Search results for: nonlinear stretching sheet
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1945

Search results for: nonlinear stretching sheet

715 Experimental Investigation and Constitutive Modeling of Volume Strain under Uniaxial Strain Rate Jump Test in HDPE

Authors: Rida B. Arieby, Hameed N. Hameed

Abstract:

In this work, tensile tests on high density polyethylene have been carried out under various constant strain rate and strain rate jump tests. The dependency of the true stress and specially the variation of volume strain have been investigated, the volume strain due to the phenomena of damage was determined in real time during the tests by an optical extensometer called Videotraction. A modified constitutive equations, including strain rate and damage effects, are proposed, such a model is based on a non-equilibrium thermodynamic approach called (DNLR). The ability of the model to predict the complex nonlinear response of this polymer is examined by comparing the model simulation with the available experimental data, which demonstrate that this model can represent the deformation behavior of the polymer reasonably well.

Keywords: strain rate jump tests, volume strain, high density polyethylene, large strain, thermodynamics approach

Procedia PDF Downloads 244
714 Personal Characteristics and Personality Traits as Predictors of Compassion Fatigue among Counselors from Dominican Schools in the Philippines

Authors: Neil Jordan M. Uy, Fe Pelilia V. Hernandez

Abstract:

A counselor is always regarded as a professional who embodies the willingness to help others through the process of counseling. He is knowledgeable and skillful of the different theories, tools, and techniques that are useful in aiding the client to cope with their dilemmas. The negative experiences of the clients that are shared during the counseling session can affect the professional counselor. Compassion fatigue, a professional impairment, is characterized by the decline of one’s productivity and the feeling of anxiety and stress brought about as the counselor empathizes, listens, and cares for others. This descriptive type of research aimed to explore variables that are predictors of compassion fatigue utilizing three research instruments; Demographic Profile Sheet, Professional Quality of Life Scale, and Neo-Pi-R. The 52 respondents of this study were counselors from the different Dominican schools in the Philippines. Generally, the counselors have low level of compassion fatigue across personal characteristics (age, gender, years of service, highest educational attainment, and professional status) and personality traits (extraversion, agreeableness, conscientiousness, openness, and neuroticism). ANOVA validated the findings of this that among the personal characteristics and personality traits, extraversion with f-value of 3.944 and p-value of 0.026, and conscientiousness, with f-value of 4.125 and p-value of 0.022 were found to have significant difference in the level of compassion fatigue. A very significant difference was observed with neuroticism with f-value of 6.878 and p-value 0.002. Among the personal characteristics and personal characteristics, only neuroticism was found to predict compassion fatigue. The computed r2 value of 0.204 using multiple regression analysis suggests that 20.4 percent of compassion fatigue can be predicted by neuroticism. The predicting power of neuroticism can be computed from the regression model Y=0.156x+26.464; where x is the number of neuroticism.

Keywords: big five personality traits, compassion fatigue, counselors, professional quality of life scale

Procedia PDF Downloads 358
713 Comparison of Mini-BESTest versus Berg Balance Scale to Evaluate Balance Disorders in Parkinson's Disease

Authors: R. Harihara Prakash, Shweta R. Parikh, Sangna S. Sheth

Abstract:

The purpose of this study was to explore the usefulness of the Mini-BESTest compared to the Berg Balance Scale in evaluating balance in people with Parkinson's Disease (PD) of varying severity. Evaluation were done to obtain (1) the distribution of patients scores to look for ceiling effects, (2) concurrent validity with severity of disease, and (3) the sensitivity & specificity of separating people with or without postural response deficits. Methods and Material: Seventy-seven(77) people with Parkinson's Disease were tested for balance deficits using the Berg Balance Scale, Mini-BESTest. Unified Parkinson’s Disease Rating Scale (UPDRS) III and the Hoehn & Yahr (H&Y) disease severity scales were used for classification. Materials used in this study were case record sheet, chair without arm rests or wheels, Incline ramp, stopwatch, a box, 3 meter distance measured out and marked on the floor with tape [from chair]. Statistical analysis used: Multiple Linear regression was carried out of UPDRS jointly on the two scores for the Berg and Mini-BESTest. Receiver operating characteristic curves for classifying people into two groups based on a threshold for the H&Y score, to discriminate between mild PD versus more severe PD.Correlation co-efficient to find relativeness between the two variables. Results: The Mini-BESTest is highly correlated with the Berg (r = 0.732,P < 0.001), but avoids the ceiling compression effect of the Berg for mild PD (skewness −0.714 Berg, −0.512 Mini-BESTest). Consequently, the Mini-BESTest is more effective than the Berg for predicting UPDRS Motor score (P < 0.001 Mini-BESTest versus P = 0.72 Berg), and for discriminating between those with and without postural response deficits as measured by the H&Y (ROC).

Keywords: balance, berg balance scale, MINI BESTest, parkinson's disease

Procedia PDF Downloads 375
712 Application of Neural Networks to Predict Changing the Diameters of Bubbles in Pool Boiling Distilled Water

Authors: V. Nikkhah Rashidabad, M. Manteghian, M. Masoumi, S. Mousavian, D. Ashouri

Abstract:

In this research, the capability of neural networks in modeling and learning complicated and nonlinear relations has been used to develop a model for the prediction of changes in the diameter of bubbles in pool boiling distilled water. The input parameters used in the development of this network include element temperature, heat flux, and retention time of bubbles. The test data obtained from the experiment of the pool boiling of distilled water, and the measurement of the bubbles form on the cylindrical element. The model was developed based on training algorithm, which is typologically of back-propagation type. Considering the correlation coefficient obtained from this model is 0.9633. This shows that this model can be trusted for the simulation and modeling of the size of bubble and thermal transfer of boiling.

Keywords: bubble diameter, heat flux, neural network, training algorithm

Procedia PDF Downloads 426
711 The Influence of the Diameter of the Flow Conducts on the Rheological Behavior of a Non-Newtonian Fluid

Authors: Hacina Abchiche, Mounir Mellal, Imene Bouchelkia

Abstract:

The knowledge of the rheological behavior of the used products in different fields is essential, both in digital simulation and the understanding of phenomenon involved during the flow of these products. The fluids presenting a nonlinear behavior represent an important category of materials used in the process of food-processing, chemical, pharmaceutical and oil industries. The issue is that the rheological characterization by classical rheometer cannot simulate, or take into consideration, the different parameters affecting the characterization of a complex fluid flow during real-time. The main objective of this study is to investigate the influence of the diameter of the flow conducts or pipe on the rheological behavior of a non-Newtonian fluid and Propose a mathematical model linking the rheologic parameters and the diameter of the conduits of flow. For this purpose, we have developed an experimental system based on the principal of a capillary rheometer.

Keywords: rhéologie, non-Newtonian fluids, experimental stady, mathematical model, cylindrical conducts

Procedia PDF Downloads 267
710 Limited Component Evaluation of the Effect of Regular Cavities on the Sheet Metal Element of the Steel Plate Shear Wall

Authors: Seyyed Abbas Mojtabavi, Mojtaba Fatzaneh Moghadam, Masoud Mahdavi

Abstract:

Steel Metal Shear Wall is one of the most common and widely used energy dissipation systems in structures, which is used today as a damping system due to the increase in the construction of metal structures. In the present study, the shear wall of the steel plate with dimensions of 5×3 m and thickness of 0.024 m was modeled with 2 floors of total height from the base level with finite element method in Abaqus software. The loading is done as a concentrated load at the upper point of the shear wall on the second floor based on step type buckle. The mesh in the model is applied in two directions of length and width of the shear wall, equal to 0.02 and 0.033, respectively, and the mesh in the models is of sweep type. Finally, it was found that the steel plate shear wall with cavity (CSPSW) compared to the SPSW model, S (Mises), Smax (In-Plane Principal), Smax (In-Plane Principal-ABS), Smax (Min Principal) increased by 53%, 70%, 68% and 43%, respectively. The presence of cavities has led to an increase in the estimated stresses, but their presence has caused critical stresses and critical deformations created to be removed from the inner surface of the shear wall and transferred to the desired sections (regular cavities) which can be suggested as a solution in seismic design and improvement of the structure to transfer possible damage during the earthquake and storm to the desired and pre-designed location in the structure.

Keywords: steel plate shear wall, abacus software, finite element method, , boundary element, seismic structural improvement, von misses stress

Procedia PDF Downloads 77
709 Graphene Based Materials as Novel Membranes for Water Desalination and Boron Separation

Authors: Francesca Risplendi, Li-Chiang Lin, Jeffrey C. Grossman, Giancarlo Cicero

Abstract:

Desalination is one of the most employed approaches to supply water in the context of a rapidly growing global water shortage. However, the most popular water filtration method available is the reverse osmosis (RO) technique, still suffers from important drawbacks, such as a large energy demands and high process costs. In addition some serious limitations have been recently discovered, among them, the boron problem seems to have a critical meaning. Boron has been found to have a dual effect on the living systems on Earth and the difference between boron deficiency and boron toxicity levels is quite small. The aim of this project is to develop a new generation of RO membranes based on porous graphene or reduced graphene oxide (rGO) able to remove salts from seawater and to reduce boron concentrations in the permeate to the level that meets the drinking or process water requirements, by means of a theoretical approach based on density functional theory and classical molecular dynamics. Computer simulations have been employed to investigate the relationship between the atomic structure of nanoporous graphene or rGO monolayer and its membrane properties in RO applications (i.e. water permeability and resilience at RO pressures). In addition, an emphasis has been given to multilayer nanoporous rGO and rGO flakes based membranes. By means of non-equilibrium MD simulations, we investigated the water transport mechanism permeating through such multilayer membrane focusing on the effect of slit widths and sheet geometries. These simulations allowed us to establish the implications of these graphene based materials as promising membrane properties for desalination plants and as boron filtration.

Keywords: boron filtration, desalination, graphene membrane, reduced graphene oxide membrane

Procedia PDF Downloads 279
708 Design of Active Power Filters for Harmonics on Power System and Reducing Harmonic Currents

Authors: Düzgün Akmaz, Hüseyin Erişti

Abstract:

In the last few years, harmonics have been occurred with the increasing use of nonlinear loads, and these harmonics have been an ever increasing problem for the line systems. This situation importantly affects the quality of power and gives large losses to the network. An efficient way to solve these problems is providing harmonic compensation through parallel active power filters. Many methods can be used in the control systems of the parallel active power filters which provide the compensation. These methods efficiently affect the performance of the active power filters. For this reason, the chosen control method is significant. In this study, Fourier analysis (FA) control method and synchronous reference frame (SRF) control method are discussed. These control methods are designed for both eliminate harmonics and perform reactive power compensation in MATLAB/Simulink pack program and are tested. The results have been compared for each two methods.

Keywords: parallel active power filters, harmonic compensation, power quality, harmonics

Procedia PDF Downloads 435
707 Analytical Investigation of Replaceable Links with Reduced Web Section for Link-to-Column Connections in Eccentrically Braced Frames

Authors: Daniel Y. Abebe, Sijeong Jeong, Jaehyouk Choi

Abstract:

The use of eccentrically braced frame (EBF) is increasing day by day as EBF possesses high elastic stiffness, stable inelastic response under cyclic lateral loading, and excellent ductility and energy dissipation capacity. The ductility and energy dissipation capacity of EBF depends on the active link beams. Recently, there are two types EBFs; these are conventional EBFs and EBFs with replaceable links. The conventional EBF has a disadvantage during maintenance in post-earthquake. The concept of removable active link beam in EBF is developed to overcome the limitation of the conventional EBF in post-earthquake. In this study, a replaceable link with reduced web section is introduced and design equations are suggested. In addition, nonlinear finite element analysis was conducted in order to evaluate the proposed links.

Keywords: EBFs, replaceable link, earthquake disaster, reduced section

Procedia PDF Downloads 311
706 Dynamic of Nonlinear Duopoly Game with Heterogeneous Players

Authors: Jixiang Zhang, Yanhua Wang

Abstract:

A dynamic of Bertrand duopoly game is analyzed, where players use different production methods and choose their prices with bounded rationality. The equilibriums of the corresponding discrete dynamical systems are investigated. The stability conditions of Nash equilibrium under a local adjustment process are studied. The stability conditions of Nash equilibrium under a local adjustment process are studied. The stability of Nash equilibrium, as some parameters of the model are varied, gives rise to complex dynamics such as cycles of higher order and chaos. On this basis, we discover that an increase of adjustment speed of bounded rational player can make Bertrand market sink into the chaotic state. Finally, the complex dynamics, bifurcations and chaos are displayed by numerical simulation.

Keywords: Bertrand duopoly model, discrete dynamical system, heterogeneous expectations, nash equilibrium

Procedia PDF Downloads 392
705 Nonlinear Model Predictive Control of Water Quality in Drinking Water Distribution Systems with DBPs Objetives

Authors: Mingyu Xie, Mietek Brdys

Abstract:

The paper develops a non-linear model predictive control (NMPC) of water quality in drinking water distribution systems (DWDS) based on the advanced non-linear quality dynamics model including disinfections by-products (DBPs). A special attention is paid to the analysis of an impact of the flow trajectories prescribed by an upper control level of the recently developed two-time scale architecture of an integrated quality and quantity control in DWDS. The new quality controller is to operate within this architecture in the fast time scale as the lower level quality controller. The controller performance is validated by a comprehensive simulation study based on an example case study DWDS.

Keywords: model predictive control, hierarchical control structure, genetic algorithm, water quality with DBPs objectives

Procedia PDF Downloads 301
704 Assessing the Effect of the Position of the Cavities on the Inner Plate of the Steel Shear Wall under Time History Dynamic Analysis

Authors: Masoud Mahdavi, Mojtaba Farzaneh Moghadam

Abstract:

The seismic forces caused by the waves created in the depths of the earth during the earthquake hit the structure and cause the building to vibrate. Creating large seismic forces will cause low-strength sections in the structure to suffer extensive surface damage. The use of new steel shear walls in steel structures has caused the strength of the building and its main members (columns) to increase due to the reduction and depreciation of seismic forces during earthquakes. In the present study, an attempt was made to evaluate a type of steel shear wall that has regular holes in the inner sheet by modeling the finite element model with Abacus software. The shear wall of the steel plate, measuring 6000 × 3000 mm (one floor) and 3 mm thickness, was modeled with four different pores with a cross-sectional area. The shear wall was dynamically subjected to a time history of 5 seconds by three accelerators, El Centro, Imperial Valley and Kobe. The results showed that increasing the distance between the geometric center of the hole and the geometric center of the inner plate in the steel shear wall (increasing the RCS index) caused the total maximum acceleration to be transferred from the perimeter of the hole to horizontal and vertical beams. The results also show that there is no direct relationship between RCS index and total acceleration in steel shear wall and RCS index is separate from the peak ground acceleration value of earthquake.

Keywords: hollow steel plate shear wall, time history analysis, finite element method, abaqus software

Procedia PDF Downloads 89
703 A Numerical Study on the Connection of an SC Wall to an RC Foundation

Authors: Siamak Epackachi, Andrew S. Whittaker, Amit H. Varma

Abstract:

There are a large number of methods to connect SC walls to RC foundations. An experimental study of the cyclic nonlinear behavior of SC walls in the NEES laboratory at the University at Buffalo used a connection detail involving the post-tensioning of a steel baseplate to the SC wall to a RC foundation. This type of connection introduces flexibility that influenced substantially the global response of the SC walls. The assumption of a rigid base, which would be commonly made by practitioners, would lead to a substantial overestimation of initial stiffness. This paper presents an analytical approach to characterize the rotational flexibility and to predict the initial stiffness of flexure-critical SC wall piers with baseplate connection. The good agreement between the analytical and test results confirmed the utility of the proposed method for calculating the initial stiffness of an SC wall with baseplate connection.

Keywords: steel-plate composite shear wall, flexure-critical wall, cyclic loading, analytical model

Procedia PDF Downloads 323
702 Design Fractional-Order Terminal Sliding Mode Control for Synchronization of a Class of Fractional-Order Chaotic Systems with Uncertainty and External Disturbances

Authors: Shabnam Pashaei, Mohammadali Badamchizadeh

Abstract:

This paper presents a new fractional-order terminal sliding mode control for synchronization of two different fractional-order chaotic systems with uncertainty and external disturbances. A fractional-order integral type nonlinear switching surface is presented. Then, using the Lyapunov stability theory and sliding mode theory, a fractional-order control law is designed to synchronize two different fractional-order chaotic systems. Finally, a simulation example is presented to illustrate the performance and applicability of the proposed method. Based on numerical results, the proposed controller ensures that the states of the controlled fractional-order chaotic response system are asymptotically synchronized with the states of the drive system.

Keywords: terminal sliding mode control, fractional-order calculus, chaotic systems, synchronization

Procedia PDF Downloads 392
701 Finite Element Analysis of RC Frames with Retrofitted Infill Walls

Authors: M. Ömer Timurağaoğlu, Adem Doğangün, Ramazan Livaoğlu

Abstract:

The evaluation of performance of infilled reinforced concrete (RC) frames has been a significant challenge for engineers. The strengthening of infill walls has been an important concern to enhance the behavior of RC infilled frames. The aim of this study is to investigate the behaviour of retrofitted infill walls of RC frames using finite element analysis. For this purpose, a one storey, one bay infilled and strengthened infilled RC frame which have the same geometry and material properties with the frames tested in laboratory are modelled using different analytical approaches. A fibrous material is used to strengthen infill walls and frame. As a consequence, the results of the finite element analysis were evaluated of whether these analytical approaches estimate the behavior or not. To model the infilled and strengthened infilled RC frames, a finite element program ABAQUS is used. Finally, data obtained from the nonlinear finite element analysis is compared with the experimental results.

Keywords: finite element analysis, infilled RC frames, infill wall, strengthening

Procedia PDF Downloads 511
700 On the Effect of Carbon on the Efficiency of Titanium as a Hydrogen Storage Material

Authors: Ghazi R. Reda Mahmoud Reda

Abstract:

Among the metal that forms hydride´s, Mg and Ti are known as the most lightweight materials; however, they are covered with a passive layer of oxides and hydroxides and require activation treatment under high temperature ( > 300 C ) and hydrogen pressure ( > 3 MPa) before being used for storage and transport applications. It is well known that small graphite addition to Ti or Mg, lead to a dramatic change in the kinetics of mechanically induced hydrogen sorption ( uptake) and significantly stimulate the Ti-Hydrogen interaction. Many explanations were given by different authors to explain the effect of graphite addition on the performance of Ti as material for hydrogen storage. Not only graphite but also the addition of a polycyclic aromatic compound will also improve the hydrogen absorption kinetics. It will be shown that the function of carbon addition is two-fold. First carbon acts as a vacuum cleaner, which scavenges out all the interstitial oxygen that can poison or slow down hydrogen absorption. It is also important to note that oxygen favors the chemisorption of hydrogen, which is not desirable for hydrogen storage. Second, during scavenging of the interstitial oxygen, the carbon reacts with oxygen in the nano and microchannel through a highly exothermic reaction to produce carbon dioxide and monoxide which provide the necessary heat for activation and thus in the presence of carbon lower heat of activation for hydrogen absorption which is observed experimentally. Furthermore, the product of the reaction of hydrogen with the carbon oxide will produce water which due to ball milling hydrolyze to produce the linear H5O2 + this will reconstruct the primary structure of the nanocarbon to form secondary structure, where the primary structure (a sheet of carbon) are connected through hydrogen bonding. It is the space between these sheets where physisorption or defect mediated sorption occurs.

Keywords: metal forming hydrides, polar molecule impurities, titanium, phase diagram, hydrogen absorption

Procedia PDF Downloads 341
699 Probing Environmental Sustainability via Brownfield Remediation: A Framework to Manage Brownfields in Ethiopia Lesson to Africa

Authors: Mikiale Gebreslase Gebremariam, Chai Huaqi, Tesfay Gebretsdkan Gebremichael, Dawit Nega Bekele

Abstract:

In recent years, brownfield redevelopment projects (BRPs) have contributed to the overarching paradigm of the United Nations 2030 agendas. In the present circumstance, most developed nations adopted BRPs, an efficacious urban policy tool. However, in developing and some advanced countries, BRPs are lacking due to limitations of awareness, policy tools, and financial capability for cleaning up brownfield sites. For example, the growth and development of Ethiopian cities were achieved at the cost of poor urban planning, including no community consultations and excessive urbanization for future growth. The demand for land resources is more and more urgent as the result of an intermigration to major cities and towns for socio-economic reasons and population growth. In the past, the development mode of spreading major cities has made horizontal urbanizations stretching outwards. Expansion in search of more land resources, while the outer cities are growing, the inner cities are polluted by environmental pollution. It is noteworthy that the rapid development of cities has not brought about an increase in people's happiness index. Thus, the proposed management framework for managing brownfields in Ethiopia as a lesson to the developing nation facing similar challenges and growth will add immense value in solving the problems and give insights into brownfield land utilization. Under the umbrella of the grey incidence decision-making model and with the consideration of multiple stakeholders and tight environmental and economic constraints, the proposed management framework integrates different criteria from economic, social, environmental, technical, and risk aspects into the grey incidence decision-making model and gives useful guidance to manage brownfields in Ethiopia. Furthermore, it will contribute to the future development of the social economy and the missions of the 2030 UN sustainable development goals.

Keywords: Brownfields, environmental sustainability, Ethiopia, grey-incidence decision-making, sustainable urban development

Procedia PDF Downloads 69
698 Optimal Tracking Control of a Hydroelectric Power Plant Incorporating Neural Forecasting for Uncertain Input Disturbances

Authors: Marlene Perez Villalpando, Kelly Joel Gurubel Tun

Abstract:

In this paper, we propose an optimal control strategy for a hydroelectric power plant subject to input disturbances like meteorological phenomena. The engineering characteristics of the system are described by a nonlinear model. The random availability of renewable sources is predicted by a high-order neural network trained with an extended Kalman filter, whereas the power generation is regulated by the optimal control law. The main advantage of the system is the stabilization of the amount of power generated in the plant. A control supervisor maintains stability and availability in hydropower reservoirs water levels for power generation. The proposed approach demonstrated a good performance to stabilize the reservoir level and the power generation along their desired trajectories in the presence of disturbances.

Keywords: hydropower, high order neural network, Kalman filter, optimal control

Procedia PDF Downloads 278
697 Robust Diagnosis of an Electro-Mechanical Actuators, Bond Graph LFT Approach

Authors: A. Boulanoir, B. Ould Bouamama, A. Debiane, N. Achour

Abstract:

The paper deals with robust Fault Detection and isolation with respect to parameter uncertainties based on linear fractional transformation form (LFT) Bond graph. The innovative interest of the proposed methodology is the use only one representation for systematic generation of robust analytical redundancy relations and adaptive residual thresholds for sensibility analysis. Furthermore, the parameter uncertainties are introduced graphically in the bond graph model. The methodology applied to the nonlinear industrial Electro-Mechanical Actuators (EMA) used in avionic systems, has determined first the structural monitorability analysis (which component can be monitored) with given instrumentation architecture with any need of complex calculation and secondly robust fault indicators for online supervision.

Keywords: bond graph (BG), electro mechanical actuators (EMA), fault detection and isolation (FDI), linear fractional transformation (LFT), mechatronic systems, parameter uncertainties, avionic system

Procedia PDF Downloads 335
696 Bond Strength of Different Strengthening Systems: Concrete Elements under Freeze–Thaw Cycles and Salt Water Immersion Exposure

Authors: Firas Al-Mahmoud, Jean-Michel Mechling, Mohamed Shaban

Abstract:

The long-term durability of fibre reinforced polymer (FRP) composites is often stated as being the main reason for the use of these materials. Indeed, structures externally or Near Surface Mounted (NSM) reinforced with Carbon Fibre Reinforcement Polymer CFRP are often in contact with temperature cycles and salt water immersion and other environmental conditions that reduce the expected durability of the system. Bond degradation is a frequent cause of premature failure of structural elements and environmental conditions are known to relate to such failures. The purpose of this study is to investigate the effect of environmental exposure on the bond for different CFRP strengthening systems. Bending tests were conducted to evaluate the bond with and without environmental exposure. The specimens were strengthened with CFRP sheets, CFRP plates and NSM CFRP rods embedded in two filling materials: epoxy resin and mortar. Then, they were exposed to up to 300 freeze–thaw cycles. One freeze–thaw cycle consisted of four stages according to ASTM or immersed in 3.5% salted tap water. A total of thirty-six specimens were prepared for this purpose. Results showed a decrease in ultimate bond strength for specimens strengthened by CFRP sheets that were immersed in salt water for 120 days, while a reduction was shown for CFRP sheet and plate bonded specimens that were subjected to 300 freeze–thaw cycles. Exposing NSM CFRP rod strengthened specimens, embedded in resin or mortar, to freeze–thaw cycles or to immersion in salt water does not affect the bond strength.

Keywords: durability, strengthening, FRP, bond, freeze–thaw

Procedia PDF Downloads 330
695 Generation Transcritical Flow Influenced by Dissipation over a Hole

Authors: Mohammed Daher Albalwi

Abstract:

The transcritical flow of a stratified fluid over an obstacle for negative forcing amplitude (hole) that generation upstream and downstream, connected by an unsteady solution, is examined. In the weakly nonlinear, weakly dispersive regime, the problem is formulated in the forced Korteweg-de Vries–Burgers framework. This is done by including the influence of the viscosity of the fluid beyond the Korteweg–de Vries approximation. The results show that the influence of viscosity is crucial in determining various wave properties, including the amplitudes of solitary waves in the upstream and downstream directions, as well as the widths of the bores. We focused here on weak damping, and the results are presented for transcritical, supercritical, and subcritical flows. In general, the outcomes are not qualitatively similar to those from the forced Korteweg-de–Vries equation when the value of the viscous is small, interesting differences emerge as the magnitude of the value of viscous increases.

Keywords: Korteweg–de Vries–Burgers equation, soliton, transcritical flow, viscous flow

Procedia PDF Downloads 29
694 Enhanced Dielectric Properties of La Substituted CoFe2O4 Magnetic Nanoparticles

Authors: M. Vadivel, R. Ramesh Babu

Abstract:

Spinel ferrite magnetic nanomaterials have received a great deal of attention in recent years due to their wide range of potential applications in various fields such as magnetic data storage and microwave device applications. Among the family of spinel ferrites, cobalt ferrite (CoFe2O4) has been widely used in the field of high-frequency applications because of its remarkable material qualities such as moderate saturation magnetization, high coercivity, large permeability at higher frequency and high electrical resistivity. For aforementioned applications, the materials should have an improved electrical property, especially enhancement in the dielectric properties. It is well known that the substitution of rare earth metal cations in Fe3+ site of CoFe2O4 nanoparticles leads to structural distortion and thus significantly influences the structural and morphological properties whereas greatly modifies the electrical and magnetic properties of a material. In the present investigation, we report on the influence of lanthanum (La3+) ion substitution on the structural, morphological, dielectric and magnetic properties of CoFe2O4 magnetic nanoparticles prepared by co-precipitation method. Powder X-ray diffraction patterns reveal the formation of inverse cubic spinel structure with the signature of LaFeO3 phase at higher La3+ ion concentrations. Raman and Fourier transform infrared spectral analysis also confirms the formation of inverse cubic spinel structure and Fe-O symmetrical stretching vibrations of CoFe2O4 nanoparticles, respectively. Transmission electron microscopy study reveals that the size of the particles gradually increases with increasing La3+ ion concentrations whereas the agglomeration gets slightly reduced for La3+ ion substituted CoFe2O4 nanoparticles than that of undoped CoFe2O4 nanoparticles. Dielectric properties such as dielectric constant and dielectric loss were recorded as a function of frequency and temperature which reveals that the dielectric constant gradually increases with increasing temperatures as well as La3+ ion concentrations. The increased dielectric constant might be the reason that the formation of LaFeO3 secondary phase at higher La3+ ion concentrations. Magnetic measurement demonstrates that the saturation magnetization gradually decreases from 61.45 to 25.13 emu/g with increasing La3+ ion concentrations which is due to the nonmagnetic nature of La3+ ions substitution.

Keywords: cobalt ferrite, co-precipitation, dielectric properties, saturation magnetization

Procedia PDF Downloads 300
693 Study on Seismic Response Feature of Multi-Span Bridges Crossing Fault

Authors: Yingxin Hui

Abstract:

Understanding seismic response feature of the bridges crossing fault is the basis of the seismic fortification. Taking a multi-span bridge crossing active fault under construction as an example, the seismic ground motions at bridge site were generated following hybrid simulation methodology. Multi-support excitations displacement input models and nonlinear time history analysis was used to calculate seismic response of structures, and the results were compared with bridge in the near-fault region. The results showed that the seismic response features of bridges crossing fault were different from the bridges in the near-fault region. The design according to the bridge in near-fault region would cause the calculation results with insecurity and non-reasonable if the effect of cross the fault was ignored. The design of seismic fortification should be based on seismic response feature, which could reduce the adverse effect caused by the structure damage.

Keywords: bridge engineering, seismic response feature, across faults, rupture directivity effect, fling step

Procedia PDF Downloads 407
692 Tools for Analysis and Optimization of Standalone Green Microgrids

Authors: William Anderson, Kyle Kobold, Oleg Yakimenko

Abstract:

Green microgrids using mostly renewable energy (RE) for generation, are complex systems with inherent nonlinear dynamics. Among a variety of different optimization tools there are only a few ones that adequately consider this complexity. This paper evaluates applicability of two somewhat similar optimization tools tailored for standalone RE microgrids and also assesses a machine learning tool for performance prediction that can enhance the reliability of any chosen optimization tool. It shows that one of these microgrid optimization tools has certain advantages over another and presents a detailed routine of preparing input data to simulate RE microgrid behavior. The paper also shows how neural-network-based predictive modeling can be used to validate and forecast solar power generation based on weather time series data, which improves the overall quality of standalone RE microgrid analysis.

Keywords: microgrid, renewable energy, complex systems, optimization, predictive modeling, neural networks

Procedia PDF Downloads 260
691 Finite Element Modeling of Heat and Moisture Transfer in Porous Material

Authors: V. D. Thi, M. Li, M. Khelifa, M. El Ganaoui, Y. Rogaume

Abstract:

This paper presents a two-dimensional model to study the heat and moisture transfer through porous building materials. Dynamic and static coupled models of heat and moisture transfer in porous material under low temperature are presented and the coupled models together with variable initial and boundary conditions have been considered in an analytical way and using the finite element method. The resulting coupled model is converted to two nonlinear partial differential equations, which is then numerically solved by an implicit iterative scheme. The numerical results of temperature and moisture potential changes are compared with the experimental measurements available in the literature. Predicted results demonstrate validation of the theoretical model and effectiveness of the developed numerical algorithms. It is expected to provide useful information for the porous building material design based on heat and moisture transfer model.

Keywords: finite element method, heat transfer, moisture transfer, porous materials, wood

Procedia PDF Downloads 384
690 Thin-Film Nanocomposite Membrane with Single-Walled Carbon Nanotubes Axial Positioning in Support Layer for Desalination of Water

Authors: Ahmed A. Alghamdi

Abstract:

Single-walled carbon nanotubes (SWCNTs) are an outstanding material for applications in thermoelectric power generation, nanoelectronics, electrochemical energy storage, photovoltaics, and light emission. They are ultra-lightweight and possess electrical as well as thermal conductivity, flexibility, and mechanical strength. SWCNT is applicable in water treatment, brine desalination, removal of heavy metal ions associated with pollutants, and oil-water separation. Carbon nanotube (CNT) is believed to tackle the trade-off issue between permeability, selectivity, and fouling issues in membrane filtration applications. Studying these CNT structures, as well as their interconnection in nanotechnology, assists in finding the precise position to be placed for water desalination. Reverse osmosis (RO) has been used globally for desalination, resulting in purified water. Thin film composite (TFC) membranes were utilized in the RO process for desalination. The sheet thickness increases the salt rejection and decreases the water flux when CNT is utilized as a support layer to this membrane. Thus, through a temperature-induced phase separation technique (TIPS), axially aligned SWCNT (AASWCNT) is fabricated, and its use enhances the salt rejection and water flux at short reaction times with a modified procedure. An evaluation was conducted and analogized with prior works in the literature, which exhibited that the prepared TFC membrane showed a better outcome.

Keywords: single-walled carbon nanotubes, thin film composite, axially aligned swcnt, temperature induced phase separation technique, reverse osmosis

Procedia PDF Downloads 36
689 Modeling the Cyclic Behavior of High Damping Rubber Bearings

Authors: Donatello Cardone

Abstract:

Bilinear hysteresis models are usually used to describe the cyclic behavior of high damping rubber bearings. However, they neglect a number of phenomena (such as the interaction between axial load and shear force, buckling and post-buckling behavior, cavitation, scragging effects, etc.) that can significantly influence the dynamic behavior of such isolation devices. In this work, an advanced hysteresis model is examined and properly calibrated using consolidated procedures. Results of preliminary numerical analyses, performed in OpenSees, are shown and compared with the results of experimental tests on high damping rubber bearings and simulation analyses using alternative nonlinear models. The findings of this study can provide an useful tool for the accurate evaluation of the seismic response of structures with rubber-based isolation systems.

Keywords: seismic isolation, high damping rubber bearings, numerical modeling, axial-shear force interaction

Procedia PDF Downloads 108
688 Implementation of the Canadian Emergency Department Triage and Acuity Scale (CTAS) in an Urgent Care Center in Saudi Arabia

Authors: Abdullah Arafat, Ali Al-Farhan, Amir Omair

Abstract:

Objectives: To review and assess the effectiveness of the implemented modified five-levels triage and acuity scale triage system in AL-Yarmook Urgent Care Center (UCC), King Abdulaziz Residential city, Riyadh, Saudi Arabia. Method: The applied study design was an observational cross sectional design. A data collection sheet was designed and distributed to triage nurses; the data collection was done during triage process and was directly observed by the co-investigator. Triage system was reviewed by measuring three time intervals as quality indicators: time before triage (TBT), time before being seen by physician (TBP) and total length of stay (TLS) taking in consideration timing of presentation and level of triage. Results: During the study period, a total of 187 patients were included in our study. 118 visits were at weekdays and 68 visits at weekends. Overall, 173 patients (92.5%) were seen by the physician in timely manner according to triage guidelines while 14 patients (7.5%) were not seen at appropriate time.Overall, The mean time before seen the triage nurse (TBT) was 5.36 minutes, the mean time to be seen by physician (TBP) was 22.6 minutes and the mean length of stay (TLS) was 59 minutes. The data didn’t showed significant increase in TBT, TBP, and number of patients not seen at the proper time, referral rate and admission rate during weekend. Conclusion: The CTAS is adaptable to countries beyond Canada and worked properly. The applied CTAS triage system in Al-Yarmook UCC is considered to be effective and well applied. Overall, urgent cases have been seen by physician in timely manner according to triage system and there was no delay in the management of urgent cases.

Keywords: CTAS, emergency, Saudi Arabia, triage, urgent care

Procedia PDF Downloads 301
687 Environmental Protection by Optimum Utilization of Car Air Conditioners

Authors: Sanchita Abrol, Kunal Rana, Ankit Dhir, S. K. Gupta

Abstract:

According to N.R.E.L.’s findings, 700 crore gallons of petrol is used annually to run the air conditioners of passenger vehicles (nearly 6% of total fuel consumption in the USA). Beyond fuel use, the Environmental Protection Agency reported that refrigerant leaks from auto air conditioning units add an additional 5 crore metric tons of carbon emissions to the atmosphere each year. The objective of our project is to deal with this vital issue by carefully modifying the interiors of a car thereby increasing its mileage and the efficiency of its engine. This would consequently result in a decrease in tail emission and generated pollution along with improved car performance. An automatic mechanism, deployed between the front and the rear seats, consisting of transparent thermal insulating sheet/curtain, would roll down as per the requirement of the driver in order to optimize the volume for effective air conditioning, when travelling alone or with a person. The reduction in effective volume will yield favourable results. Even on a mild sunny day, the temperature inside a parked car can quickly spike to life-threatening levels. For a stationary parked car, insulation would be provided beneath its metal body so as to reduce the rate of heat transfer and increase the transmissivity. As a result, the car would not require a large amount of air conditioning for maintaining lower temperature, which would provide us similar benefits. Authors established the feasibility studies, system engineering and primarily theoretical and experimental results confirming the idea and motivation to fabricate and test the actual product.

Keywords: automation, car, cooling insulating curtains, heat optimization, insulation, reduction in tail emission, mileage

Procedia PDF Downloads 255
686 Optimizing Boiler Combustion System in a Petrochemical Plant Using Neuro-Fuzzy Inference System and Genetic Algorithm

Authors: Yul Y. Nazaruddin, Anas Y. Widiaribowo, Satriyo Nugroho

Abstract:

Boiler is one of the critical unit in a petrochemical plant. Steam produced by the boiler is used for various processes in the plant such as urea and ammonia plant. An alternative method to optimize the boiler combustion system is presented in this paper. Adaptive Neuro-Fuzzy Inference System (ANFIS) approach is applied to model the boiler using real-time operational data collected from a boiler unit of the petrochemical plant. Nonlinear equation obtained is then used to optimize the air to fuel ratio using Genetic Algorithm, resulting an optimal ratio of 15.85. This optimal ratio is then maintained constant by ratio controller designed using inverse dynamics based on ANFIS. As a result, constant value of oxygen content in the flue gas is obtained which indicates more efficient combustion process.

Keywords: ANFIS, boiler, combustion process, genetic algorithm, optimization.

Procedia PDF Downloads 233