Search results for: virtual machine
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3940

Search results for: virtual machine

2740 Comparative Study Using WEKA for Red Blood Cells Classification

Authors: Jameela Ali, Hamid A. Jalab, Loay E. George, Abdul Rahim Ahmad, Azizah Suliman, Karim Al-Jashamy

Abstract:

Red blood cells (RBC) are the most common types of blood cells and are the most intensively studied in cell biology. The lack of RBCs is a condition in which the amount of hemoglobin level is lower than normal and is referred to as “anemia”. Abnormalities in RBCs will affect the exchange of oxygen. This paper presents a comparative study for various techniques for classifying the RBCs as normal, or abnormal (anemic) using WEKA. WEKA is an open source consists of different machine learning algorithms for data mining applications. The algorithm tested are Radial Basis Function neural network, Support vector machine, and K-Nearest Neighbors algorithm. Two sets of combined features were utilized for classification of blood cells images. The first set, exclusively consist of geometrical features, was used to identify whether the tested blood cell has a spherical shape or non-spherical cells. While the second set, consist mainly of textural features was used to recognize the types of the spherical cells. We have provided an evaluation based on applying these classification methods to our RBCs image dataset which were obtained from Serdang Hospital-alaysia, and measuring the accuracy of test results. The best achieved classification rates are 97%, 98%, and 79% for Support vector machines, Radial Basis Function neural network, and K-Nearest Neighbors algorithm respectively.

Keywords: K-nearest neighbors algorithm, radial basis function neural network, red blood cells, support vector machine

Procedia PDF Downloads 406
2739 Enabling Oral Communication and Accelerating Recovery: The Creation of a Novel Low-Cost Electroencephalography-Based Brain-Computer Interface for the Differently Abled

Authors: Rishabh Ambavanekar

Abstract:

Expressive Aphasia (EA) is an oral disability, common among stroke victims, in which the Broca’s area of the brain is damaged, interfering with verbal communication abilities. EA currently has no technological solutions and its only current viable solutions are inefficient or only available to the affluent. This prompts the need for an affordable, innovative solution to facilitate recovery and assist in speech generation. This project proposes a novel concept: using a wearable low-cost electroencephalography (EEG) device-based brain-computer interface (BCI) to translate a user’s inner dialogue into words. A low-cost EEG device was developed and found to be 10 to 100 times less expensive than any current EEG device on the market. As part of the BCI, a machine learning (ML) model was developed and trained using the EEG data. Two stages of testing were conducted to analyze the effectiveness of the device: a proof-of-concept and a final solution test. The proof-of-concept test demonstrated an average accuracy of above 90% and the final solution test demonstrated an average accuracy of above 75%. These two successful tests were used as a basis to demonstrate the viability of BCI research in developing lower-cost verbal communication devices. Additionally, the device proved to not only enable users to verbally communicate but has the potential to also assist in accelerated recovery from the disorder.

Keywords: neurotechnology, brain-computer interface, neuroscience, human-machine interface, BCI, HMI, aphasia, verbal disability, stroke, low-cost, machine learning, ML, image recognition, EEG, signal analysis

Procedia PDF Downloads 116
2738 Classifier for Liver Ultrasound Images

Authors: Soumya Sajjan

Abstract:

Liver cancer is the most common cancer disease worldwide in men and women, and is one of the few cancers still on the rise. Liver disease is the 4th leading cause of death. According to new NHS (National Health Service) figures, deaths from liver diseases have reached record levels, rising by 25% in less than a decade; heavy drinking, obesity, and hepatitis are believed to be behind the rise. In this study, we focus on Development of Diagnostic Classifier for Ultrasound liver lesion. Ultrasound (US) Sonography is an easy-to-use and widely popular imaging modality because of its ability to visualize many human soft tissues/organs without any harmful effect. This paper will provide an overview of underlying concepts, along with algorithms for processing of liver ultrasound images Naturaly, Ultrasound liver lesion images are having more spackle noise. Developing classifier for ultrasound liver lesion image is a challenging task. We approach fully automatic machine learning system for developing this classifier. First, we segment the liver image by calculating the textural features from co-occurrence matrix and run length method. For classification, Support Vector Machine is used based on the risk bounds of statistical learning theory. The textural features for different features methods are given as input to the SVM individually. Performance analysis train and test datasets carried out separately using SVM Model. Whenever an ultrasonic liver lesion image is given to the SVM classifier system, the features are calculated, classified, as normal and diseased liver lesion. We hope the result will be helpful to the physician to identify the liver cancer in non-invasive method.

Keywords: segmentation, Support Vector Machine, ultrasound liver lesion, co-occurance Matrix

Procedia PDF Downloads 405
2737 Comparison of Two Home Sleep Monitors Designed for Self-Use

Authors: Emily Wood, James K. Westphal, Itamar Lerner

Abstract:

Background: Polysomnography (PSG) recordings are regularly used in research and clinical settings to study sleep and sleep-related disorders. Typical PSG studies are conducted in professional laboratories and performed by qualified researchers. However, the number of sleep labs worldwide is disproportionate to the increasing number of individuals with sleep disorders like sleep apnea and insomnia. Consequently, there is a growing need to supply cheaper yet reliable means to measure sleep, preferably autonomously by subjects in their own home. Over the last decade, a variety of devices for self-monitoring of sleep became available in the market; however, very few have been directly validated against PSG to demonstrate their ability to perform reliable automatic sleep scoring. Two popular mobile EEG-based systems that have published validation results, the DREEM 3 headband and the Z-Machine, have never been directly compared one to the other by independent researchers. The current study aimed to compare the performance of DREEM 3 and the Z-Machine to help investigators and clinicians decide which of these devices may be more suitable for their studies. Methods: 26 participants have completed the study for credit or monetary compensation. Exclusion criteria included any history of sleep, neurological or psychiatric disorders. Eligible participants arrived at the lab in the afternoon and received the two devices. They then spent two consecutive nights monitoring their sleep at home. Participants were also asked to keep a sleep log, indicating the time they fell asleep, woke up, and the number of awakenings occurring during the night. Data from both devices, including detailed sleep hypnograms in 30-second epochs (differentiating Wake, combined N1/N2, N3; and Rapid Eye Movement sleep), were extracted and aligned upon retrieval. For analysis, the number of awakenings each night was defined as four or more consecutive wake epochs between sleep onset and termination. Total sleep time (TST) and the number of awakenings were compared to subjects’ sleep logs to measure consistency with the subjective reports. In addition, the sleep scores from each device were compared epoch-by-epoch to calculate the agreement between the two devices using Cohen’s Kappa. All analysis was performed using Matlab 2021b and SPSS 27. Results/Conclusion: Subjects consistently reported longer times spent asleep than the time reported by each device (M= 448 minutes for sleep logs compared to M= 406 and M= 345 minutes for the DREEM and Z-Machine, respectively; both ps<0.05). Linear correlations between the sleep log and each device were higher for the DREEM than the Z-Machine for both TST and the number of awakenings, and, likewise, the mean absolute bias between the sleep logs and each device was higher for the Z-Machine for both TST (p<0.001) and awakenings (p<0.04). There was some indication that these effects were stronger for the second night compared to the first night. Epoch-by-epoch comparisons showed that the main discrepancies between the devices were for detecting N2 and REM sleep, while N3 had a high agreement. Overall, the DREEM headband seems superior for reliably scoring sleep at home.

Keywords: DREEM, EEG, seep monitoring, Z-machine

Procedia PDF Downloads 105
2736 Annual Water Level Simulation Using Support Vector Machine

Authors: Maryam Khalilzadeh Poshtegal, Seyed Ahmad Mirbagheri, Mojtaba Noury

Abstract:

In this paper, by application of the input yearly data of rainfall, temperature and flow to the Urmia Lake, the simulation of water level fluctuation were applied by means of three models. According to the climate change investigation the fluctuation of lakes water level are of high interest. This study investigate data-driven models, support vector machines (SVM), SVM method which is a new regression procedure in water resources are applied to the yearly level data of Lake Urmia that is the biggest and the hyper saline lake in Iran. The evaluated lake levels are found to be in good correlation with the observed values. The results of SVM simulation show better accuracy and implementation. The mean square errors, mean absolute relative errors and determination coefficient statistics are used as comparison criteria.

Keywords: simulation, water level fluctuation, urmia lake, support vector machine

Procedia PDF Downloads 361
2735 Virtual Reality and Other Real-Time Visualization Technologies for Architecture Energy Certifications

Authors: Román Rodríguez Echegoyen, Fernando Carlos López Hernández, José Manuel López Ujaque

Abstract:

Interactive management of energy certification ratings has remained on the sidelines of the evolution of virtual reality (VR) despite related advances in architecture in other areas such as BIM and real-time working programs. This research studies to what extent VR software can help the stakeholders to better understand energy efficiency parameters in order to obtain reliable ratings assigned to the parts of the building. To evaluate this hypothesis, the methodology has included the construction of a software prototype. Current energy certification systems do not follow an intuitive data entry system; neither do they provide a simple or visual verification of the technical values included in the certification by manufacturers or other users. This software, by means of real-time visualization and a graphical user interface, proposes different improvements to the current energy certification systems that ease the understanding of how the certification parameters work in a building. Furthermore, the difficulty of using current interfaces, which are not friendly or intuitive for the user, means that untrained users usually get a poor idea of the grounds for certification and how the program works. In addition, the proposed software allows users to add further information, such as financial and CO₂ savings, energy efficiency, and an explanatory analysis of results for the least efficient areas of the building through a new visual mode. The software also helps the user to evaluate whether or not an investment to improve the materials of an installation is worth the cost of the different energy certification parameters. The evaluated prototype (named VEE-IS) shows promising results when it comes to representing in a more intuitive and simple manner the energy rating of the different elements of the building. Users can also personalize all the inputs necessary to create a correct certification, such as floor materials, walls, installations, or other important parameters. Working in real-time through VR allows for efficiently comparing, analyzing, and improving the rated elements, as well as the parameters that we must enter to calculate the final certification. The prototype also allows for visualizing the building in efficiency mode, which lets us move over the building to analyze thermal bridges or other energy efficiency data. This research also finds that the visual representation of energy efficiency certifications makes it easy for the stakeholders to examine improvements progressively, which adds value to the different phases of design and sale.

Keywords: energetic certification, virtual reality, augmented reality, sustainability

Procedia PDF Downloads 184
2734 The Development of Communication and Mobile Phones in Iran: The Role of Internet in Smart Mobile Phones in Social and Human Development and Social Mobility of Different Classes of Iranian Women

Authors: Zahra Tork

Abstract:

Before the spread of the Internet and the use of mobile phones, women were generally far from society and many restrictions were applied to them, but after the spread of the Internet and the cultural and social changes brought about by it, women in society got a new one and many restrictions regarding them disappeared; As we can see today, many women, like men, have a high social base, they earn for themselves, they can travel alone, stay out late at night, take personal and family photos or videos on virtual pages. Publish themselves (while before this, showing or publishing photos of women was considered dishonorable or indecent). In this article, an attempt is made to examine the effect of the internet on mobile phones and virtual social networks in changing beliefs, norms and social values and their relationship with the social mobility of women and the effect of these factors on social and human development be paid. For this reason, social and human development is discussed first, and then the role of the media in development is explained, and finally, the social mobility of women is discussed. Since the purpose of this study is to better understand the social mobility of Iranian women through the development of the Internet in mobile phones, a qualitative study using focus groups has been adopted. The results of this research indicated that the Internet has caused changes in the value and cultural system of the Iranian people, and women have also redefined their roles and identity. In this new definition, many of the past restrictions have disappeared and women have gained the same freedoms as men. Finally, these factors (change in values and norms and redefinition of the role of women) joined hands and caused the social mobility of women in Iran.

Keywords: development of communication in Iran, development of mobile phones, development of the Internet, women's social group, social mobility

Procedia PDF Downloads 72
2733 CFD-Parametric Study in Stator Heat Transfer of an Axial Flux Permanent Magnet Machine

Authors: Alireza Rasekh, Peter Sergeant, Jan Vierendeels

Abstract:

This paper copes with the numerical simulation for convective heat transfer in the stator disk of an axial flux permanent magnet (AFPM) electrical machine. Overheating is one of the main issues in the design of AFMPs, which mainly occurs in the stator disk, so that it needs to be prevented. A rotor-stator configuration with 16 magnets at the periphery of the rotor is considered. Air is allowed to flow through openings in the rotor disk and channels being formed between the magnets and in the gap region between the magnets and the stator surface. The rotating channels between the magnets act as a driving force for the air flow. The significant non-dimensional parameters are the rotational Reynolds number, the gap size ratio, the magnet thickness ratio, and the magnet angle ratio. The goal is to find correlations for the Nusselt number on the stator disk according to these non-dimensional numbers. Therefore, CFD simulations have been performed with the multiple reference frame (MRF) technique to model the rotary motion of the rotor and the flow around and inside the machine. A minimization method is introduced by a pattern-search algorithm to find the appropriate values of the reference temperature. It is found that the correlations are fast, robust and is capable of predicting the stator heat transfer with a good accuracy. The results reveal that the magnet angle ratio diminishes the stator heat transfer, whereas the rotational Reynolds number and the magnet thickness ratio improve the convective heat transfer. On the other hand, there a certain gap size ratio at which the stator heat transfer reaches a maximum.

Keywords: AFPM, CFD, magnet parameters, stator heat transfer

Procedia PDF Downloads 246
2732 SAP-Reduce: Staleness-Aware P-Reduce with Weight Generator

Authors: Lizhi Ma, Chengcheng Hu, Fuxian Wong

Abstract:

Partial reduce (P-Reduce) has set a state-of-the-art performance on distributed machine learning in the heterogeneous environment over the All-Reduce architecture. The dynamic P-Reduce based on the exponential moving average (EMA) approach predicts all the intermediate model parameters, which raises unreliability. It is noticed that the approximation trick leads the wrong way to obtaining model parameters in all the nodes. In this paper, SAP-Reduce is proposed, which is a variant of the All-Reduce distributed training model with staleness-aware dynamic P-Reduce. SAP-Reduce directly utilizes the EMA-like algorithm to generate the normalized weights. To demonstrate the effectiveness of the algorithm, the experiments are set based on a number of deep learning models, comparing the single-step training acceleration ratio and convergence time. It is found that SAP-Reduce simplifying dynamic P-Reduce outperforms the intermediate approximation one. The empirical results show SAP-Reduce is 1.3× −2.1× faster than existing baselines.

Keywords: collective communication, decentralized distributed training, machine learning, P-Reduce

Procedia PDF Downloads 26
2731 Fault Diagnosis of Squirrel-Cage Induction Motor by a Neural Network Multi-Models

Authors: Yahia. Kourd, N. Guersi D. Lefebvre

Abstract:

In this paper we propose to study the faults diagnosis in squirrel-cage induction motor using MLP neural networks. We use neural healthy and faulty models of the behavior in order to detect and isolate some faults in machine. In the first part of this work, we have created a neural model for the healthy state using Matlab and a motor located in LGEB by acquirins data inputs and outputs of this engine. Then we detected the faults in the machine by residual generation. These residuals are not sufficient to isolate the existing faults. For this reason, we proposed additive neural networks to represent the faulty behaviors. From the analysis of these residuals and the choice of a threshold we propose a method capable of performing the detection and diagnosis of some faults in asynchronous machines with squirrel cage rotor.

Keywords: faults diagnosis, neural networks, multi-models, squirrel-cage induction motor

Procedia PDF Downloads 632
2730 Virtual Team Performance: A Transactive Memory System Perspective

Authors: Belbaly Nassim

Abstract:

Virtual teams (VT) initiatives, in which teams are geographically dispersed and communicate via modern computer-driven technologies, have attracted increasing attention from researchers and professionals. The growing need to examine how to balance and optimize VT is particularly important given the exposure experienced by companies when their employees encounter globalization and decentralization pressures to monitor VT performance. Hence, organization is regularly limited due to misalignment between the behavioral capabilities of the team’s dispersed competences and knowledge capabilities and how trust issues interplay and influence these VT dimensions and the effects of such exchanges. In fact, the future success of business depends on the extent to which VTs are managing efficiently their dispersed expertise, skills and knowledge to stimulate VT creativity. Transactive memory system (TMS) may enhance VT creativity using its three dimensons: knowledge specialization, credibility and knowledge coordination. TMS can be understood as a composition of both a structural component residing of individual knowledge and a set of communication processes among individuals. The individual knowledge is shared while being retrieved, applied and the learning is coordinated. TMS is driven by the central concept that the system is built on the distinction between internal and external memory encoding. A VT learns something new and catalogs it in memory for future retrieval and use. TMS uses the role of information technology to explain VT behaviors by offering VT members the possibility to encode, store, and retrieve information. TMS considers the members of a team as a processing system in which the location of expertise both enhances knowledge coordination and builds trust among members over time. We build on TMS dimensions to hypothesize the effects of specialization, coordination, and credibility on VT creativity. In fact, VTs consist of dispersed expertise, skills and knowledge that can positively enhance coordination and collaboration. Ultimately, this team composition may lead to recognition of both who has expertise and where that expertise is located; over time, the team composition may also build trust among VT members over time developing the ability to coordinate their knowledge which can stimulate creativity. We also assess the reciprocal relationship between TMS dimensions and VT creativity. We wish to use TMS to provide researchers with a theoretically driven model that is empirically validated through survey evidence. We propose that TMS provides a new way to enhance and balance VT creativity. This study also provides researchers insight into the use of TMS to influence positively VT creativity. In addition to our research contributions, we provide several managerial insights into how TMS components can be used to increase performance within dispersed VTs.

Keywords: virtual team creativity, transactive memory systems, specialization, credibility, coordination

Procedia PDF Downloads 168
2729 An ANOVA-based Sequential Forward Channel Selection Framework for Brain-Computer Interface Application based on EEG Signals Driven by Motor Imagery

Authors: Forouzan Salehi Fergeni

Abstract:

Converting the movement intents of a person into commands for action employing brain signals like electroencephalogram signals is a brain-computer interface (BCI) system. When left or right-hand motions are imagined, different patterns of brain activity appear, which can be employed as BCI signals for control. To make better the brain-computer interface (BCI) structures, effective and accurate techniques for increasing the classifying precision of motor imagery (MI) based on electroencephalography (EEG) are greatly needed. Subject dependency and non-stationary are two features of EEG signals. So, EEG signals must be effectively processed before being used in BCI applications. In the present study, after applying an 8 to 30 band-pass filter, a car spatial filter is rendered for the purpose of denoising, and then, a method of analysis of variance is used to select more appropriate and informative channels from a category of a large number of different channels. After ordering channels based on their efficiencies, a sequential forward channel selection is employed to choose just a few reliable ones. Features from two domains of time and wavelet are extracted and shortlisted with the help of a statistical technique, namely the t-test. Finally, the selected features are classified with different machine learning and neural network classifiers being k-nearest neighbor, Probabilistic neural network, support-vector-machine, Extreme learning machine, decision tree, Multi-layer perceptron, and linear discriminant analysis with the purpose of comparing their performance in this application. Utilizing a ten-fold cross-validation approach, tests are performed on a motor imagery dataset found in the BCI competition III. Outcomes demonstrated that the SVM classifier got the greatest classification precision of 97% when compared to the other available approaches. The entire investigative findings confirm that the suggested framework is reliable and computationally effective for the construction of BCI systems and surpasses the existing methods.

Keywords: brain-computer interface, channel selection, motor imagery, support-vector-machine

Procedia PDF Downloads 44
2728 A Computer-Aided System for Detection and Classification of Liver Cirrhosis

Authors: Abdel Hadi N. Ebraheim, Eman Azomi, Nefisa A. Fahmy

Abstract:

This paper designs and implements a computer-aided system (CAS) to help detect and diagnose liver cirrhosis in patients with Chronic Hepatitis C. Our system reduces the required features (tests) the patient is asked to do to tests to their minimal best most informative subset of tests, with a diagnostic accuracy above 99%, and hence saving both time and costs. We use the Support Vector Machine (SVM) with cross-validation, a Multilayer Perceptron Neural Network (MLP), and a Generalized Regression Neural Network (GRNN) that employs a base of radial functions for functional approximation, as classifiers. Our system is tested on 199 subjects, of them 99 Chronic Hepatitis C.The subjects were selected from among the outpatient clinic in National Herpetology and Tropical Medicine Research Institute (NHTMRI).

Keywords: liver cirrhosis, artificial neural network, support vector machine, multi-layer perceptron, classification, accuracy

Procedia PDF Downloads 457
2727 Prediction-Based Midterm Operation Planning for Energy Management of Exhibition Hall

Authors: Doseong Eom, Jeongmin Kim, Kwang Ryel Ryu

Abstract:

Large exhibition halls require a lot of energy to maintain comfortable atmosphere for the visitors viewing inside. One way of reducing the energy cost is to have thermal energy storage systems installed so that the thermal energy can be stored in the middle of night when the energy price is low and then used later when the price is high. To minimize the overall energy cost, however, we should be able to decide how much energy to save during which time period exactly. If we can foresee future energy load and the corresponding cost, we will be able to make such decisions reasonably. In this paper, we use machine learning technique to obtain models for predicting weather conditions and the number of visitors on hourly basis for the next day. Based on the energy load thus predicted, we build a cost-optimal daily operation plan for the thermal energy storage systems and cooling and heating facilities through simulation-based optimization.

Keywords: building energy management, machine learning, operation planning, simulation-based optimization

Procedia PDF Downloads 319
2726 Effects of Ubiquitous 360° Learning Environment on Clinical Histotechnology Competence

Authors: Mari A. Virtanen, Elina Haavisto, Eeva Liikanen, Maria Kääriäinen

Abstract:

Rapid technological development and digitalization has affected also on higher education. During last twenty years multiple of electronic and mobile learning (e-learning, m-learning) platforms have been developed and have become prevalent in many universities and in the all fields of education. Ubiquitous learning (u-learning) is not that widely known or used. Ubiquitous learning environments (ULE) are the new era of computer-assisted learning. They are based on ubiquitous technology and computing that fuses the learner seamlessly into learning process by using sensing technology as tags, badges or barcodes and smart devices like smartphones and tablets. ULE combines real-life learning situations into virtual aspects and can be flexible used in anytime and anyplace. The aim of this study was to assess the effects of ubiquitous 360 o learning environment on higher education students’ clinical histotechnology competence. A quasi-experimental study design was used. 57 students in biomedical laboratory science degree program was assigned voluntarily to experiment (n=29) and to control group (n=28). Experimental group studied via ubiquitous 360o learning environment and control group via traditional web-based learning environment (WLE) in a 8-week educational intervention. Ubiquitous 360o learning environment (ULE) combined authentic learning environment (histotechnology laboratory), digital environment (virtual laboratory), virtual microscope, multimedia learning content, interactive communication tools, electronic library and quick response barcodes placed into authentic laboratory. Web-based learning environment contained equal content and components with the exception of the use of mobile device, interactive communication tools and quick response barcodes. Competence of clinical histotechnology was assessed by using knowledge test and self-report developed for this study. Data was collected electronically before and after clinical histotechnology course and analysed by using descriptive statistics. Differences among groups were identified by using Wilcoxon test and differences between groups by using Mann-Whitney U-test. Statistically significant differences among groups were identified in both groups (p<0.001). Competence scores in post-test were higher in both groups, than in pre-test. Differences between groups were very small and not statistically significant. In this study the learning environment have developed based on 360o technology and successfully implemented into higher education context. And students’ competence increases when ubiquitous learning environment were used. In the future, ULE can be used as a learning management system for any learning situation in health sciences. More studies are needed to show differences between ULE and WLE.

Keywords: competence, higher education, histotechnology, ubiquitous learning, u-learning, 360o

Procedia PDF Downloads 282
2725 Combining Multiscale Patterns of Weather and Sea States into a Machine Learning Classifier for Mid-Term Prediction of Extreme Rainfall in North-Western Mediterranean Sea

Authors: Pinel Sebastien, Bourrin François, De Madron Du Rieu Xavier, Ludwig Wolfgang, Arnau Pedro

Abstract:

Heavy precipitation constitutes a major meteorological threat in the western Mediterranean. Research has investigated the relationship between the states of the Mediterranean Sea and the atmosphere with the precipitation for short temporal windows. However, at a larger temporal scale, the precursor signals of heavy rainfall in the sea and atmosphere have drawn little attention. Moreover, despite ongoing improvements in numerical weather prediction, the medium-term forecasting of rainfall events remains a difficult task. Here, we aim to investigate the influence of early-spring environmental parameters on the following autumnal heavy precipitations. Hence, we develop a machine learning model to predict extreme autumnal rainfall with a 6-month lead time over the Spanish Catalan coastal area, based on i) the sea pattern (main current-LPC and Sea Surface Temperature-SST) at the mesoscale scale, ii) 4 European weather teleconnection patterns (NAO, WeMo, SCAND, MO) at synoptic scale, and iii) the hydrological regime of the main local river (Rhône River). The accuracy of the developed model classifier is evaluated via statistical analysis based on classification accuracy, logarithmic and confusion matrix by comparing with rainfall estimates from rain gauges and satellite observations (CHIRPS-2.0). Sensitivity tests are carried out by changing the model configuration, such as sea SST, sea LPC, river regime, and synoptic atmosphere configuration. The sensitivity analysis suggests a negligible influence from the hydrological regime, unlike SST, LPC, and specific teleconnection weather patterns. At last, this study illustrates how public datasets can be integrated into a machine learning model for heavy rainfall prediction and can interest local policies for management purposes.

Keywords: extreme hazards, sensitivity analysis, heavy rainfall, machine learning, sea-atmosphere modeling, precipitation forecasting

Procedia PDF Downloads 128
2724 Heuristic for Scheduling Correlated Parallel Machine to Minimize Maximum Lateness and Total Weighed Completion Time

Authors: Yang-Kuei Lin, Yun-Xi Zhang

Abstract:

This research focuses on the bicriteria correlated parallel machine scheduling problem. The two objective functions considered in this problem are to minimize maximum lateness and total weighted completion time. We first present a mixed integer programming (MIP) model that can find the entire efficient frontier for the studied problem. Next, we have proposed a bicriteria heuristic that can find non-dominated solutions for the studied problem. The performance of the proposed bicriteria heuristic is compared with the efficient frontier generated by solving the MIP model. Computational results indicate that the proposed bicriteria heuristic can solve the problem efficiently and find a set of diverse solutions that are uniformly distributed along the efficient frontier.

Keywords: bicriteria, correlated parallel machines, heuristic, scheduling

Procedia PDF Downloads 138
2723 Internet of Things Networks: Denial of Service Detection in Constrained Application Protocol Using Machine Learning Algorithm

Authors: Adamu Abdullahi, On Francisca, Saidu Isah Rambo, G. N. Obunadike, D. T. Chinyio

Abstract:

The paper discusses the potential threat of Denial of Service (DoS) attacks in the Internet of Things (IoT) networks on constrained application protocols (CoAP). As billions of IoT devices are expected to be connected to the internet in the coming years, the security of these devices is vulnerable to attacks, disrupting their functioning. This research aims to tackle this issue by applying mixed methods of qualitative and quantitative for feature selection, extraction, and cluster algorithms to detect DoS attacks in the Constrained Application Protocol (CoAP) using the Machine Learning Algorithm (MLA). The main objective of the research is to enhance the security scheme for CoAP in the IoT environment by analyzing the nature of DoS attacks and identifying a new set of features for detecting them in the IoT network environment. The aim is to demonstrate the effectiveness of the MLA in detecting DoS attacks and compare it with conventional intrusion detection systems for securing the CoAP in the IoT environment. Findings: The research identifies the appropriate node to detect DoS attacks in the IoT network environment and demonstrates how to detect the attacks through the MLA. The accuracy detection in both classification and network simulation environments shows that the k-means algorithm scored the highest percentage in the training and testing of the evaluation. The network simulation platform also achieved the highest percentage of 99.93% in overall accuracy. This work reviews conventional intrusion detection systems for securing the CoAP in the IoT environment. The DoS security issues associated with the CoAP are discussed.

Keywords: algorithm, CoAP, DoS, IoT, machine learning

Procedia PDF Downloads 76
2722 Communication Tools Used in Teaching and Their Effects: An Empirical Study on the T. C. Selcuk University Samples

Authors: Sedat Simsek, Tugay Arat

Abstract:

Today's communication concept, which has a great revolution with the printing press which has been found by Gutenberg, has no boundary thanks to advanced communication devices and the internet. It is possible to take advantage in many areas, such as from medicine to social sciences or from mathematics to education, from the computers that was first produced for the purpose of military services. The use of these developing technologies in the field of education has created a great vision changes in both training and having education. Materials, which can be considered as basic communication resources and used in traditional education has begun to lose its significance, and some technologies have begun to replace them such as internet, computers, smart boards, projection devices and mobile phone. On the other hand, the programs and applications used in these technologies have also been developed. University students use virtual books instead of the traditional printed book, use cell phones instead of note books, use the internet and virtual databases instead of the library to research. They even submit their homework with interactive methods rather than printed materials. The traditional education system, these technologies, which increase productivity, have brought a new dimension to education. The aim of this study is to determine the influence of technologies in the learning process of students and to find whether is there any similarities and differences that arise from the their faculty that they have been educated and and their learning process. In addition to this, it is aimed to determine the level of ICT usage of students studying at the university level. In this context, the advantages and conveniences of the technology used by students are also scrutinized. In this study, we used surveys to collect data. The data were analyzed by using SPSS 16 statistical program with the appropriate testing.

Keywords: education, communication technologies, role of technology, teaching

Procedia PDF Downloads 298
2721 Basic Characteristics and Prospects of Synchronized Stir Welding

Authors: Shoji Matsumoto

Abstract:

Friction Stir Welding (FSW) has been widely used in the automotive, aerospace, and high-tech industries due to its superior mechanical properties after welding. However, when it becomes a matter to perform a high-quality joint using FSW, it is necessary to secure an advanced tilt angle (usually 1 to 5 degrees) using a dedicated FSW machine and to use a joint structure and a restraining jig that can withstand the tool pressure applied during the jointing process using a highly rigid processing machine. One issue that has become a challenge in this process is ‘productivity and versatility’. To solve this problem, we have conducted research and development of multi-functioning machines and robotics with FSW tools, which combine cutting/milling and FSW functions as one in recent years. However, the narrow process window makes it prone to welding defects and lacks repeatability, which makes a limitation for FSW its use in the fields where precisions required. Another reason why FSW machines are not widely used in the world is because of the matter of very high cost of ownership.

Keywords: synchronized, stir, welding, friction, traveling speed, synchronized stir welding, friction stir welding

Procedia PDF Downloads 48
2720 Evaluation of the Role of Simulation and Virtual Reality as High-Yield Adjuncts to Paediatric Education

Authors: Alexandra Shipley

Abstract:

Background: Undergraduate paediatric teaching must overcome two major challenges: 1) balancing patient safety with active student engagement and 2) exposing students to a comprehensive range of pathologies within a relatively short clinical placement. Whilst lectures and shadowing on paediatric wards constitute the mainstay of learning, Simulation and Virtual Reality (VR) are emerging as effective teaching tools, which - immune to the unpredictability and seasonal variation of hospital presentations - could expose students to the entire syllabus more reliably, efficiently, and independently. We aim to evaluate the potential utility of Simulation and VR in addressing gaps within the traditional paediatric curriculum from the perspective of medical students. Summary of Work: Exposure to and perceived utility of various learning opportunities within the Paediatric and Emergency Medicine courses were assessed through a questionnaire completed by 5th year medical students (n=23). Summary of Results: Students reported limited exposure to several common acute paediatric presentations, such as bronchiolitis (41%), croup (32%) or pneumonia (14%), and to clinical emergencies, including cardiac/respiratory arrests or trauma calls (27%). Across all conditions, average self-reported confidence in assessment and management to the level expected of an FY1 is greater amongst those who observed at least one case (e.g. 7.6/10 compared with 3.6/10 for croup). Students rated exposure through Simulation or VR to be of similar utility to witnessing a clinical scenario on the ward. In free text responses, students unanimously favoured being ‘challenged’ through ‘hands-on’ patient interaction over passive shadowing, where it is ‘easy to zone out.’ In recognition of the fact that such independence is only appropriate in certain clinical situations, many students reported wanting more Simulation and VR teaching. Importantly, students raised the necessity of ‘proper debriefs’ after these sessions to maximise educational value. Discussion and Conclusion: Our questionnaire elicited several student-perceived challenges in paediatric education, including incomplete exposure to common pathologies and limited opportunities for active involvement in patient care. Indeed, these experiences seem to be important predictors of confidence. Quantitative and qualitative feedback suggests that VR and Simulation satisfy students’ self-reported appetite for independent engagement with authentic clinical scenarios. Take-aways: Our findings endorse further development of VR and Simulation as high-yield adjuncts to paediatric education.

Keywords: paediatric emergency education, simulation, virtual reality, medical education

Procedia PDF Downloads 69
2719 Does sustainability disclosure improve analysts’ forecast accuracy Evidence from European banks

Authors: Albert Acheampong, Tamer Elshandidy

Abstract:

We investigate the extent to which sustainability disclosure from the narrative section of European banks’ annual reports improves analyst forecast accuracy. We capture sustainability disclosure using a machine learning approach and use forecast error to proxy analyst forecast accuracy. Our results suggest that sustainability disclosure significantly improves analyst forecast accuracy by reducing the forecast error. In a further analysis, we also find that the induction of Directive 2014/95/European Union (EU) is associated with increased disclosure content, which then reduces forecast error. Collectively, our results suggest that sustainability disclosure improves forecast accuracy, and the induction of the new EU directive strengthens this improvement. These results hold after several further and robustness analyses. Our findings have implications for market participants and policymakers.

Keywords: sustainability disclosure, machine learning, analyst forecast accuracy, forecast error, European banks, EU directive

Procedia PDF Downloads 70
2718 Unveiling Comorbidities in Irritable Bowel Syndrome: A UK BioBank Study utilizing Supervised Machine Learning

Authors: Uswah Ahmad Khan, Muhammad Moazam Fraz, Humayoon Shafique Satti, Qasim Aziz

Abstract:

Approximately 10-14% of the global population experiences a functional disorder known as irritable bowel syndrome (IBS). The disorder is defined by persistent abdominal pain and an irregular bowel pattern. IBS significantly impairs work productivity and disrupts patients' daily lives and activities. Although IBS is widespread, there is still an incomplete understanding of its underlying pathophysiology. This study aims to help characterize the phenotype of IBS patients by differentiating the comorbidities found in IBS patients from those in non-IBS patients using machine learning algorithms. In this study, we extracted samples coding for IBS from the UK BioBank cohort and randomly selected patients without a code for IBS to create a total sample size of 18,000. We selected the codes for comorbidities of these cases from 2 years before and after their IBS diagnosis and compared them to the comorbidities in the non-IBS cohort. Machine learning models, including Decision Trees, Gradient Boosting, Support Vector Machine (SVM), AdaBoost, Logistic Regression, and XGBoost, were employed to assess their accuracy in predicting IBS. The most accurate model was then chosen to identify the features associated with IBS. In our case, we used XGBoost feature importance as a feature selection method. We applied different models to the top 10% of features, which numbered 50. Gradient Boosting, Logistic Regression and XGBoost algorithms yielded a diagnosis of IBS with an optimal accuracy of 71.08%, 71.427%, and 71.53%, respectively. Among the comorbidities most closely associated with IBS included gut diseases (Haemorrhoids, diverticular diseases), atopic conditions(asthma), and psychiatric comorbidities (depressive episodes or disorder, anxiety). This finding emphasizes the need for a comprehensive approach when evaluating the phenotype of IBS, suggesting the possibility of identifying new subsets of IBS rather than relying solely on the conventional classification based on stool type. Additionally, our study demonstrates the potential of machine learning algorithms in predicting the development of IBS based on comorbidities, which may enhance diagnosis and facilitate better management of modifiable risk factors for IBS. Further research is necessary to confirm our findings and establish cause and effect. Alternative feature selection methods and even larger and more diverse datasets may lead to more accurate classification models. Despite these limitations, our findings highlight the effectiveness of Logistic Regression and XGBoost in predicting IBS diagnosis.

Keywords: comorbidities, disease association, irritable bowel syndrome (IBS), predictive analytics

Procedia PDF Downloads 114
2717 AI Peer Review Challenge: Standard Model of Physics vs 4D GEM EOS

Authors: David A. Harness

Abstract:

Natural evolution of ATP cognitive systems is to meet AI peer review standards. ATP process of axiom selection from Mizar to prove a conjecture would be further refined, as in all human and machine learning, by solving the real world problem of the proposed AI peer review challenge: Determine which conjecture forms the higher confidence level constructive proof between Standard Model of Physics SU(n) lattice gauge group operation vs. present non-standard 4D GEM EOS SU(n) lattice gauge group spatially extended operation in which the photon and electron are the first two trace angular momentum invariants of a gravitoelectromagnetic (GEM) energy momentum density tensor wavetrain integration spin-stress pressure-volume equation of state (EOS), initiated via 32 lines of Mathematica code. Resulting gravitoelectromagnetic spectrum ranges from compressive through rarefactive of the central cosmological constant vacuum energy density in units of pascals. Said self-adjoint group operation exclusively operates on the stress energy momentum tensor of the Einstein field equations, introducing quantization directly on the 4D spacetime level, essentially reformulating the Yang-Mills virtual superpositioned particle compounded lattice gauge groups quantization of the vacuum—into a single hyper-complex multi-valued GEM U(1) × SU(1,3) lattice gauge group Planck spacetime mesh quantization of the vacuum. Thus the Mizar corpus already contains all of the axioms required for relevant DeepMath premise selection and unambiguous formal natural language parsing in context deep learning.

Keywords: automated theorem proving, constructive quantum field theory, information theory, neural networks

Procedia PDF Downloads 177
2716 Game On: Unlocking the Educational Potential of Games and Entertainment in Online Learning

Authors: Colleen Cleveland, W. Adam Baldowski

Abstract:

In the dynamic realm of online education, the integration of games and entertainment has emerged as a powerful strategy to captivate learners, drive active participation, and cultivate meaningful learning experiences. This abstract presents an overview of the upcoming conference, "Game On," dedicated to exploring the transformative impact of gamification, interactive simulations, and multimedia content in the digital learning landscape. Introduction: The conference aims to blur the traditional boundaries between education and entertainment, inspiring learners of diverse ages and backgrounds to actively engage in their online learning journeys. By leveraging the captivating elements of games and entertainment, educators can enhance motivation, retention, and deep understanding among virtual classroom participants. Conference Highlights: Commencing with an exploration of theoretical foundations drawing from educational psychology, instructional design, and the latest pedagogical research, participants will gain valuable insights into the ways gamified elements elevate the quality of online education. Attendees can expect interactive sessions, workshops, and case studies showcasing best practices and innovative strategies, including game-based assessments and virtual reality simulations. Inclusivity and Diversity: The conference places a strong emphasis on inclusivity, accessibility, and diversity in the integration of games and entertainment for educational purposes. Discussions will revolve around accommodating diverse learning styles, overcoming potential challenges, and ensuring equitable access to engaging educational content for all learners. Educational Transformation: Educators, instructional designers, and e-learning professionals attending "Game On" will acquire practical techniques to elevate the quality of their online courses. The conference promises a stimulating and informative exploration of blending education with entertainment, unlocking the untapped potential of games and entertainment in online education. Conclusion: "Game On" invites participants to embark on a journey that transforms online education by harnessing the power of entertainment. This event promises to be a cornerstone in the evolution of virtual learning, offering valuable insights for those seeking to create a more engaging and effective online educational experience. Join us as we explore new horizons, pushing the boundaries of online education through the fusion of games and entertainment.

Keywords: online education, games, entertainment, psychology, therapy, pop culture

Procedia PDF Downloads 46
2715 A Comparative Study for Various Techniques Using WEKA for Red Blood Cells Classification

Authors: Jameela Ali, Hamid A. Jalab, Loay E. George, Abdul Rahim Ahmad, Azizah Suliman, Karim Al-Jashamy

Abstract:

Red blood cells (RBC) are the most common types of blood cells and are the most intensively studied in cell biology. The lack of RBCs is a condition in which the amount of hemoglobin level is lower than normal and is referred to as “anemia”. Abnormalities in RBCs will affect the exchange of oxygen. This paper presents a comparative study for various techniques for classifyig the red blood cells as normal, or abnormal (anemic) using WEKA. WEKA is an open source consists of different machine learning algorithms for data mining applications. The algorithm tested are Radial Basis Function neural network, Support vector machine, and K-Nearest Neighbors algorithm. Two sets of combined features were utilized for classification of blood cells images. The first set, exclusively consist of geometrical features, was used to identify whether the tested blood cell has a spherical shape or non-spherical cells. While the second set, consist mainly of textural features was used to recognize the types of the spherical cells. We have provided an evaluation based on applying these classification methods to our RBCs image dataset which were obtained from Serdang Hospital-Malaysia, and measuring the accuracy of test results. The best achieved classification rates are 97%, 98%, and 79% for Support vector machines, Radial Basis Function neural network, and K-Nearest Neighbors algorithm respectively

Keywords: red blood cells, classification, radial basis function neural networks, suport vector machine, k-nearest neighbors algorithm

Procedia PDF Downloads 477
2714 Navigating Construction Project Outcomes: Synergy Through the Evolution of Digital Innovation and Strategic Management

Authors: Derrick Mirindi, Frederic Mirindi, Oluwakemi Oshineye

Abstract:

The ongoing high rate of construction project failures worldwide is often blamed on the difficulties of managing stakeholders. This highlights the crucial role of strategic management (SM) in achieving project success. This study investigates how integrating digital tools into the SM framework can effectively address stakeholder-related challenges. This work specifically focuses on the impact of evolving digital tools, such as Project Management Software (PMS) (e.g., Basecamp and Wrike), Building Information Modeling (BIM) (e.g., Tekla BIMsight and Autodesk Navisworks), Virtual and Augmented Reality (VR/AR) (e.g., Microsoft HoloLens), drones and remote monitoring, and social media and Web-Based platforms, in improving stakeholder engagement and project outcomes. Through existing literature with examples of failed projects, the study highlights how the evolution of digital tools will serve as facilitators within the strategic management process. These tools offer benefits such as real-time data access, enhanced visualization, and more efficient workflows to mitigate stakeholder challenges in construction projects. The findings indicate that integrating digital tools with SM principles effectively addresses stakeholder challenges, resulting in improved project outcomes and stakeholder satisfaction. The research advocates for a combined approach that embraces both strategic management and digital innovation to navigate the complex stakeholder landscape in construction projects.

Keywords: strategic management, digital tools, virtual and augmented reality, stakeholder management, building information modeling, project management software

Procedia PDF Downloads 78
2713 Disruptions to Medical Education during COVID-19: Perceptions and Recommendations from Students at the University of the West, Indies, Jamaica

Authors: Charléa M. Smith, Raiden L. Schodowski, Arletty Pinel

Abstract:

Due to the COVID-19 pandemic, the Faculty of Medical Sciences of The University of the West Indies (UWI) Mona in Kingston, Jamaica, had to rapidly migrate to digital and blended learning. Students in the preclinical stage of the program transitioned to full-time online learning, while students in the clinical stage experienced decreased daily patient contact and the implementation of a blend of online lectures and virtual clinical practice. Such sudden changes were coupled with the institutional pressure of the need to introduce a novel approach to education without much time for preparation, as well as additional strain endured by the faculty, who were overwhelmed by serving as frontline workers. During the period July 20 to August 23, 2021, this study surveyed preclinical and clinical students to capture their experiences with these changes and their recommendations for future use of digital modalities of learning to enhance medical education. It was conducted with a fellow student of the 2021 cohort of the MultiPod mentoring program. A questionnaire was developed and distributed digitally via WhatsApp to all medical students of the UWI Mona campus to assess students’ experiences and perceptions of the advantages, challenges, and impact on individual knowledge proficiencies brought about by the transition to predominantly digital learning environments. 108 students replied, 53.7% preclinical and 46.3% clinical. 67.6% of the total were female and 30.6 % were male; 1.8% did not identify themselves by gender. 67.2% of preclinical students preferred blended learning and 60.3% considered that the content presented did not prepare them for clinical work. Only 31% considered that the online classes were interactive and encouraged student participation. 84.5% missed socialization with classmates and friends and 79.3% missed a focused environment for learning. 80% of the clinical students felt that they had not learned all that they expected and only 34% had virtual interaction with patients, mostly by telephone and video calls. Observing direct consultations was considered the most useful, yet this was the least-used modality. 96% of the preclinical students and 100% of the clinical ones supplemented their learning with additional online tools. The main recommendations from the survey are the use of interactive teaching strategies, more discussion time with lecturers, and increased virtual interactions with patients. Universities are returning to face-to-face learning, yet it is unlikely that blended education will disappear. This study demonstrates that students’ perceptions of their experience during mobility restrictions must be taken into consideration in creating more effective, inclusive, and efficient blended learning opportunities.

Keywords: blended learning, digital learning, medical education, student perceptions

Procedia PDF Downloads 157
2712 Unlocking Green Hydrogen Potential: A Machine Learning-Based Assessment

Authors: Said Alshukri, Mazhar Hussain Malik

Abstract:

Green hydrogen is hydrogen produced using renewable energy sources. In the last few years, Oman aimed to reduce its dependency on fossil fuels. Recently, the hydrogen economy has become a global trend, and many countries have started to investigate the feasibility of implementing this sector. Oman created an alliance to establish the policy and rules for this sector. With motivation coming from both global and local interest in green hydrogen, this paper investigates the potential of producing hydrogen from wind and solar energies in three different locations in Oman, namely Duqm, Salalah, and Sohar. By using machine learning-based software “WEKA” and local metrological data, the project was designed to figure out which location has the highest wind and solar energy potential. First, various supervised models were tested to obtain their prediction accuracy, and it was found that the Random Forest (RF) model has the best prediction performance. The RF model was applied to 2021 metrological data for each location, and the results indicated that Duqm has the highest wind and solar energy potential. The system of one wind turbine in Duqm can produce 8335 MWh/year, which could be utilized in the water electrolysis process to produce 88847 kg of hydrogen mass, while a solar system consisting of 2820 solar cells is estimated to produce 1666.223 MWh/ year which is capable of producing 177591 kg of hydrogen mass.

Keywords: green hydrogen, machine learning, wind and solar energies, WEKA, supervised models, random forest

Procedia PDF Downloads 74
2711 Wireless Sensor Anomaly Detection Using Soft Computing

Authors: Mouhammd Alkasassbeh, Alaa Lasasmeh

Abstract:

We live in an era of rapid development as a result of significant scientific growth. Like other technologies, wireless sensor networks (WSNs) are playing one of the main roles. Based on WSNs, ZigBee adds many features to devices, such as minimum cost and power consumption, and increasing the range and connect ability of sensor nodes. ZigBee technology has come to be used in various fields, including science, engineering, and networks, and even in medicinal aspects of intelligence building. In this work, we generated two main datasets, the first being based on tree topology and the second on star topology. The datasets were evaluated by three machine learning (ML) algorithms: J48, meta.j48 and multilayer perceptron (MLP). Each topology was classified into normal and abnormal (attack) network traffic. The dataset used in our work contained simulated data from network simulation 2 (NS2). In each database, the Bayesian network meta.j48 classifier achieved the highest accuracy level among other classifiers, of 99.7% and 99.2% respectively.

Keywords: IDS, Machine learning, WSN, ZigBee technology

Procedia PDF Downloads 542