscillations are detected using a Real Time Oscillation Verifier (ROVER) algorithm, which then enables the system to switch between two reference models; one in PIO condition, with low proneness to the phenomenon and another one in normal condition, with high (or medium) proneness. The reference models are defined in a closed loop condition using the Linear Quadratic Regulator (LQR) control methodology for Multiple-Input-Multiple-Output (MIMO) systems. The implemented algorithms are simulated in software implementations with state space models and commercial flight simulators as the controlled elements and with pilot dynamics models. A sequence of pitch angles is considered as the reference signal, named as Synthetic Task (Syntask), which must be tracked by the pilot models. The initial outcomes show that the proposed system can detect and suppress (or mitigate) the PIO oscillations in real time before it reaches high amplitudes.

Keywords: adaptive control, digital Fly-By-Wire, oscillations suppression, PIO

Procedia PDF Downloads 134
1000 Applying of an Adaptive Neuro-Fuzzy Inference System (ANFIS) for Estimation of Flood Hydrographs

Authors: Amir Ahmad Dehghani, Morteza Nabizadeh

Abstract:

This paper presents the application of an Adaptive Neuro-Fuzzy Inference System (ANFIS) to flood hydrograph modeling of Shahid Rajaee reservoir dam located in Iran. This was carried out using 11 flood hydrographs recorded in Tajan river gauging station. From this dataset, 9 flood hydrographs were chosen to train the model and 2 flood hydrographs to test the model. The different architectures of neuro-fuzzy model according to the membership function and learning algorithm were designed and trained with different epochs. The results were evaluated in comparison with the observed hydrographs and the best structure of model was chosen according the least RMSE in each performance. To evaluate the efficiency of neuro-fuzzy model, various statistical indices such as Nash-Sutcliff and flood peak discharge error criteria were calculated. In this simulation, the coordinates of a flood hydrograph including peak discharge were estimated using the discharge values occurred in the earlier time steps as input values to the neuro-fuzzy model. These results indicate the satisfactory efficiency of neuro-fuzzy model for flood simulating. This performance of the model demonstrates the suitability of the implemented approach to flood management projects.

Keywords: adaptive neuro-fuzzy inference system, flood hydrograph, hybrid learning algorithm, Shahid Rajaee reservoir dam

Procedia PDF Downloads 478
999 Analysis of Impact Load Induced by Ultrasonic Cavitation Bubble Collapse Using Thin Film Pressure Sensors

Authors: Moiz S. Vohra, Nagalingam Arun Prasanth, Wei L. Tan, S. H. Yeo

Abstract:

The understanding of generation and collapse of acoustic cavitation bubbles are prerequisites for application of cavitation erosion. Microbubbles generated due to rapid fluctuation of pressure induced by propagation of ultrasonic wave lead to formation of high velocity microjets and or shock waves upon collapse. Due to vast application of ultrasonic, it is important to characterize and understand cavitation collapse pressure under the radiating surface at different conditions. A comparative investigation is carried out to determine impact load and dynamic pressure distribution exerted upon bubble collapse using thin film pressure sensors. Measurements were recorded at different input conditions such as amplitude, stand-off distance, insertion depth of the horn inside the liquid and pulse on-off time of acoustic vibrations. Impact force of 2.97 N is recorded at amplitude of 108 μm and stand-off distance of 1 mm from the sensor film, whereas impulsive force as low as 0.4 N is recorded at amplitude of 12 μm and stand-off distance of 5 mm from the sensor film. The results drawn from the investigation indicated that variety of impact loads can be achieved by controlling generation and collapse of bubbles, making it suitable to use for numerous application.

Keywords: ultrasonic cavitation, bubble collapse, pressure mapping sensor, impact load

Procedia PDF Downloads 339
998 Speed Breaker/Pothole Detection Using Hidden Markov Models: A Deep Learning Approach

Authors: Surajit Chakrabarty, Piyush Chauhan, Subhasis Panda, Sujoy Bhattacharya

Abstract:

A large proportion of roads in India are not well maintained as per the laid down public safety guidelines leading to loss of direction control and fatal accidents. We propose a technique to detect speed breakers and potholes using mobile sensor data captured from multiple vehicles and provide a profile of the road. This would, in turn, help in monitoring roads and revolutionize digital maps. Incorporating randomness in the model formulation for detection of speed breakers and potholes is crucial due to substantial heterogeneity observed in data obtained using a mobile application from multiple vehicles driven by different drivers. This is accomplished with Hidden Markov Models, whose hidden state sequence is found for each time step given the observables sequence, and are then fed as input to LSTM network with peephole connections. A precision score of 0.96 and 0.63 is obtained for classifying bumps and potholes, respectively, a significant improvement from the machine learning based models. Further visualization of bumps/potholes is done by converting time series to images using Markov Transition Fields where a significant demarcation among bump/potholes is observed.

Keywords: deep learning, hidden Markov model, pothole, speed breaker

Procedia PDF Downloads 144
997 Reliability and Cost Focused Optimization Approach for a Communication Satellite Payload Redundancy Allocation Problem

Authors: Mehmet Nefes, Selman Demirel, Hasan H. Ertok, Cenk Sen

Abstract:

A typical reliability engineering problem regarding communication satellites has been considered to determine redundancy allocation scheme of power amplifiers within payload transponder module, whose dominant function is to amplify power levels of the received signals from the Earth, through maximizing reliability against mass, power, and other technical limitations. Adding each redundant power amplifier component increases not only reliability but also hardware, testing, and launch cost of a satellite. This study investigates a multi-objective approach used in order to solve Redundancy Allocation Problem (RAP) for a communication satellite payload transponder, focusing on design cost due to redundancy and reliability factors. The main purpose is to find the optimum power amplifier redundancy configuration satisfying reliability and capacity thresholds simultaneously instead of analyzing respectively or independently. A mathematical model and calculation approach are instituted including objective function definitions, and then, the problem is solved analytically with different input parameters in MATLAB environment. Example results showed that payload capacity and failure rate of power amplifiers have remarkable effects on the solution and also processing time.

Keywords: communication satellite payload, multi-objective optimization, redundancy allocation problem, reliability, transponder

Procedia PDF Downloads 261
996 Effect of Scarp Topography on Seismic Ground Motion

Authors: Haiping Ding, Rongchu Zhu, Zhenxia Song

Abstract:

Local irregular topography has a great impact on earthquake ground motion. For scarp topography, using numerical simulation method, the influence extent and scope of the scarp terrain on scarp's upside and downside ground motion are discussed in case of different vertical incident SV waves. The results show that: (1) The amplification factor of scarp's upside region is greater than that of the free surface, while the amplification factor of scarp's downside part is less than that of the free surface; (2) When the slope angle increases, for x component, amplification factors of the scarp upside also increase, while the downside part decrease with it. For z component, both of the upside and downside amplification factors will increase; (3) When the slope angle changes, the influence scope of scarp's downside part is almost unchanged, but for the upside part, it slightly becomes greater with the increase of slope angle; (4) Due to the existence of the scarp, the z component ground motion appears at the surface. Its amplification factor increases for larger slope angle, and the peaks of the surface responses are related with incident waves. However, the input wave has little effects on the x component amplification factors.

Keywords: scarp topography, ground motion, amplification factor, vertical incident wave

Procedia PDF Downloads 262
995 Factory Virtual Environment Development for Augmented and Virtual Reality

Authors: Michal Gregor, Jiri Polcar, Petr Horejsi, Michal Simon

Abstract:

Machine visualization is an area of interest with fast and progressive development. We present a method of machine visualization which will be applicable in real industrial conditions according to current needs and demands. Real factory data were obtained in a newly built research plant. Methods described in this paper were validated on a case study. Input data were processed and the virtual environment was created. The environment contains information about dimensions, structure, disposition, and function. Hardware was enhanced by modular machines, prototypes, and accessories. We added new functionalities and machines into the virtual environment. The user is able to interact with objects such as testing and cutting machines, he/she can operate and move them. Proposed design consists of an environment with two degrees of freedom of movement. Users are in touch with items in the virtual world which are embedded into the real surroundings. This paper describes the development of the virtual environment. We compared and tested various options of factory layout virtualization and visualization. We analyzed possibilities of using a 3D scanner in the layout obtaining process and we also analyzed various virtual reality hardware visualization methods such as Stereoscopic (CAVE) projection, Head Mounted Display (HMD), and augmented reality (AR) projection provided by see-through glasses.

Keywords: augmented reality, spatial scanner, virtual environment, virtual reality

Procedia PDF Downloads 408
994 Optimization of Machining Parameters of Wire Electric Discharge Machining (WEDM) of Inconel 625 Super Alloy

Authors: Amitesh Goswami, Vishal Gulati, Annu Yadav

Abstract:

In this paper, WEDM has been used to investigate the machining characteristics of Inconel-625 alloy. The machining characteristics namely material removal rate (MRR) and surface roughness (SR) have been investigated along with surface microstructure analysis using SEM and EDS of the machined surface. Taguchi’s L27 Orthogonal array design has been used by considering six varying input parameters viz. Pulse-on time (Ton), Pulse-off time (Toff), Spark Gap Set Voltage (SV), Peak Current (IP), Wire Feed (WF) and Wire Tension (WT) for the responses of interest. It has been found out that Pulse-on time (Ton) and Spark Gap Set Voltage (SV) are the most significant parameters affecting material removal rate (MRR) and surface roughness (SR) are. Microstructure analysis of workpiece was also done using Scanning Electron Microscope (SEM). It was observed that, variations in pulse-on time and pulse-off time causes varying discharge energy and as a result of which deep craters / micro cracks and large/ small number of debris were formed. These results were helpful in studying the effects of pulse-on time and pulse-off time on MRR and SR. Energy Dispersive Spectrometry (EDS) was also done to check the compositional analysis of the material and it was observed that Copper and Zinc which were initially not present in the Inconel 625, later migrated on the material surface from the brass wire electrode during machining

Keywords: MRR, SEM, SR, taguchi, Wire Electric Discharge Machining

Procedia PDF Downloads 353
993 PsyVBot: Chatbot for Accurate Depression Diagnosis using Long Short-Term Memory and NLP

Authors: Thaveesha Dheerasekera, Dileeka Sandamali Alwis

Abstract:

The escalating prevalence of mental health issues, such as depression and suicidal ideation, is a matter of significant global concern. It is plausible that a variety of factors, such as life events, social isolation, and preexisting physiological or psychological health conditions, could instigate or exacerbate these conditions. Traditional approaches to diagnosing depression entail a considerable amount of time and necessitate the involvement of adept practitioners. This underscores the necessity for automated systems capable of promptly detecting and diagnosing symptoms of depression. The PsyVBot system employs sophisticated natural language processing and machine learning methodologies, including the use of the NLTK toolkit for dataset preprocessing and the utilization of a Long Short-Term Memory (LSTM) model. The PsyVBot exhibits a remarkable ability to diagnose depression with a 94% accuracy rate through the analysis of user input. Consequently, this resource proves to be efficacious for individuals, particularly those enrolled in academic institutions, who may encounter challenges pertaining to their psychological well-being. The PsyVBot employs a Long Short-Term Memory (LSTM) model that comprises a total of three layers, namely an embedding layer, an LSTM layer, and a dense layer. The stratification of these layers facilitates a precise examination of linguistic patterns that are associated with the condition of depression. The PsyVBot has the capability to accurately assess an individual's level of depression through the identification of linguistic and contextual cues. The task is achieved via a rigorous training regimen, which is executed by utilizing a dataset comprising information sourced from the subreddit r/SuicideWatch. The diverse data present in the dataset ensures precise and delicate identification of symptoms linked with depression, thereby guaranteeing accuracy. PsyVBot not only possesses diagnostic capabilities but also enhances the user experience through the utilization of audio outputs. This feature enables users to engage in more captivating and interactive interactions. The PsyVBot platform offers individuals the opportunity to conveniently diagnose mental health challenges through a confidential and user-friendly interface. Regarding the advancement of PsyVBot, maintaining user confidentiality and upholding ethical principles are of paramount significance. It is imperative to note that diligent efforts are undertaken to adhere to ethical standards, thereby safeguarding the confidentiality of user information and ensuring its security. Moreover, the chatbot fosters a conducive atmosphere that is supportive and compassionate, thereby promoting psychological welfare. In brief, PsyVBot is an automated conversational agent that utilizes an LSTM model to assess the level of depression in accordance with the input provided by the user. The demonstrated accuracy rate of 94% serves as a promising indication of the potential efficacy of employing natural language processing and machine learning techniques in tackling challenges associated with mental health. The reliability of PsyVBot is further improved by the fact that it makes use of the Reddit dataset and incorporates Natural Language Toolkit (NLTK) for preprocessing. PsyVBot represents a pioneering and user-centric solution that furnishes an easily accessible and confidential medium for seeking assistance. The present platform is offered as a modality to tackle the pervasive issue of depression and the contemplation of suicide.

Keywords: chatbot, depression diagnosis, LSTM model, natural language process

Procedia PDF Downloads 69