Search results for: structural VARs
3095 Investigating the Relationship Between Alexithymia and Mobile Phone Addiction Along with the Mediating Role of Anxiety, Stress and Depression: A Path Analysis Study and Structural Model Testing
Authors: Pouriya Darabiyan, Hadis Nazari, Kourosh Zarea, Saeed Ghanbari, Zeinab Raiesifar, Morteza Khafaie, Hanna Tuvesson
Abstract:
Introduction Since the beginning of mobile phone addiction, alexithymia, depression, anxiety and stress have been stated as risk factors for Internet addiction, so this study was conducted with the aim of investigating the relationship between Alexithymia and Mobile phone addiction along with the mediating role of anxiety, stress and depression. Materials and methods In this descriptive-analytical and cross-sectional study in 2022, 412 students School of Nursing & Midwifery of Ahvaz Jundishapur University of Medical Sciences were included in the study using available sampling method. Data collection tools were: Demographic Information Questionnaire, Toronto Alexithymia Scale (TAS-20), Depression, Anxiety, Stress Scale (DASS-21) and Mobile Phone Addiction Index (MPAI). Frequency, Pearson correlation coefficient test and linear regression were used to describe and analyze the data. Also, structural equation models and path analysis method were used to investigate the direct and indirect effects as well as the total effect of each dimension of Alexithymia on Mobile phone addiction with the mediating role of stress, depression and anxiety. Statistical analysis was done by SPSS version 22 and Amos version 16 software. Results Alexithymia was a predictive factor for mobile phone addiction. Also, Alexithymia had a positive and significant effect on depression, anxiety and stress. Depression, anxiety and stress had a positive and significant effect on mobile phone addiction. Depression, anxiety and stress variables played the role of a relative mediating variable between Alexithymia and mobile phone addiction. Alexithymia through depression, anxiety and stress also has an indirect effect on Internet addiction. Conclusion Alexithymia is a predictive factor for mobile phone addiction; And the variables of depression, anxiety and stress play the role of a relative mediating variable between Alexithymia and mobile phone addiction.Keywords: alexithymia, mobile phone, depression, anxiety, stress
Procedia PDF Downloads 973094 In Silico Modeling of Drugs Milk/Plasma Ratio in Human Breast Milk Using Structures Descriptors
Authors: Navid Kaboudi, Ali Shayanfar
Abstract:
Introduction: Feeding infants with safe milk from the beginning of their life is an important issue. Drugs which are used by mothers can affect the composition of milk in a way that is not only unsuitable, but also toxic for infants. Consuming permeable drugs during that sensitive period by mother could lead to serious side effects to the infant. Due to the ethical restrictions of drug testing on humans, especially women, during their lactation period, computational approaches based on structural parameters could be useful. The aim of this study is to develop mechanistic models to predict the M/P ratio of drugs during breastfeeding period based on their structural descriptors. Methods: Two hundred and nine different chemicals with their M/P ratio were used in this study. All drugs were categorized into two groups based on their M/P value as Malone classification: 1: Drugs with M/P>1, which are considered as high risk 2: Drugs with M/P>1, which are considered as low risk Thirty eight chemical descriptors were calculated by ACD/labs 6.00 and Data warrior software in order to assess the penetration during breastfeeding period. Later on, four specific models based on the number of hydrogen bond acceptors, polar surface area, total surface area, and number of acidic oxygen were established for the prediction. The mentioned descriptors can predict the penetration with an acceptable accuracy. For the remaining compounds (N= 147, 158, 160, and 174 for models 1 to 4, respectively) of each model binary regression with SPSS 21 was done in order to give us a model to predict the penetration ratio of compounds. Only structural descriptors with p-value<0.1 remained in the final model. Results and discussion: Four different models based on the number of hydrogen bond acceptors, polar surface area, and total surface area were obtained in order to predict the penetration of drugs into human milk during breastfeeding period About 3-4% of milk consists of lipids, and the amount of lipid after parturition increases. Lipid soluble drugs diffuse alongside with fats from plasma to mammary glands. lipophilicity plays a vital role in predicting the penetration class of drugs during lactation period. It was shown in the logistic regression models that compounds with number of hydrogen bond acceptors, PSA and TSA above 5, 90 and 25 respectively, are less permeable to milk because they are less soluble in the amount of fats in milk. The pH of milk is acidic and due to that, basic compounds tend to be concentrated in milk than plasma while acidic compounds may consist lower concentrations in milk than plasma. Conclusion: In this study, we developed four regression-based models to predict the penetration class of drugs during the lactation period. The obtained models can lead to a higher speed in drug development process, saving energy, and costs. Milk/plasma ratio assessment of drugs requires multiple steps of animal testing, which has its own ethical issues. QSAR modeling could help scientist to reduce the amount of animal testing, and our models are also eligible to do that.Keywords: logistic regression, breastfeeding, descriptors, penetration
Procedia PDF Downloads 693093 Examining the Development of Complexity, Accuracy and Fluency in L2 Learners' Writing after L2 Instruction
Authors: Khaled Barkaoui
Abstract:
Research on second-language (L2) learning tends to focus on comparing students with different levels of proficiency at one point in time. However, to understand L2 development, we need more longitudinal research. In this study, we adopt a longitudinal approach to examine changes in three indicators of L2 ability, complexity, accuracy, and fluency (CAF), as reflected in the writing of L2 learners when writing on different tasks before and after a period L2 instruction. Each of 85 Chinese learners of English at three levels of English language proficiency responded to two writing tasks (independent and integrated) before and after nine months of English-language study in China. Each essay (N= 276) was analyzed in terms of numerous CAF indices using both computer coding and human rating: number of words written, number of errors per 100 words, ratings of error severity, global syntactic complexity (MLS), complexity by coordination (T/S), complexity by subordination (C/T), clausal complexity (MLC), phrasal complexity (NP density), syntactic variety, lexical density, lexical variation, lexical sophistication, and lexical bundles. Results were then compared statistically across tasks, L2 proficiency levels, and time. Overall, task type had significant effects on fluency and some syntactic complexity indices (complexity by coordination, structural variety, clausal complexity, phrase complexity) and lexical density, sophistication, and bundles, but not accuracy. L2 proficiency had significant effects on fluency, accuracy, and lexical variation, but not syntactic complexity. Finally, fluency, frequency of errors, but not accuracy ratings, syntactic complexity indices (clausal complexity, global complexity, complexity by subordination, phrase complexity, structural variety) and lexical complexity (lexical density, variation, and sophistication) exhibited significant changes after instruction, particularly for the independent task. We discuss the findings and their implications for assessment, instruction, and research on CAF in the context of L2 writing.Keywords: second language writing, Fluency, accuracy, complexity, longitudinal
Procedia PDF Downloads 1523092 Controlling Differential Settlement of Large Reservoir through Soil Structure Interaction Approach
Authors: Madhav Khadilkar
Abstract:
Construction of a large standby reservoir was required to provide secure water supply. The new reservoir was required to be constructed at the same location of an abandoned old open pond due to space constraints. Some investigations were carried out earlier to improvise and re-commission the existing pond. But due to a lack of quantified risk of settlement from voids in the underlying limestone, the shallow foundations were not found feasible. Since the reservoir was resting on hard strata for about three-quarter of plan area and one quarter was resting on soil underlying with limestone and considerably low subgrade modulus. Further investigations were carried out to ascertain the locations and extent of voids within the limestone. It was concluded that the risk due to lime dissolution was acceptably low, and the site was found geotechnically feasible. The hazard posed by limestone dissolution was addressed through the integrated structural and geotechnical analysis and design approach. Finite Element Analysis was carried out to quantify the stresses and differential settlement due to various probable loads and soil-structure interaction. Walls behaving as cantilever under operational loads were found undergoing in-plane bending and tensile forces due to soil-structure interaction. Sensitivity analysis for varying soil subgrade modulus was carried out to check the variation in the response of the structure and magnitude of stresses developed. The base slab was additionally checked for the loss of soil contact due to lime pocket formations at random locations. The expansion and contraction joints were planned to receive minimal additional forces due to differential settlement. The reservoir was designed to sustain the actions corresponding to allowable deformation limits per code, and geotechnical measures were proposed to achieve the soil parameters set in structural analysis.Keywords: differential settlement, limestone dissolution, reservoir, soil structure interaction
Procedia PDF Downloads 1543091 Shape Management Method of Large Structure Based on Octree Space Partitioning
Authors: Gichun Cha, Changgil Lee, Seunghee Park
Abstract:
The objective of the study is to construct the shape management method contributing to the safety of the large structure. In Korea, the research of the shape management is lack because of the new attempted technology. Terrestrial Laser Scanning (TLS) is used for measurements of large structures. TLS provides an efficient way to actively acquire accurate the point clouds of object surfaces or environments. The point clouds provide a basis for rapid modeling in the industrial automation, architecture, construction or maintenance of the civil infrastructures. TLS produce a huge amount of point clouds. Registration, Extraction and Visualization of data require the processing of a massive amount of scan data. The octree can be applied to the shape management of the large structure because the scan data is reduced in the size but, the data attributes are maintained. The octree space partitioning generates the voxel of 3D space, and the voxel is recursively subdivided into eight sub-voxels. The point cloud of scan data was converted to voxel and sampled. The experimental site is located at Sungkyunkwan University. The scanned structure is the steel-frame bridge. The used TLS is Leica ScanStation C10/C5. The scan data was condensed 92%, and the octree model was constructed with 2 millimeter in resolution. This study presents octree space partitioning for handling the point clouds. The basis is created by shape management of the large structures such as double-deck tunnel, building and bridge. The research will be expected to improve the efficiency of structural health monitoring and maintenance. "This work is financially supported by 'U-City Master and Doctor Course Grant Program' and the National Research Foundation of Korea(NRF) grant funded by the Korea government (MSIP) (NRF- 2015R1D1A1A01059291)."Keywords: 3D scan data, octree space partitioning, shape management, structural health monitoring, terrestrial laser scanning
Procedia PDF Downloads 2963090 Monocoque Systems: The Reuniting of Divergent Agencies for Wood Construction
Authors: Bruce Wrightsman
Abstract:
Construction and design are inexorably linked. Traditional building methodologies, including those using wood, comprise a series of material layers differentiated and separated from each other. This results in the separation of two agencies of building envelope (skin) separate from the structure. However, from a material performance position reliant on additional materials, this is not an efficient strategy for the building. The merits of traditional platform framing are well known. However, its enormous effectiveness within wood-framed construction has seldom led to serious questioning and challenges in defining what it means to build. There are several downsides of using this method, which is less widely discussed. The first and perhaps biggest downside is waste. Second, its reliance on wood assemblies forming walls, floors and roofs conventionally nailed together through simple plate surfaces is structurally inefficient. It requires additional material through plates, blocking, nailers, etc., for stability that only adds to the material waste. In contrast, when we look back at the history of wood construction in airplane and boat manufacturing industries, we will see a significant transformation in the relationship of structure with skin. The history of boat construction transformed from indigenous wood practices of birch bark canoes to copper sheathing over wood to improve performance in the late 18th century and the evolution of merged assemblies that drives the industry today. In 1911, Swiss engineer Emile Ruchonnet designed the first wood monocoque structure for an airplane called the Cigare. The wing and tail assemblies consisted of thin, lightweight, and often fabric skin stretched tightly over a wood frame. This stressed skin has evolved into semi-monocoque construction, in which the skin merges with structural fins that take additional forces. It provides even greater strength with less material. The monocoque, which translates to ‘mono or single shell,’ is a structural system that supports loads and transfers them through an external enclosure system. They have largely existed outside the domain of architecture. However, this uniting of divergent systems has been demonstrated to be lighter, utilizing less material than traditional wood building practices. This paper will examine the role monocoque systems have played in the history of wood construction through lineage of boat and airplane building industries and its design potential for wood building systems in architecture through a case-study examination of a unique wood construction approach. The innovative approach uses a wood monocoque system comprised of interlocking small wood members to create thin shell assemblies for the walls, roof and floor, increasing structural efficiency and wasting less than 2% of the wood. The goal of the analysis is to expand the work of practice and the academy in order to foster deeper, more honest discourse regarding the limitations and impact of traditional wood framing.Keywords: wood building systems, material histories, monocoque systems, construction waste
Procedia PDF Downloads 773089 FEM for Stress Reduction by Optimal Auxiliary Holes in a Loaded Plate with Elliptical Hole
Authors: Basavaraj R. Endigeri, S. G. Sarganachari
Abstract:
Steel is widely used in machine parts, structural equipment and many other applications. In many steel structural elements, holes of different shapes and orientations are made with a view to satisfy the design requirements. The presence of holes in steel elements creates stress concentration, which eventually reduce the mechanical strength of the structure. Therefore, it is of great importance to investigate the state of stress around the holes for the safety and properties design of such elements. By literature survey, it is known that till date, there is no analytical solution to reduce the stress concentration by providing auxiliary holes at a definite location and radii in a steel plate. The numerical method can be used to determine the optimum location and radii of auxiliary holes. In the present work plate with an elliptical hole, for a steel material subjected to uniaxial load is analyzed and the effect of stress concentration is graphically represented .The introduction of auxiliary holes at a optimum location and radii with its effect on stress concentration is also represented graphically. The finite element analysis package ANSYS 11.0 is used to analyse the steel plate. The analysis is carried out using a plane 42 element. Further the ANSYS optimization model is used to determine the location and radii for optimum values of auxiliary hole to reduce stress concentration. All the results for different diameter to plate width ratio are presented graphically. The results of this study are in the form of the graphs for determining the locations and diameter of optimal auxiliary holes. The graph of stress concentration v/s central hole diameter to plate width ratio. The Finite Elements results of the study indicates that the stress concentration effect of central elliptical hole in an uniaxial loaded plate can be reduced by introducing auxiliary holes on either side of the central circular hole.Keywords: finite element method, optimization, stress concentration factor, auxiliary holes
Procedia PDF Downloads 4513088 Graphene Metamaterials Supported Tunable Terahertz Fano Resonance
Authors: Xiaoyong He
Abstract:
The manipulation of THz waves is still a challenging task due to lack of natural materials interacted with it strongly. Designed by tailoring the characters of unit cells (meta-molecules), the advance of metamaterials (MMs) may solve this problem. However, because of Ohmic and radiation losses, the performance of MMs devices is subjected to the dissipation and low quality factor (Q-factor). This dilemma may be circumvented by Fano resonance, which arises from the destructive interference between a bright continuum mode and dark discrete mode (or a narrow resonance). Different from symmetric Lorentz spectral curve, Fano resonance indicates a distinct asymmetric line-shape, ultrahigh quality factor, steep variations in spectrum curves. Fano resonance is usually realized through symmetry breaking. However, if concentric double rings (DR) are placed closely to each other, the near-field coupling between them gives rise to two hybridized modes (bright and narrowband dark modes) because of the local asymmetry, resulting into the characteristic Fano line shape. Furthermore, from the practical viewpoint, it is highly desirable requirement that to achieve the modulation of Fano spectral curves conveniently, which is an important and interesting research topics. For current Fano systems, the tunable spectral curves can be realized by adjusting the geometrical structural parameters or magnetic fields biased the ferrite-based structure. But due to limited dispersion properties of active materials, it is still a tough work to tailor Fano resonance conveniently with the fixed structural parameters. With the favorable properties of extreme confinement and high tunability, graphene is a strong candidate to achieve this goal. The DR-structure possesses the excitation of so-called “trapped modes,” with the merits of simple structure and high quality of resonances in thin structures. By depositing graphene circular DR on the SiO2/Si/ polymer substrate, the tunable Fano resonance has been theoretically investigated in the terahertz regime, including the effects of graphene Fermi level, structural parameters and operation frequency. The results manifest that the obvious Fano peak can be efficiently modulated because of the strong coupling between incident waves and graphene ribbons. As Fermi level increases, the peak amplitude of Fano curve increases, and the resonant peak position shifts to high frequency. The amplitude modulation depth of Fano curves is about 30% if Fermi level changes in the scope of 0.1-1.0 eV. The optimum gap distance between DR is about 8-12 μm, where the value of figure of merit shows a peak. As the graphene ribbon width increases, the Fano spectral curves become broad, and the resonant peak denotes blue shift. The results are very helpful to develop novel graphene plasmonic devices, e.g. sensors and modulators.Keywords: graphene, metamaterials, terahertz, tunable
Procedia PDF Downloads 3433087 Reduction Behavior of Medium Grade Manganese Ore from Karangnunggal during a Sintering Process in Methane Gas
Authors: H. Aripin, I. Made Joni, Edvin Priatna, Nundang Busaeri, Svilen Sabchevski
Abstract:
In this investigation, manganese has been produced from medium grade manganese ore from Karangnunggal mine (West Java, Indonesia). The ores were grinded using a jar mill to pass through a 150 mesh sieve. The effects of keeping it at a temperature of 1200 °C in methane gas on the structural properties have been studied. The material’s properties have been characterized on the basis of the experimental data obtained using X-ray fluorescence (XRF), X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), and Fourier transform infrared (FTIR) spectroscopy. It has been found that the ore contains MnO₂ as the main constituents at about 46.80 wt.%. It can be also observed that the ore particles are agglomerated forming dense grains with different texture and morphology. The irregular-shaped grains with dark contrast, the large brighter grains, and smaller grains with bright texture and smooth surfaces are associated with the presence of manganese, calcium, and quartz, respectively. From XRD patterns, MnO₂ is reduced to hausmannite (Mn₃O₄), manganosite (MnO) and manganese carbide (Mn₇C₃). At a temperature of 1200°C the keeping time does not have any effect on the formation of crystals and the crystalline phases remain almost unchanged in the time range from 15 to 90 minutes. An increase of the keeping time up to 45 minutes during the sintering process leads to an increase of the MnO concentration, while at 90 minutes, the concentration decreases. At longer keeping times the excess reaction of the methane gas and manganese oxide in the ore causes an increase of carbon deposition. As a result, it blocks the particle surface and then hinders the reduction process of manganese oxide. From FTIR spectrum allows one to explain that the appearance of C=O stretching mode arises from absorption of atmospheric methane and manganese oxide of the ore. The intensity of this band increases with increasing the keeping time, indicating an increase of carbon deposition on the surface of manganese oxide.Keywords: manganese, medium grade manganese ore, structural properties, keeping the temperature, carbon deposition
Procedia PDF Downloads 1543086 Comparison and Improvement of the Existing Cone Penetration Test Results: Shear Wave Velocity Correlations for Hungarian Soils
Authors: Ákos Wolf, Richard P. Ray
Abstract:
Due to the introduction of Eurocode 8, the structural design for seismic and dynamic effects has become more significant in Hungary. This has emphasized the need for more effort to describe the behavior of structures under these conditions. Soil conditions have a significant effect on the response of structures by modifying the stiffness and damping of the soil-structural system and by modifying the seismic action as it reaches the ground surface. Shear modulus (G) and shear wave velocity (vs), which are often measured in the field, are the fundamental dynamic soil properties for foundation vibration problems, liquefaction potential and earthquake site response analysis. There are several laboratory and in-situ measurement techniques to evaluate dynamic soil properties, but unfortunately, they are often too expensive for general design practice. However, a significant number of correlations have been proposed to determine shear wave velocity or shear modulus from Cone Penetration Tests (CPT), which are used more and more in geotechnical design practice in Hungary. This allows the designer to analyze and compare CPT and seismic test result in order to select the best correlation equations for Hungarian soils and to improve the recommendations for the Hungarian geologic conditions. Based on a literature review, as well as research experience in Hungary, the influence of various parameters on the accuracy of results will be shown. This study can serve as a basis for selecting and modifying correlation equations for Hungarian soils. Test data are taken from seven locations in Hungary with similar geologic conditions. The shear wave velocity values were measured by seismic CPT. Several factors are analyzed including soil type, behavior index, measurement depth, geologic age etc. for their effect on the accuracy of predictions. The final results show an improved prediction method for Hungarian soilsKeywords: CPT correlation, dynamic soil properties, seismic CPT, shear wave velocity
Procedia PDF Downloads 2453085 Seismic Assessment of Flat Slab and Conventional Slab System for Irregular Building Equipped with Shear Wall
Authors: Muhammad Aji Fajari, Ririt Aprilin Sumarsono
Abstract:
Particular instability of structural building under lateral load (e.g earthquake) will rise due to irregularity in vertical and horizontal direction as stated in SNI 03-1762-2012. The conventional slab has been considered for its less contribution in increasing the stability of the structure, except special slab system such as flat slab turned into account. In this paper, the analysis of flat slab system at Sequis Tower located in South Jakarta will be assessed its performance under earthquake. It consists of 6 floors of the basement where the flat slab system is applied. The flat slab system will be the main focus in this paper to be compared for its performance with conventional slab system under earthquake. Regarding the floor plan of Sequis Tower basement, re-entrant corner signed for this building is 43.21% which exceeded the allowable re-entrant corner is 15% as stated in ASCE 7-05 Based on that, the horizontal irregularity will be another concern for analysis, otherwise vertical irregularity does not exist for this building. Flat slab system is a system where the slabs use drop panel with shear head as their support instead of using beams. Major advantages of flat slab application are decreasing dead load of structure, removing beams so that the clear height can be maximized, and providing lateral resistance due to lateral load. Whilst, deflection at middle strip and punching shear are problems to be detail considered. Torsion usually appears when the structural member under flexure such as beam or column dimension is improper in ratio. Considering flat slab as alternative slab system will keep the collapse due to torsion down. Common seismic load resisting system applied in the building is a shear wall. Installation of shear wall will keep the structural system stronger and stiffer affecting in reduced displacement under earthquake. Eccentricity of shear wall location of this building resolved the instability due to horizontal irregularity so that the earthquake load can be absorbed. Performing linear dynamic analysis such as response spectrum and time history analysis due to earthquake load is suitable as the irregularity arise so that the performance of structure can be significantly observed. Utilization of response spectrum data for South Jakarta which PGA 0.389g is basic for the earthquake load idealization to be involved in several load combinations stated on SNI 03-1726-2012. The analysis will result in some basic seismic parameters such as period, displacement, and base shear of the system; besides the internal forces of the critical member will be presented. Predicted period of a structure under earthquake load is 0.45 second, but as different slab system applied in the analysis then the period will show a different value. Flat slab system will probably result in better performance for the displacement parameter compare to conventional slab system due to higher contribution of stiffness to the whole system of the building. In line with displacement, the deflection of the slab will result smaller for flat slab than a conventional slab. Henceforth, shear wall will be effective to strengthen the conventional slab system than flat slab system.Keywords: conventional slab, flat slab, horizontal irregularity, response spectrum, shear wall
Procedia PDF Downloads 1903084 Evaluation of Reinforced Concrete Beam-Column Knee Joints Performance: Numerical and Experimental Comparison
Authors: B. S. Abdelwahed, B. B. Belkassem
Abstract:
Beam-column joints are a critical part in reinforced concrete RC frames designed for inelastic response to several external loads. Investigating the behaviour of the exterior RC beam-column joints has attracted many researchers in the past decades due to its critical influence on the overall behaviour of RC moment-resisting frames subjected to lateral loads. One of the most critical zones in moment-resistant frames is the knee joints because of restraints associated with providing limited anchorage length to the beam and column longitudinal reinforcement in it and consequentially causes a lot of damage in such building frames. Previous numerical simulations focussed mainly on the exterior and interior joints, for knee joint further work is still needed to investigate its behaviour and discuss its affecting parameters. Structural response for an RC knee beam-column joint is performed in this study using LS-DYNA. Three-dimensional finite element (FE) models of an RC knee beam-column joint are described and verified with experimental results available in literature; this is followed by a parametric study to investigate the influence of the concrete compressive strength, the presence of lateral beams and increasing beam reinforcement ratio. It is shown that the concrete compressive strength has a significant effect on shear capacity, load-deflection characteristics and failure modes of an RC knee beam-column joints but to a certain limit, the presence of lateral beams increased the joint confinement and reduced the rate of concrete degradation in the joint after reaching ultimate joint capacity, added to that an increase in the maximum load resistance. Increasing beam reinforcement ratio is found to improve the flexural resistance of the anchored beam bars and increase the joint maximum load resistance.Keywords: beam reinforcement ratio, joint confinement, numerical simulation, reinforced concrete beam-column joints, structural performance
Procedia PDF Downloads 4623083 The Structural Alteration of DNA Native Structure of Staphylococcus aureus Bacteria by Designed Quinoxaline Small Molecules Result in Their Antibacterial Properties
Authors: Jeet Chakraborty, Sanjay Dutta
Abstract:
Antibiotic resistance by bacteria has proved to be a severe threat to mankind in recent times, and this fortifies an urgency to design and develop potent antibacterial small molecules/compounds with nonconventional mechanisms than the conventional ones. DNA carries the genetic signature of any organism, and bacteria maintain their genomic DNA inside the cell in a well-regulated compact form with the help of various nucleoid associated proteins like HU, HNS, etc. These proteins control various fundamental processes like gene expression, replication, etc., inside the cell. Alteration of the native DNA structure of bacteria can lead to severe consequences in cellular processes inside the bacterial cell that ultimately result in the death of the organism. The change in the global DNA structure by small molecules initiates a plethora of cellular responses that have not been very well investigated. Echinomycin and Triostin-A are biologically active Quinoxaline small molecules that typically consist of a quinoxaline chromophore attached with an octadepsipeptide ring. They bind to double-stranded DNA in a sequence-specific way and have high activity against a wide variety of bacteria, mainly against Gram-positive ones. To date, few synthetic quinoxaline scaffolds were synthesized, displaying antibacterial potential against a broad scale of pathogenic bacteria. QNOs (Quinoxaline N-oxides) are known to target DNA and instigate reactive oxygen species (ROS) production in bacteria, thereby exhibiting antibacterial properties. The divergent role of Quinoxaline small molecules in medicinal research qualifies them for the evaluation of their antimicrobial properties as a potential candidate. The previous study from our lab has given new insights on a 6-nitroquinoxaline derivative 1d as an intercalator of DNA, which induces conformational changes in DNA upon binding.7 The binding event observed was dependent on the presence of a crucial benzyl substituent on the quinoxaline moiety. This was associated with a large induced CD (ICD) appearing in a sigmoidal pattern upon the interaction of 1d with dsDNA. The induction of DNA superstructures by 1d at high Drug:DNA ratios was observed that ultimately led to DNA condensation. Eviction of invitro-assembled nucleosome upon treatment with a high dose of 1d was also observed. In this work, monoquinoxaline derivatives of 1d were synthesized by various modifications of the 1d scaffold. The set of synthesized 6-nitroquinoxaline derivatives along with 1d were all subjected to antibacterial evaluation across five different bacteria species. Among the compound set, 3a displayed potent antibacterial activity against Staphylococcus aureus bacteria. 3a was further subjected to various biophysical studies to check whether the DNA structural alteration potential was still intact. The biological response of S. aureus cells upon treatment with 3a was studied using various cell biology processes, which led to the conclusion that 3d can initiate DNA damage in the S. aureus cells. Finally, the potential of 3a in disrupting preformed S.aureus and S.epidermidis biofilms was also studied.Keywords: DNA structural change, antibacterial, intercalator, DNA superstructures, biofilms
Procedia PDF Downloads 1683082 Quest for an Efficient Green Multifunctional Agent for the Synthesis of Metal Nanoparticles with Highly Specified Structural Properties
Authors: Niharul Alam
Abstract:
The development of energy efficient, economic and eco-friendly synthetic protocols for metal nanoparticles (NPs) with tailor-made structural properties and biocompatibility is a highly cherished goal for researchers working in the field of nanoscience and nanotechnology. In this context, green chemistry is highly relevant and the 12 principles of Green Chemistry can be explored to develop such synthetic protocols which are practically implementable. One of the most promising green chemical synthetic methods which can serve the purpose is biogenic synthetic protocol, which utilizes non-toxic multifunctional reactants derived from natural, biological sources ranging from unicellular organisms to higher plants that are often characterized as “medicinal plants”. Over the past few years, a plethora of medicinal plants have been explored as the source of this kind of multifunctional green chemical agents. In this presentation, we focus on the syntheses of stable monometallic Au and Ag NPs and also bimetallic Au/Ag alloy NPs with highly efficient catalytic property using aqueous extract of leaves of Indian Curry leaf plat (Murraya koenigii Spreng.; Fam. Rutaceae) as green multifunctional agents which is extensively used in Indian traditional medicine and cuisine. We have also studied the interaction between the synthesized metal NPs and surface-adsorbed fluorescent moieties, quercetin and quercetin glycoside which are its chemical constituents. This helped us to understand the surface property of the metal NPs synthesized by this plant based biogenic route and to predict a plausible mechanistic pathway which may help in fine-tuning green chemical methods for the controlled synthesis of various metal NPs in future. We observed that simple experimental parameters e.g. pH and temperature of the reaction medium, concentration of multifunctional agent and precursor metal ions play important role in the biogenic synthesis of Au NPs with finely tuned structures.Keywords: green multifunctional agent, metal nanoparticles, biogenic synthesis
Procedia PDF Downloads 4303081 Understanding the Lithiation/Delithiation Mechanism of Si₁₋ₓGeₓ Alloys
Authors: Laura C. Loaiza, Elodie Salager, Nicolas Louvain, Athmane Boulaoued, Antonella Iadecola, Patrik Johansson, Lorenzo Stievano, Vincent Seznec, Laure Monconduit
Abstract:
Lithium-ion batteries (LIBs) have an important place among energy storage devices due to their high capacity and good cyclability. However, the advancements in portable and transportation applications have extended the research towards new horizons, and today the development is hampered, e.g., by the capacity of the electrodes employed. Silicon and germanium are among the considered modern anode materials as they can undergo alloying reactions with lithium while delivering high capacities. It has been demonstrated that silicon in its highest lithiated state can deliver up to ten times more capacity than graphite (372 mAh/g): 4200 mAh/g for Li₂₂Si₅ and 3579 mAh/g for Li₁₅Si₄, respectively. On the other hand, germanium presents a capacity of 1384 mAh/g for Li₁₅Ge₄, and a better electronic conductivity and Li ion diffusivity as compared to Si. Nonetheless, the commercialization potential of Ge is limited by its cost. The synergetic effect of Si₁₋ₓGeₓ alloys has been proven, the capacity is increased compared to Ge-rich electrodes and the capacity retention is increased compared to Si-rich electrodes, but the exact performance of this type of electrodes will depend on factors like specific capacity, C-rates, cost, etc. There are several reports on various formulations of Si₁₋ₓGeₓ alloys with promising LIB anode performance with most work performed on complex nanostructures resulting from synthesis efforts implying high cost. In the present work, we studied the electrochemical mechanism of the Si₀.₅Ge₀.₅ alloy as a realistic micron-sized electrode formulation using carboxymethyl cellulose (CMC) as the binder. A combination of a large set of in situ and operando techniques were employed to investigate the structural evolution of Si₀.₅Ge₀.₅ during lithiation and delithiation processes: powder X-ray diffraction (XRD), X-ray absorption spectroscopy (XAS), Raman spectroscopy, and 7Li solid state nuclear magnetic resonance spectroscopy (NMR). The results have presented a whole view of the structural modifications induced by the lithiation/delithiation processes. The Si₀.₅Ge₀.₅ amorphization was observed at the beginning of discharge. Further lithiation induces the formation of a-Liₓ(Si/Ge) intermediates and the crystallization of Li₁₅(Si₀.₅Ge₀.₅)₄ at the end of the discharge. At really low voltages a reversible process of overlithiation and formation of Li₁₅₊δ(Si₀.₅Ge₀.₅)₄ was identified and related with a structural evolution of Li₁₅(Si₀.₅Ge₀.₅)₄. Upon charge, the c-Li₁₅(Si₀.₅Ge₀.₅)₄ was transformed into a-Liₓ(Si/Ge) intermediates. At the end of the process an amorphous phase assigned to a-SiₓGey was recovered. Thereby, it was demonstrated that Si and Ge are collectively active along the cycling process, upon discharge with the formation of a ternary Li₁₅(Si₀.₅Ge₀.₅)₄ phase (with a step of overlithiation) and upon charge with the rebuilding of the a-Si-Ge phase. This process is undoubtedly behind the enhanced performance of Si₀.₅Ge₀.₅ compared to a physical mixture of Si and Ge.Keywords: lithium ion battery, silicon germanium anode, in situ characterization, X-Ray diffraction
Procedia PDF Downloads 2833080 Real-Time Hybrid Simulation for a Tuned Liquid Column Damper Implementation
Authors: Carlos Riascos, Peter Thomson
Abstract:
Real-time hybrid simulation (RTHS) is a modern cyber-physical technique used for the experimental evaluation of complex systems, that treats the system components with predictable behavior as a numerical substructure and the components that are difficult to model as an experimental substructure. Therefore it is an attractive method for evaluation of the response of civil structures under earthquake, wind and anthropic loads. Another practical application of RTHS is the evaluation of control systems, as these devices are often nonlinear and their characterization is an important step in the design of controllers with the desired performance. In this paper, the response of three-story shear frame controlled by a tuned liquid column damper (TLCD) and subject to base excitation is considered. Both passive and semi-active control strategies were implemented and are compared. While the passive TLCD achieved a reduction of 50% in the acceleration response of the main structure in comparison with the structure without control, the semi-active TLCD achieved a reduction of 70%, and was robust to variations in the dynamic properties of the main structure. In addition, a RTHS was implemented with the main structure modeled as a linear, time-invariant (LTI) system through a state space representation and the TLCD, with both control strategies, was evaluated on a shake table that reproduced the displacement of the virtual structure. Current assessment measures for RTHS were used to quantify the performance with parameters such as generalized amplitude, equivalent time delay between the target and measured displacement of the shake table, and energy error using the measured force, and prove that the RTHS described in this paper is an accurate method for the experimental evaluation of structural control systems.Keywords: structural control, hybrid simulation, tuned liquid column damper, semi-active sontrol strategy
Procedia PDF Downloads 2963079 Bioinformatics Approach to Identify Physicochemical and Structural Properties Associated with Successful Cell-free Protein Synthesis
Authors: Alexander A. Tokmakov
Abstract:
Cell-free protein synthesis is widely used to synthesize recombinant proteins. It allows genome-scale expression of various polypeptides under strictly controlled uniform conditions. However, only a minor fraction of all proteins can be successfully expressed in the systems of protein synthesis that are currently used. The factors determining expression success are poorly understood. At present, the vast volume of data is accumulated in cell-free expression databases. It makes possible comprehensive bioinformatics analysis and identification of multiple features associated with successful cell-free expression. Here, we describe an approach aimed at identification of multiple physicochemical and structural properties of amino acid sequences associated with protein solubility and aggregation and highlight major correlations obtained using this approach. The developed method includes: categorical assessment of the protein expression data, calculation and prediction of multiple properties of expressed amino acid sequences, correlation of the individual properties with the expression scores, and evaluation of statistical significance of the observed correlations. Using this approach, we revealed a number of statistically significant correlations between calculated and predicted features of protein sequences and their amenability to cell-free expression. It was found that some of the features, such as protein pI, hydrophobicity, presence of signal sequences, etc., are mostly related to protein solubility, whereas the others, such as protein length, number of disulfide bonds, content of secondary structure, etc., affect mainly the expression propensity. We also demonstrated that amenability of polypeptide sequences to cell-free expression correlates with the presence of multiple sites of post-translational modifications. The correlations revealed in this study provide a plethora of important insights into protein folding and rationalization of protein production. The developed bioinformatics approach can be of practical use for predicting expression success and optimizing cell-free protein synthesis.Keywords: bioinformatics analysis, cell-free protein synthesis, expression success, optimization, recombinant proteins
Procedia PDF Downloads 4163078 Shear Behavior of Reinforced Concrete Beams Casted with Recycled Coarse Aggregate
Authors: Salah A. Aly, Mohammed A. Ibrahim, Mostafa M. khttab
Abstract:
The amount of construction and demolition (C&D) waste has increased considerably over the last few decades. From the viewpoint of environmental preservation and effective utilization of resources, crushing C&D concrete waste to produce coarse aggregate (CA) with different replacement percentage for the production of new concrete is one common means for achieving a more environment-friendly concrete. In the study presented herein, the investigation was conducted in two phases. In the first phase, the selection of the materials was carried out and the physical, mechanical and chemical characteristics of these materials were evaluated. Different concrete mixes were designed. The investigation parameter was Recycled Concrete Aggregate (RCA) ratios. The mechanical properties of all mixes were evaluated based on compressive strength and workability results. Accordingly, two mixes have been chosen to be used in the next phase. In the second phase, the study of the structural behavior of the concrete beams was developed. Sixteen beams were casted to investigate the effect of RCA ratios, the shear span to depth ratios and the effect of different locations and reinforcement of openings on the shear behavior of the tested specimens. All these beams were designed to fail in shear. Test results of the compressive strength of concrete indicated that, replacement of natural aggregate by up to 50% recycled concrete aggregates in mixtures with 350 Kg/m3 cement content led to increase of concrete compressive strength. Moreover, the tensile strength and the modulus of elasticity of the specimens with RCA have very close values to those with natural aggregates. The ultimate shear strength of beams with RCA is very close to those with natural aggregates indicating the possibility of using RCA as partial replacement to produce structural concrete elements. The validity of both the Egyptian Code for the design and implementation of Concrete Structures (ECCS) 203-2007 and American Concrete Institute (ACI) 318-2011Codes for estimating the shear strength of the tested RCA beams was investigated. It was found that the codes procedures gives conservative estimates for shear strength.Keywords: construction and demolition (C&D) waste, coarse aggregate (CA), recycled coarse aggregates (RCA), opening
Procedia PDF Downloads 3913077 Sociolinguistic Aspects and Language Contact, Lexical Consequences in Francoprovençal Settings
Authors: Carmela Perta
Abstract:
In Italy the coexistence of standard language, its varieties and different minority languages - historical and migration languages - has been a way to study language contact in different directions; the focus of most of the studies is either the relations among the languages of the social repertoire, or the study of contact phenomena occurring in a particular structural level. However, studies on contact facts in relation to a given sociolinguistic situation of the speech community are still not present in literature. As regard the language level to investigate from the perspective of contact, it is commonly claimed that the lexicon is the most volatile part of language and most likely to undergo change due to superstrate influence, indeed first lexical features are borrowed, then, under long term cultural pressure, structural features may also be borrowed. The aim of this paper is to analyse language contact in two historical minority communities where Francoprovençal is spoken, in relation to their sociolinguistic situation. In this perspective, firstly lexical borrowings present in speakers’ speech production will be examined, trying to find a possible correlation between this part of the lexicon and informants’ sociolinguistic variables; secondly a possible correlation between a particular community sociolinguistic situation and lexical borrowing will be found. Methods used to collect data are based on the results obtained from 24 speakers in both the villages; the speaker group in the two communities consisted of 3 males and 3 females in each of four age groups, ranging in age from 9 to 85, and then divided into five groups according to their occupations. Speakers were asked to describe a sequence of pictures naming common objects and then describing scenes when they used these objects: they are common objects, frequently pronounced and belonging to semantic areas which are usually resistant and which are thought to survive. A subset of this task, involving 19 items with Italian source is examined here: in order to determine the significance of the independent variables (social factors) on the dependent variable (lexical variation) the statistical package SPSS, particularly the linear regression, was used.Keywords: borrowing, Francoprovençal, language change, lexicon
Procedia PDF Downloads 3703076 Leveraging Multimodal Neuroimaging Techniques to in vivo Address Compensatory and Disintegration Patterns in Neurodegenerative Disorders: Evidence from Cortico-Cerebellar Connections in Multiple Sclerosis
Authors: Efstratios Karavasilis, Foteini Christidi, Georgios Velonakis, Agapi Plousi, Kalliopi Platoni, Nikolaos Kelekis, Ioannis Evdokimidis, Efstathios Efstathopoulos
Abstract:
Introduction: Advanced structural and functional neuroimaging techniques contribute to the study of anatomical and functional brain connectivity and its role in the pathophysiology and symptoms’ heterogeneity in several neurodegenerative disorders, including multiple sclerosis (MS). Aim: In the present study, we applied multiparametric neuroimaging techniques to investigate the structural and functional cortico-cerebellar changes in MS patients. Material: We included 51 MS patients (28 with clinically isolated syndrome [CIS], 31 with relapsing-remitting MS [RRMS]) and 51 age- and gender-matched healthy controls (HC) who underwent MRI in a 3.0T MRI scanner. Methodology: The acquisition protocol included high-resolution 3D T1 weighted, diffusion-weighted imaging and echo planar imaging sequences for the analysis of volumetric, tractography and functional resting state data, respectively. We performed between-group comparisons (CIS, RRMS, HC) using CAT12 and CONN16 MATLAB toolboxes for the analysis of volumetric (cerebellar gray matter density) and functional (cortico-cerebellar resting-state functional connectivity) data, respectively. Brainance suite was used for the analysis of tractography data (cortico-cerebellar white matter integrity; fractional anisotropy [FA]; axial and radial diffusivity [AD; RD]) to reconstruct the cerebellum tracts. Results: Patients with CIS did not show significant gray matter (GM) density differences compared with HC. However, they showed decreased FA and increased diffusivity measures in cortico-cerebellar tracts, and increased cortico-cerebellar functional connectivity. Patients with RRMS showed decreased GM density in cerebellar regions, decreased FA and increased diffusivity measures in cortico-cerebellar WM tracts, as well as a pattern of increased and mostly decreased functional cortico-cerebellar connectivity compared to HC. The comparison between CIS and RRMS patients revealed significant GM density difference, reduced FA and increased diffusivity measures in WM cortico-cerebellar tracts and increased/decreased functional connectivity. The identification of decreased WM integrity and increased functional cortico-cerebellar connectivity without GM changes in CIS and the pattern of decreased GM density decreased WM integrity and mostly decreased functional connectivity in RRMS patients emphasizes the role of compensatory mechanisms in early disease stages and the disintegration of structural and functional networks with disease progression. Conclusions: In conclusion, our study highlights the added value of multimodal neuroimaging techniques for the in vivo investigation of cortico-cerebellar brain changes in neurodegenerative disorders. An extension and future opportunity to leverage multimodal neuroimaging data inevitably remain the integration of such data in the recently-applied mathematical approaches of machine learning algorithms to more accurately classify and predict patients’ disease course.Keywords: advanced neuroimaging techniques, cerebellum, MRI, multiple sclerosis
Procedia PDF Downloads 1393075 Consumer’s Behavioral Responses to Corporate Social Responsibility Marketing: Mediating Impact of Customer Trust, Emotions, Brand Image, and Brand Attitude
Authors: Yasir Ali Soomro
Abstract:
Companies that demonstrate corporate social responsibilities (CSR) are more likely to withstand any downturn or crises because of the trust built with stakeholders. Many firms are utilizing CSR marketing to improve the interactions with their various stakeholders, mainly the consumers. Most previous research on CSR has focused on the impact of CSR on customer responses and behaviors toward a company. As online food ordering and grocery shopping remains inevitable. This study will investigate structural relationships among consumer positive emotions (CPE) and negative emotions (CNE), Corporate Reputation (CR), Customer Trust (CT), Brand Image (BI), and Brand attitude (BA) on behavioral outcomes such as Online purchase intention (OPI) and Word of mouth (WOM) in retail grocery and food restaurants setting. Hierarchy of Effects Model will be used as theoretical, conceptual framework. The model describes three stages of consumer behavior: (i) cognitive, (ii) affective, and (iii) conative. The study will apply a quantitative method to test the hypotheses; a self-developed questionnaire with non-probability sampling will be utilized to collect data from 500 consumers belonging to generation X, Y, and Z residing in KSA. The study will contribute by providing empirical evidence to support the link between CSR and customer affective and conative experiences in Saudi Arabia. The theoretical contribution of this study will be empirically tested comprehensive model where CPE, CNE, CR, CT, BI, and BA act as mediating variables between the perceived CSR & Online purchase intention (OPI) and Word of mouth (WOM). Further, the study will add more to how the emotional/ psychological process mediates in the CSR literature, especially in the Middle Eastern context. The proposed study will also explain the effect of perceived CSR marketing initiatives directly and indirectly on customer behavioral responses.Keywords: corporate social responsibility, corporate reputation, consumer emotions, loyalty, online purchase intention, word-of-mouth, structural equation modeling
Procedia PDF Downloads 903074 Numerical Modelling of Shear Zone and Its Implications on Slope Instability at Letšeng Diamond Open Pit Mine, Lesotho
Authors: M. Ntšolo, D. Kalumba, N. Lefu, G. Letlatsa
Abstract:
Rock mass damage due to shear tectonic activity has been investigated largely in geoscience where fluid transport is of major interest. However, little has been studied on the effect of shear zones on rock mass behavior and its impact on stability of rock slopes. At Letšeng Diamonds open pit mine in Lesotho, the shear zone composed of sheared kimberlite material, calcite and altered basalt is forming part of the haul ramp into the main pit cut 3. The alarming rate at which the shear zone is deteriorating has triggered concerns about both local and global stability of pit the walls. This study presents the numerical modelling of the open pit slope affected by shear zone at Letšeng Diamond Mine (LDM). Analysis of the slope involved development of the slope model by using a two-dimensional finite element code RS2. Interfaces between shear zone and host rock were represented by special joint elements incorporated in the finite element code. The analysis of structural geological mapping data provided a good platform to understand the joint network. Major joints including shear zone were incorporated into the model for simulation. This approach proved successful by demonstrating that continuum modelling can be used to evaluate evolution of stresses, strain, plastic yielding and failure mechanisms that are consistent with field observations. Structural control due to geological shear zone structure proved to be important in its location, size and orientation. Furthermore, the model analyzed slope deformation and sliding possibility along shear zone interfaces. This type of approach can predict shear zone deformation and failure mechanism, hence mitigation strategies can be deployed for safety of human lives and property within mine pits.Keywords: numerical modeling, open pit mine, shear zone, slope stability
Procedia PDF Downloads 2973073 Displacement Based Design of a Dual Structural System
Authors: Romel Cordova Shedan
Abstract:
The traditional seismic design is the methodology of Forced Based Design (FBD). The Displacement Based Design (DBD) is a seismic design that considers structural damage to achieve a failure mechanism of the structure before the collapse. It is easier to quantify damage of a structure with displacements rather than forces. Therefore, a structure to achieve an inelastic displacement design with good ductility, it is necessary to be damaged. The first part of this investigation is about differences between the methodologies of DBD and FBD with some DBD advantages. In the second part, there is a study case about a dual building 5-story, which is regular in plan and elevation. The building is located in a seismic zone, which acceleration in firm soil is 45% of the acceleration of gravity. Then it is applied both methodologies into the study case to compare its displacements, shear forces and overturning moments. In the third part, the Dynamic Time History Analysis (DTHA) is done, to compare displacements with DBD and FBD methodologies. Three accelerograms were used and the magnitude of the acceleration scaled to be spectrum compatible with design spectrum. Then, using ASCE 41-13 guidelines, the hinge plastics were assigned to structure. Finally, both methodologies results about study case are compared. It is important to take into account that the seismic performance level of the building for DBD is greater than FBD method. This is due to drifts of DBD are in the order of 2.0% and 2.5% comparing with FBD drifts of 0.7%. Therefore, displacements of DBD is greater than the FBD method. Shear forces of DBD result greater than FBD methodology. These strengths of DBD method ensures that structure achieves design inelastic displacements, because those strengths were obtained due to a displacement spectrum reduction factor which depends on damping and ductility of the dual system. Also, the displacements for the study case for DBD results to be greater than FBD and DTHA. In that way, it proves that the seismic performance level of the building for DBD is greater than FBD method. Due to drifts of DBD which are in the order of 2.0% and 2.5% compared with little FBD drifts of 0.7%.Keywords: displacement-based design, displacement spectrum reduction factor, dynamic time history analysis, forced based design
Procedia PDF Downloads 2283072 Structural Vulnerability of Banking Network – Systemic Risk Approach
Authors: Farhad Reyazat, Richard Werner
Abstract:
This paper contributes to the existent literature by developing a framework that explains how to monitor potential threats to banking sector stability. The study explores structural vulnerabilities at the country level, but also look at bilateral exposures within a network context. The study contributes in analysing of the European banking systemic risk at aggregated level, which integrates the characteristics of bank size, and interconnectedness relative to the size of the economy which ultimate risk belong to, taking to account the concentration ratio of the banking industry within the whole economy. The nature of the systemic risk depends on the interplay of the network topology with the nature of financial transactions over the network, assets and buffer stemming from bank size, correlations, and the nature of the shocks to the financial system. The study’s results illustrate the contribution of banks’ size, size of economy and concentration of counterparty exposures to a given country’s banks in explaining its systemic importance, how much the banking network depends on a few traditional hubs activities and the changes of this dependencies over the last 9 years. The role of few of traditional hubs such as Swiss banks and British Banks and also Irish banks- where the financial sector is fairly new and grew strongly between 1990s till 2008- take the fourth position on 2014 reducing the relative size since 2006 where they had the first position. In-degree concentration index analysis in the study shows concentration index of banking network was not changed since financial crisis 2007-8. In-degree concentration index on first quarter of 2014 indicates that US, UK and Germany together, getting over 70% of the network exposures. The result of comparing the in-degree concentration index with 2007-4Q, shows the same group having over 70% of the network exposure, however the UK getting more important role in the hub and the market share of US and Germany are slightly diminished.Keywords: systemic risk, counterparty risk, financial stability, interconnectedness, banking concentration, european banks risk, network effect on systemic risk, concentration risk
Procedia PDF Downloads 4893071 Characterisation of Chitooligomers Prepared with the Aid of Cellulase, Xylanase and Chitosanase
Authors: Anna Zimoch-Korzycka, Dominika Kulig, Andrzej Jarmoluk
Abstract:
The aim of this study was to obtain chitooligosaccharides from chitosan with better functional properties using three different enzyme preparations and compare the products of enzymatic hydrolysis. Commercially available cellulase (CL), xylanase (X) and chitosanase (CS) preparations were used to investigate hydrolytic activity on chitosan (CH) with low molecular weight and DD of 75-85%. It has been reported that CL and X have side activities of other enzymes, such as β-glucanase or β-glucosidase. CS enzyme has a foreign activity of chitinase. Each preparation was used in 1000 U of activity and in the same reaction conditions. The degree of deacetylation and molecular weight of chitosan were specified using titration and viscometric methods, respectively. The hydrolytic activity of enzymes preparations on chitosan was monitored by dynamic viscosity measurement. After 4 h reaction with stirring, solutions were filtered and chitosan oligomers were isolated by methanol solution into two fractions: precipitate (A) and supernatant (B). A Fourier-transform infrared spectroscopy was used to characterize the structural changes of chitosan oligomers fractions and initial chitosan. Furthermore, the solubility of lyophilized hydrolytic mixture (C) and two chitooligomers fractions (A, B) of each enzyme hydrolysis was assayed. The antioxidant activity of chitosan oligomers was evaluated as DPPH free radical scavenging activity. The dynamic viscosity measured after addition of enzymes preparation to the chitosan solution decreased dramatically over time in the sample with X in comparison to solution without the enzyme. For mixtures with CL and CS, lower viscosities were also recorded but not as low as the ones with X. A and B fractions were characterized by the most similar viscosity obtained by the xylanase hydrolysis and were 15 mPas and 9 mPas, respectively. Structural changes of chitosan oligomers A, B, C and their differences related with various enzyme preparations used were confirmed. Water solubility of A fractions was not possible to filter and the result was not recorded. Solubility of supernatants was approximately 95% and was higher than hydrolytic mixture. It was observed that the DPPH radical scavenging effect of A, B, C samples is the highest for X products and was approximately 13, 17, 19% respectively. In summary, a mixture of chitooligomers may be useful for the design of edible protective coatings due to the improved biophysical properties.Keywords: cellulase, xylanase, chitosanase, chitosan, chitooligosaccharides
Procedia PDF Downloads 3253070 DNA-Polycation Condensation by Coarse-Grained Molecular Dynamics
Authors: Titus A. Beu
Abstract:
Many modern gene-delivery protocols rely on condensed complexes of DNA with polycations to introduce the genetic payload into cells by endocytosis. In particular, polyethyleneimine (PEI) stands out by a high buffering capacity (enabling the efficient condensation of DNA) and relatively simple fabrication. Realistic computational studies can offer essential insights into the formation process of DNA-PEI polyplexes, providing hints on efficient designs and engineering routes. We present comprehensive computational investigations of solvated PEI and DNA-PEI polyplexes involving calculations at three levels: ab initio, all-atom (AA), and coarse-grained (CG) molecular mechanics. In the first stage, we developed a rigorous AA CHARMM (Chemistry at Harvard Macromolecular Mechanics) force field (FF) for PEI on the basis of accurate ab initio calculations on protonated model pentamers. We validated this atomistic FF by matching the results of extensive molecular dynamics (MD) simulations of structural and dynamical properties of PEI with experimental data. In a second stage, we developed a CG MARTINI FF for PEI by Boltzmann inversion techniques from bead-based probability distributions obtained from AA simulations and ensuring an optimal match between the AA and CG structural and dynamical properties. In a third stage, we combined the developed CG FF for PEI with the standard MARTINI FF for DNA and performed comprehensive CG simulations of DNA-PEI complex formation and condensation. Various technical aspects which are crucial for the realistic modeling of DNA-PEI polyplexes, such as options of treating electrostatics and the relevance of polarizable water models, are discussed in detail. Massive CG simulations (with up to 500 000 beads) shed light on the mechanism and provide time scales for DNA polyplex formation independence of PEI chain size and protonation pattern. The DNA-PEI condensation mechanism is shown to primarily rely on the formation of DNA bundles, rather than by changes of the DNA-strand curvature. The gained insights are expected to be of significant help for designing effective gene-delivery applications.Keywords: DNA condensation, gene-delivery, polyethylene-imine, molecular dynamics.
Procedia PDF Downloads 1163069 Moment Estimators of the Parameters of Zero-One Inflated Negative Binomial Distribution
Authors: Rafid Saeed Abdulrazak Alshkaki
Abstract:
In this paper, zero-one inflated negative binomial distribution is considered, along with some of its structural properties, then its parameters were estimated using the method of moments. It is found that the method of moments to estimate the parameters of the zero-one inflated negative binomial models is not a proper method and may give incorrect conclusions.Keywords: zero one inflated models, negative binomial distribution, moments estimator, non negative integer sampling
Procedia PDF Downloads 2923068 Synthesis and Characterization of the Carbon Spheres Built Up from Reduced Graphene Oxide
Authors: Takahiro Saida, Takahiro Kogiso, Takahiro Maruyama
Abstract:
The ordered structural carbon (OSC) material is expected to apply to the electrode of secondary batteries, the catalyst supports, and the biomaterials because it shows the low substance-diffusion resistance by its uniform pore size. In general, the OSC material is synthesized using the template material. Changing size and shape of this template provides the pore size of OSC material according to the purpose. Depositing the oxide nanosheets on the polymer sphere template by the layer by layer (LbL) method was reported as one of the preparation methods of OSC material. The LbL method can provide the controlling thickness of structural wall without the surface modification. When the preparation of the uniform carbon sphere prepared by the LbL method which composed of the graphene oxide wall and the polymethyl-methacrylate (PMMA) core, the reduction treatment will be the important object. Since the graphene oxide has poor electron conductivity due to forming a lot of functional groups on the surface, it could be hard to apply to the electrode of secondary batteries and the catalyst support of fuel cells. In this study, the graphene oxide wall of carbon sphere was reduced by the thermal treatment under the vacuum conditions, and its crystalline structure and electronic state were characterized. Scanning electron microscope images of the carbon sphere after the heat treatment at 300ºC showed maintaining sphere shape, but its shape was collapsed with increasing the heating temperature. In this time, the dissolution rate of PMMA core and the reduction rate of graphene oxide were proportionate to heating temperature. In contrast, extending the heating time was conducive to the conservation of the sphere shape. From results of X-ray photoelectron spectroscopy analysis, its electronic state of the surface was indicated mainly sp² carbon. From the above results, we succeeded in the synthesis of the sphere structure composed by the reduction graphene oxide.Keywords: carbon sphere, graphene oxide, reduction, layer by layer
Procedia PDF Downloads 1403067 The Use of Remotely Sensed Data to Model Habitat Selections of Pileated Woodpeckers (Dryocopus pileatus) in Fragmented Landscapes
Authors: Ruijia Hu, Susanna T.Y. Tong
Abstract:
Light detection and ranging (LiDAR) and four-channel red, green, blue, and near-infrared (RGBI) remote sensed imageries allow an accurate quantification and contiguous measurement of vegetation characteristics and forest structures. This information facilitates the generation of habitat structure variables for forest species distribution modelling. However, applications of remote sensing data, especially the combination of structural and spectral information, to support evidence-based decisions in forest managements and conservation practices at local scale are not widely adopted. In this study, we examined the habitat requirements of pileated woodpecker (Dryocopus pileatus) (PW) in Hamilton County, Ohio, using ecologically relevant forest structural and vegetation characteristics derived from LiDAR and RGBI data. We hypothesized that the habitat of PW is shaped by vegetation characteristics that are directly associated with the availability of food, hiding and nesting resources, the spatial arrangement of habitat patches within home range, as well as proximity to water sources. We used 186 PW presence or absence locations to model their presence and absence in generalized additive model (GAM) at two scales, representing foraging and home range size, respectively. The results confirm PW’s preference for tall and large mature stands with structural complexity, typical of late-successional or old-growth forests. Besides, the crown size of dead trees shows a positive relationship with PW occurrence, therefore indicating the importance of declining living trees or early-stage dead trees within PW home range. These locations are preferred by PW for nest cavity excavation as it attempts to balance the ease of excavation and tree security. In addition, we found that PW can adjust its travel distance to the nearest water resource, suggesting that habitat fragmentation can have certain impacts on PW. Based on our findings, we recommend that forest managers should use different priorities to manage nesting, roosting, and feeding habitats. Particularly, when devising forest management and hazard tree removal plans, one needs to consider retaining enough cavity trees within high-quality PW habitat. By mapping PW habitat suitability for the study area, we highlight the importance of riparian corridor in facilitating PW to adjust to the fragmented urban landscape. Indeed, habitat improvement for PW in the study area could be achieved by conserving riparian corridors and promoting riparian forest succession along major rivers in Hamilton County.Keywords: deadwood detection, generalized additive model, individual tree crown delineation, LiDAR, pileated woodpecker, RGBI aerial imagery, species distribution models
Procedia PDF Downloads 513066 A Configurational Approach to Understand the Effect of Organizational Structure on Absorptive Capacity: Results from PLS and fsQCA
Authors: Murad Ali, Anderson Konan Seny Kan, Khalid A. Maimani
Abstract:
Based on the theory of organizational design and the theory of knowledge, this study uses complexity theory to explain and better understand the causal impacts of various patterns of organizational structural factors stimulating absorptive capacity (ACAP). Organizational structure can be thought of as heterogeneous configurations where various components are often intertwined. This study argues that impact of the traditional variables which define a firm’s organizational structure (centralization, formalization, complexity and integration) on ACAP is better understood in terms of set-theoretic relations rather than correlations. This study uses a data sample of 347 from a multiple industrial sector in South Korea. The results from PLS-SEM support all the hypothetical relationships among the variables. However, fsQCA results suggest the possible configurations of centralization, formalization, complexity, integration, age, size, industry and revenue factors that contribute to high level of ACAP. The results from fsQCA demonstrate the usefulness of configurational approaches in helping understand equifinality in the field of knowledge management. A recent fsQCA procedure based on a modeling subsample and holdout subsample is use in this study to assess the predictive validity of the model under investigation. The same type predictive analysis is also made through PLS-SEM. These analyses reveal a good relevance of causal solutions leading to high level of ACAP. In overall, the results obtained from combining PLS-SEM and fsQCA are very insightful. In particular, they could help managers to link internal organizational structural with ACAP. In other words, managers may comprehend finely how different components of organizational structure can increase the level of ACAP. The configurational approach may trigger new insights that could help managers prioritize selection criteria and understand the interactions between organizational structure and ACAP. The paper also discusses theoretical and managerial implications arising from these findings.Keywords: absorptive capacity, organizational structure, PLS-SEM, fsQCA, predictive analysis, modeling subsample, holdout subsample
Procedia PDF Downloads 329