Search results for: non-linear dynamics features
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7766

Search results for: non-linear dynamics features

6566 Computational Fluid Dynamics Modeling of Liquefaction of Wood and It's Model Components Using a Modified Multistage Shrinking-Core Model

Authors: K. G. R. M. Jayathilake, S. Rudra

Abstract:

Wood degradation in hot compressed water is modeled with a Computational Fluid Dynamics (CFD) code using cellulose, xylan, and lignin as model compounds. Model compounds are reacted under catalyst-free conditions in a temperature range from 250 to 370 °C. Using a simplified reaction scheme where water soluble products, methanol soluble products, char like compounds and gas are generated through intermediates with each model compound. A modified multistage shrinking core model is developed to simulate particle degradation. In the modified shrinking core model, each model compound is hydrolyzed in separate stages. Cellulose is decomposed to glucose/oligomers before producing degradation products. Xylan is decomposed through xylose and then to degradation products where lignin is decomposed into soluble products before producing the total guaiacol, organic carbon (TOC) and then char and gas. Hydrolysis of each model compound is used as the main reaction of the process. Diffusion of water monomers to the particle surface to initiate hydrolysis and dissolution of the products in water is given importance during the modeling process. In the developed model the temperature variation depends on the Arrhenius relationship. Kinetic parameters from the literature are used for the mathematical model. Meanwhile, limited initial fast reaction kinetic data limit the development of more accurate CFD models. Liquefaction results of the CFD model are analyzed and validated using the experimental data available in the literature where it shows reasonable agreement.

Keywords: computational fluid dynamics, liquefaction, shrinking-core, wood

Procedia PDF Downloads 125
6565 Using the Smith-Waterman Algorithm to Extract Features in the Classification of Obesity Status

Authors: Rosa Figueroa, Christopher Flores

Abstract:

Text categorization is the problem of assigning a new document to a set of predetermined categories, on the basis of a training set of free-text data that contains documents whose category membership is known. To train a classification model, it is necessary to extract characteristics in the form of tokens that facilitate the learning and classification process. In text categorization, the feature extraction process involves the use of word sequences also known as N-grams. In general, it is expected that documents belonging to the same category share similar features. The Smith-Waterman (SW) algorithm is a dynamic programming algorithm that performs a local sequence alignment in order to determine similar regions between two strings or protein sequences. This work explores the use of SW algorithm as an alternative to feature extraction in text categorization. The dataset used for this purpose, contains 2,610 annotated documents with the classes Obese/Non-Obese. This dataset was represented in a matrix form using the Bag of Word approach. The score selected to represent the occurrence of the tokens in each document was the term frequency-inverse document frequency (TF-IDF). In order to extract features for classification, four experiments were conducted: the first experiment used SW to extract features, the second one used unigrams (single word), the third one used bigrams (two word sequence) and the last experiment used a combination of unigrams and bigrams to extract features for classification. To test the effectiveness of the extracted feature set for the four experiments, a Support Vector Machine (SVM) classifier was tuned using 20% of the dataset. The remaining 80% of the dataset together with 5-Fold Cross Validation were used to evaluate and compare the performance of the four experiments of feature extraction. Results from the tuning process suggest that SW performs better than the N-gram based feature extraction. These results were confirmed by using the remaining 80% of the dataset, where SW performed the best (accuracy = 97.10%, weighted average F-measure = 97.07%). The second best was obtained by the combination of unigrams-bigrams (accuracy = 96.04, weighted average F-measure = 95.97) closely followed by the bigrams (accuracy = 94.56%, weighted average F-measure = 94.46%) and finally unigrams (accuracy = 92.96%, weighted average F-measure = 92.90%).

Keywords: comorbidities, machine learning, obesity, Smith-Waterman algorithm

Procedia PDF Downloads 298
6564 Iterative Estimator-Based Nonlinear Backstepping Control of a Robotic Exoskeleton

Authors: Brahmi Brahim, Mohammad Habibur Rahman, Maarouf Saad, Cristóbal Ochoa Luna

Abstract:

A repetitive training movement is an efficient method to improve the ability and movement performance of stroke survivors and help them to recover their lost motor function and acquire new skills. The ETS-MARSE is seven degrees of freedom (DOF) exoskeleton robot developed to be worn on the lateral side of the right upper-extremity to assist and rehabilitate the patients with upper-extremity dysfunction resulting from stroke. Practically, rehabilitation activities are repetitive tasks, which make the assistive/robotic systems to suffer from repetitive/periodic uncertainties and external perturbations induced by the high-order dynamic model (seven DOF) and interaction with human muscle which impact on the tracking performance and even on the stability of the exoskeleton. To ensure the robustness and the stability of the robot, a new nonlinear backstepping control was implemented with designed tests performed by healthy subjects. In order to limit and to reject the periodic/repetitive disturbances, an iterative estimator was integrated into the control of the system. The estimator does not need the precise dynamic model of the exoskeleton. Experimental results confirm the robustness and accuracy of the controller performance to deal with the external perturbation, and the effectiveness of the iterative estimator to reject the repetitive/periodic disturbances.

Keywords: backstepping control, iterative control, Rehabilitation, ETS-MARSE

Procedia PDF Downloads 287
6563 A Security Study for Smart Metering Systems

Authors: Musaab Hasan, Farkhund Iqbal, Patrick C. K. Hung, Benjamin C. M. Fung, Laura Rafferty

Abstract:

In modern societies, the smart cities concept raised simultaneously with the projection towards adopting smart devices. A smart grid is an essential part of any smart city as both consumers and power utility companies benefit from the features provided by the power grid. In addition to advanced features presented by smart grids, there may also be a risk when the grids are exposed to malicious acts such as security attacks performed by terrorists. Considering advanced security measures in the design of smart meters could reduce these risks. This paper presents a security study for smart metering systems with a prototype implementation of the user interfaces for future works.

Keywords: security design, smart city, smart meter, smart grid, smart metering system

Procedia PDF Downloads 338
6562 Effective Parameter Selection for Audio-Based Music Mood Classification for Christian Kokborok Song: A Regression-Based Approach

Authors: Sanchali Das, Swapan Debbarma

Abstract:

Music mood classification is developing in both the areas of music information retrieval (MIR) and natural language processing (NLP). Some of the Indian languages like Hindi English etc. have considerable exposure in MIR. But research in mood classification in regional language is very less. In this paper, powerful audio based feature for Kokborok Christian song is identified and mood classification task has been performed. Kokborok is an Indo-Burman language especially spoken in the northeastern part of India and also some other countries like Bangladesh, Myanmar etc. For performing audio-based classification task, useful audio features are taken out by jMIR software. There are some standard audio parameters are there for the audio-based task but as known to all that every language has its unique characteristics. So here, the most significant features which are the best fit for the database of Kokborok song is analysed. The regression-based model is used to find out the independent parameters that act as a predictor and predicts the dependencies of parameters and shows how it will impact on overall classification result. For classification WEKA 3.5 is used, and selected parameters create a classification model. And another model is developed by using all the standard audio features that are used by most of the researcher. In this experiment, the essential parameters that are responsible for effective audio based mood classification and parameters that do not significantly change for each of the Christian Kokborok songs are analysed, and a comparison is also shown between the two above model.

Keywords: Christian Kokborok song, mood classification, music information retrieval, regression

Procedia PDF Downloads 222
6561 Parameter Estimation with Uncertainty and Sensitivity Analysis for the SARS Outbreak in Hong Kong

Authors: Afia Naheed, Manmohan Singh, David Lucy

Abstract:

This work is based on a mathematical as well as statistical study of an SEIJTR deterministic model for the interpretation of transmission of severe acute respiratory syndrome (SARS). Based on the SARS epidemic in 2003, the parameters are estimated using Runge-Kutta (Dormand-Prince pairs) and least squares methods. Possible graphical and numerical techniques are used to validate the estimates. Then effect of the model parameters on the dynamics of the disease is examined using sensitivity and uncertainty analysis. Sensitivity and uncertainty analytical techniques are used in order to analyze the affect of the uncertainty in the obtained parameter estimates and to determine which parameters have the largest impact on controlling the disease dynamics.

Keywords: infectious disease, severe acute respiratory syndrome (SARS), parameter estimation, sensitivity analysis, uncertainty analysis, Runge-Kutta methods, Levenberg-Marquardt method

Procedia PDF Downloads 362
6560 Dissipation Capacity of Steel Building with Fiction Pendulum Base-Isolation System

Authors: A. Ras, I. Nait Zerrad, N. Benmouna, N. Boumechra

Abstract:

Use of base isolators in the seismic design of structures has attracted considerable attention in recent years. The major concern in the design of these structures is to have enough lateral stability to resist wind and seismic forces. There are different systems providing such isolation, among them there are friction- pendulum base isolation systems (FPS) which are rather widely applied nowadays involving to both affordable cost and high fundamental periods. These devices are characterised by a stiff resistance against wind loads and to be flexible to the seismic tremors, which make them suitable for different situations. In this paper, a 3D numerical investigation is done considering the seismic response of a twelve-storey steel building retrofitted with a FPS. Fast nonlinear time history analysis (FNA) of Boumerdes earthquake (Algeria, May 2003) is considered for analysis and carried out using SAP2000 software. Comparisons between fixed base, bearing base isolated and braced structures are shown in a tabulated and graphical format. The results of the various alternatives studies to compare the structural response without and with this device of dissipation energy thus obtained were discussed and the conclusions showed the interesting potential of the FPS isolator. This system may to improve the dissipative capacities of the structure without increasing its rigidity in a significant way which contributes to optimize the quantity of steel necessary for its general stability.

Keywords: energy dissipation, friction-pendulum system, nonlinear analysis, steel structure

Procedia PDF Downloads 202
6559 Computational Fluid Dynamics-Coupled Optimisation Strategy for Aerodynamic Design

Authors: Anvar Atayev, Karl Steinborn, Aleksander Lovric, Saif Al-Ibadi, Jorg Fliege

Abstract:

In this paper, we present results obtained from optimising the aerodynamic performance of aerostructures in external ow. The optimisation method used was developed to efficiently handle multi-variable problems with numerous black-box objective functions and constraints. To demonstrate these capabilities, a series of CFD problems were considered; (1) a two-dimensional NACA aerofoil with three variables, (2) a two-dimensional morphing aerofoil with 17 variables, and (3) a three-dimensional morphing aeroplane tail with 33 variables. The objective functions considered were related to combinations of the mean aerodynamic coefficients, as well as their relative variations/oscillations. It was observed that for each CFD problem, an improved objective value was found. Notably, the scale-up in variables for the latter problems did not greatly hinder optimisation performance. This makes the method promising for scaled-up CFD problems, which require considerable computational resources.

Keywords: computational fluid dynamics, optimisation algorithms, aerodynamic design, engineering design

Procedia PDF Downloads 120
6558 Robust Noisy Speech Identification Using Frame Classifier Derived Features

Authors: Punnoose A. K.

Abstract:

This paper presents an approach for identifying noisy speech recording using a multi-layer perception (MLP) trained to predict phonemes from acoustic features. Characteristics of the MLP posteriors are explored for clean speech and noisy speech at the frame level. Appropriate density functions are used to fit the softmax probability of the clean and noisy speech. A function that takes into account the ratio of the softmax probability density of noisy speech to clean speech is formulated. These phoneme independent scoring is weighted using a phoneme-specific weightage to make the scoring more robust. Simple thresholding is used to identify the noisy speech recording from the clean speech recordings. The approach is benchmarked on standard databases, with a focus on precision.

Keywords: noisy speech identification, speech pre-processing, noise robustness, feature engineering

Procedia PDF Downloads 128
6557 DNA-Based Analysis of Gut Content of Zygoribatula sp (Acari: Oribatida) and Scheloribates sp (Acari: Oribatida), under the Canopy of Prosopis Laevigata, in a Semiarid Land

Authors: Daniel Isaac Sanchez Chavez, Salvador Rodríguez Zaragoza, Patricia Velez Aguilar

Abstract:

In arid and semi-arid regions, plants are essential in the functional activity and productivity, modifying the microclimatic conditions of their environment, which allows many organisms to grow under them. Within these organisms, oribatid mites play a key role in reintegrating nutrients into the soil through the consumption of soil fungi. However, oribatid mites feed on a vast array of fungal species, which is likely to have strong impacts on their population dynamics and their environment. So, in this study, the aim was to determine the gut content of the abundant oribatid mites Zygoribatula sp and Scheloribates sp, under the canopy of the bush P. laevigata in a semi-arid zone through DNA-based analysis. The results showed the presence in the gut of both mites of different fungal taxa. Fungi, such as Aspergillus sp and Mortierella sp, probably served as a food despite the production of deterrent compounds or structures from both fungal species. Saccharomyces sp might serve as well as a food source; however, it might be part of their microbial endosymbionts. On the other hand, the presence of Beauveria sp indicates a probable pathogenicity interaction, instead of fungal consumption, since this fungus is known to be entomopathogenic. Finally, the results might indicate a feeding preference to certain soil fungi according to diverse features from both taxa.

Keywords: microenvironment, endosymbionts, Oribatida, fungi

Procedia PDF Downloads 144
6556 Investigating Jacket-Type Offshore Structures Failure Probability by Applying the Reliability Analyses Methods

Authors: Majid Samiee Zonoozian

Abstract:

For such important constructions as jacket type platforms, scrupulous attention in analysis, design and calculation processes is needed. The reliability assessment method has been established into an extensively used method to behavior safety calculation of jacket platforms. In the present study, a methodology for the reliability calculation of an offshore jacket platform in contradiction of the extreme wave loading state is available. Therefore, sensitivity analyses are applied to acquire the nonlinear response of jacket-type platforms against extreme waves. The jacket structure is modeled by applying a nonlinear finite-element model with regards to the tubular members' behave. The probability of a member’s failure under extreme wave loading is figured by a finite-element reliability code. The FORM and SORM approaches are applied for the calculation of safety directories and reliability indexes have been detected. A case study for a fixed jacket-type structure positioned in the Persian Gulf is studied by means of the planned method. Furthermore, to define the failure standards, equations suggested by the 21st version of the API RP 2A-WSD for The jacket-type structures’ tubular members designing by applying the mixed axial bending and axial pressure. Consequently, the effect of wave Loades in the reliability index was considered.

Keywords: Jacket-Type structure, reliability, failure probability, tubular members

Procedia PDF Downloads 173
6555 The Influence of Shear Wall Position on Seismic Performance in Buildings

Authors: Akram Khelaifia, Nesreddine Djafar Henni

Abstract:

Reinforced concrete shear walls are essential components in protecting buildings from seismic forces by providing both strength and stiffness. This study focuses on optimizing the placement of shear walls in a high seismic zone. Through nonlinear analyses conducted on an eight-story building, various scenarios of shear wall positions are investigated to evaluate their impact on seismic performance. Employing a performance-based seismic design (PBSD) approach, the study aims to meet acceptance criteria related to inter-story drift ratio and damage levels. The findings emphasize the importance of concentrating shear walls in the central area of the building during the design phase. This strategic placement proves more effective compared to peripheral distributions, resulting in reduced inter-story drift and mitigated potential damage during seismic events. Additionally, the research explores the use of shear walls that completely infill the frame, forming compound shapes like Box configurations. It is discovered that incorporating such complete shear walls significantly enhances the structure's reliability concerning inter-story drift. Conversely, the absence of complete shear walls within the frame leads to reduced stiffness and the potential deterioration of short beams.

Keywords: performance level, pushover analysis, shear wall, plastic hinge, nonlinear analyses

Procedia PDF Downloads 54
6554 Stability of Solutions of Semidiscrete Stochastic Systems

Authors: Ramazan Kadiev, Arkadi Ponossov

Abstract:

Semidiscrete systems contain both continuous and discrete components. This means that the dynamics is mostly continuous, but at certain instants, it is exposed to abrupt influences. Such systems naturally appear in applications, for example, in biological and ecological models as well as in the control theory. Therefore, the study of semidiscrete systems has recently attracted the attention of many specialists. Stochastic effects are an important part of any realistic approach to modeling. For example, stochasticity arises in the population dynamics, demographic and ecological due to a change in time of factors external to the system affecting the survival of the population. In control theory, random coefficients can simulate inaccuracies in measurements. It will be shown in the presentation how to incorporate such effects into semidiscrete systems. Stability analysis is an essential part of modeling real-world problems. In the presentation, it will be explained how sufficient conditions for the moment stability of solutions in terms of the coefficients for linear semidiscrete stochastic equations can be derived using non-Lyapunov technique.

Keywords: abrupt changes, exponential stability, regularization, stochastic noises

Procedia PDF Downloads 188
6553 Development of Non-Intrusive Speech Evaluation Measure Using S-Transform and Light-Gbm

Authors: Tusar Kanti Dash, Ganapati Panda

Abstract:

The evaluation of speech quality and intelligence is critical to the overall effectiveness of the Speech Enhancement Algorithms. Several intrusive and non-intrusive measures are employed to calculate these parameters. Non-Intrusive Evaluation is most challenging as, very often, the reference clean speech data is not available. In this paper, a novel non-intrusive speech evaluation measure is proposed using audio features derived from the Stockwell transform. These features are used with the Light Gradient Boosting Machine for the effective prediction of speech quality and intelligibility. The proposed model is analyzed using noisy and reverberant speech from four databases, and the results are compared with the standard Intrusive Evaluation Measures. It is observed from the comparative analysis that the proposed model is performing better than the standard Non-Intrusive models.

Keywords: non-Intrusive speech evaluation, S-transform, light GBM, speech quality, and intelligibility

Procedia PDF Downloads 260
6552 Effects of Charge Fluctuating Positive Dust on Linear Dust-Acoustic Waves

Authors: Sanjit Kumar Paul, A. A. Mamun, M. R. Amin

Abstract:

The Linear propagation of the dust-acoustic wave in a dusty plasma consisting of Boltzmann distributed electrons and ions and mobile charge fluctuating positive dust grains has been investigated by employing the reductive perturbation method. It has been shown that the dust charge fluctuation is a source of dissipation and its responsible for the formation of the dust-acoustic waves in such a dusty plasma. The basic features of such dust-acoustic waves have been identified. It has been proposed to design a new laboratory experiment which will be able to identify the basic features of the dust-acoustic waves predicted in this theoretical investigation.

Keywords: dust acoustic waves, dusty plasma, Boltzmann distributed electrons, charge fluctuation

Procedia PDF Downloads 639
6551 A Data-Driven Optimal Control Model for the Dynamics of Monkeypox in a Variable Population with a Comprehensive Cost-Effectiveness Analysis

Authors: Martins Onyekwelu Onuorah, Jnr Dahiru Usman

Abstract:

Introduction: In the realm of public health, the threat posed by Monkeypox continues to elicit concern, prompting rigorous studies to understand its dynamics and devise effective containment strategies. Particularly significant is its recurrence in variable populations, such as the observed outbreak in Nigeria in 2022. In light of this, our study undertakes a meticulous analysis, employing a data-driven approach to explore, validate, and propose optimized intervention strategies tailored to the distinct dynamics of Monkeypox within varying demographic structures. Utilizing a deterministic mathematical model, we delved into the intricate dynamics of Monkeypox, with a particular focus on a variable population context. Our qualitative analysis provided insights into the disease-free equilibrium, revealing its stability when R0 is less than one and discounting the possibility of backward bifurcation, as substantiated by the presence of a single stable endemic equilibrium. The model was rigorously validated using real-time data from the Nigerian 2022 recorded cases for Epi weeks 1 – 52. Transitioning from qualitative to quantitative, we augmented our deterministic model with optimal control, introducing three time-dependent interventions to scrutinize their efficacy and influence on the epidemic's trajectory. Numerical simulations unveiled a pronounced impact of the interventions, offering a data-supported blueprint for informed decision-making in containing the disease. A comprehensive cost-effectiveness analysis employing the Infection Averted Ratio (IAR), Average Cost-Effectiveness Ratio (ACER), and Incremental Cost-Effectiveness Ratio (ICER) facilitated a balanced evaluation of the interventions’ economic and health impacts. In essence, our study epitomizes a holistic approach to understanding and mitigating Monkeypox, intertwining rigorous mathematical modeling, empirical validation, and economic evaluation. The insights derived not only bolster our comprehension of Monkeypox's intricate dynamics but also unveil optimized, cost-effective interventions. This integration of methodologies and findings underscores a pivotal stride towards aligning public health imperatives with economic sustainability, marking a significant contribution to global efforts in combating infectious diseases.

Keywords: monkeypox, equilibrium states, stability, bifurcation, optimal control, cost-effectiveness

Procedia PDF Downloads 88
6550 Short Answer Grading Using Multi-Context Features

Authors: S. Sharan Sundar, Nithish B. Moudhgalya, Nidhi Bhandari, Vineeth Vijayaraghavan

Abstract:

Automatic Short Answer Grading is one of the prime applications of artificial intelligence in education. Several approaches involving the utilization of selective handcrafted features, graphical matching techniques, concept identification and mapping, complex deep frameworks, sentence embeddings, etc. have been explored over the years. However, keeping in mind the real-world application of the task, these solutions present a slight overhead in terms of computations and resources in achieving high performances. In this work, a simple and effective solution making use of elemental features based on statistical, linguistic properties, and word-based similarity measures in conjunction with tree-based classifiers and regressors is proposed. The results for classification tasks show improvements ranging from 1%-30%, while the regression task shows a stark improvement of 35%. The authors attribute these improvements to the addition of multiple similarity scores to provide ensemble of scoring criteria to the models. The authors also believe the work could reinstate that classical natural language processing techniques and simple machine learning models can be used to achieve high results for short answer grading.

Keywords: artificial intelligence, intelligent systems, natural language processing, text mining

Procedia PDF Downloads 133
6549 Dynamic Model of Heterogeneous Markets with Imperfect Information for the Optimization of Company's Long-Time Strategy

Authors: Oleg Oborin

Abstract:

This paper is dedicated to the development of the model, which can be used to evaluate the effectiveness of long-term corporate strategies and identify the best strategies. The theoretical model of the relatively homogenous product market (such as iron and steel industry, mobile services or road transport) has been developed. In the model, the market consists of a large number of companies with different internal characteristics and objectives. The companies can perform mergers and acquisitions in order to increase their market share. The model allows the simulation of long-time dynamics of the market (for a period longer than 20 years). Therefore, a large number of simulations on random input data was conducted in the framework of the model. After that, the results of the model were compared with the dynamics of real markets, such as the US steel industry from the beginning of the XX century to the present day, and the market of mobile services in Germany for the period between 1990 and 2015.

Keywords: Economic Modelling, Long-Time Strategy, Mergers and Acquisitions, Simulation

Procedia PDF Downloads 368
6548 Aerodynamic Analysis by Computational Fluids Dynamics in Building: Case Study

Authors: Javier Navarro Garcia, Narciso Vazquez Carretero

Abstract:

Eurocode 1, part 1-4, wind actions, includes in its article 1.5 the possibility of using numerical calculation methods to obtain information on the loads acting on a building. On the other hand, the analysis using computational fluids dynamics (CFD) in aerospace, aeronautical, and industrial applications is already in widespread use. The application of techniques based on CFD analysis on the building to study its aerodynamic behavior now opens a whole alternative field of possibilities for civil engineering and architecture; optimization of the results with respect to those obtained by applying the regulations, the possibility of obtaining information on pressures, speeds at any point of the model for each moment, the analysis of turbulence and the possibility of modeling any geometry or configuration. The present work compares the results obtained on a building, with respect to its aerodynamic behavior, from a mathematical model based on the analysis by CFD with the results obtained by applying Eurocode1, part1-4, wind actions. It is verified that the results obtained by CFD techniques suppose an optimization of the wind action that acts on the building with respect to the wind action obtained by applying the Eurocode1, part 1-4, wind actions. In order to carry out this verification, a 45m high square base truncated pyramid building has been taken. The mathematical model on CFD, based on finite volumes, has been calculated using the FLUENT commercial computer application using a scale-resolving simulation (SRS) type large eddy simulation (LES) turbulence model for an atmospheric boundary layer wind with turbulent component in the direction of the flow.

Keywords: aerodynamic, CFD, computacional fluids dynamics, computational mechanics

Procedia PDF Downloads 138
6547 Analysis of Nonlinear Dynamic Systems Excited by Combined Colored and White Noise Excitations

Authors: Siu-Siu Guo, Qingxuan Shi

Abstract:

In this paper, single-degree-of-freedom (SDOF) systems to white noise and colored noise excitations are investigated. By expressing colored noise excitation as a second-order filtered white noise process and introducing colored noise as an additional state variable, the equation of motion for SDOF system under colored noise is then transferred artificially to multi-degree-of-freedom (MDOF) system under white noise excitations. As a consequence, corresponding Fokker-Planck-Kolmogorov (FPK) equation governing the joint probabilistic density function (PDF) of state variables increases to 4-dimension (4-D). Solution procedure and computer programme become much more sophisticated. The exponential-polynomial closure (EPC) method, widely applied for cases of SDOF systems under white noise excitations, is developed and improved for cases of systems under colored noise excitations and for solving the complex 4-D FPK equation. On the other hand, Monte Carlo simulation (MCS) method is performed to test the approximate EPC solutions. Two examples associated with Gaussian and non-Gaussian colored noise excitations are considered. Corresponding band-limited power spectral densities (PSDs) for colored noise excitations are separately given. Numerical studies show that the developed EPC method provides relatively accurate estimates of the stationary probabilistic solutions. Moreover, statistical parameter of mean-up crossing rate (MCR) is taken into account, which is important for reliability and failure analysis.

Keywords: filtered noise, narrow-banded noise, nonlinear dynamic, random vibration

Procedia PDF Downloads 225
6546 Fire and Explosion Consequence Modeling Using Fire Dynamic Simulator: A Case Study

Authors: Iftekhar Hassan, Sayedil Morsalin, Easir A Khan

Abstract:

Accidents involving fire occur frequently in recent times and their causes showing a great deal of variety which require intervention methods and risk assessment strategies are unique in each case. On September 4, 2020, a fire and explosion occurred in a confined space caused by a methane gas leak from an underground pipeline in Baitus Salat Jame mosque during Night (Esha) prayer in Narayanganj District, Bangladesh that killed 34 people. In this research, this incident is simulated using Fire Dynamics Simulator (FDS) software to analyze and understand the nature of the accident and associated consequences. FDS is an advanced computational fluid dynamics (CFD) system of fire-driven fluid flow which solves numerically a large eddy simulation form of the Navier–Stokes’s equations for simulation of the fire and smoke spread and prediction of thermal radiation, toxic substances concentrations and other relevant parameters of fire. This study focuses on understanding the nature of the fire and consequence evaluation due to thermal radiation caused by vapor cloud explosion. An evacuation modeling was constructed to visualize the effect of evacuation time and fractional effective dose (FED) for different types of agents. The results were presented by 3D animation, sliced pictures and graphical representation to understand fire hazards caused by thermal radiation or smoke due to vapor cloud explosion. This study will help to design and develop appropriate respond strategy for preventing similar accidents.

Keywords: consequence modeling, fire and explosion, fire dynamics simulation (FDS), thermal radiation

Procedia PDF Downloads 227
6545 An Application of Extreme Value Theory as a Risk Measurement Approach in Frontier Markets

Authors: Dany Ng Cheong Vee, Preethee Nunkoo Gonpot, Noor Sookia

Abstract:

In this paper, we consider the application of Extreme Value Theory as a risk measurement tool. The Value at Risk, for a set of indices, from six Stock Exchanges of Frontier markets is calculated using the Peaks over Threshold method and the performance of the model index-wise is evaluated using coverage tests and loss functions. Our results show that 'fat-tailedness' alone of the data is not enough to justify the use of EVT as a VaR approach. The structure of the returns dynamics is also a determining factor. This approach works fine in markets which have had extremes occurring in the past thus making the model capable of coping with extremes coming up (Colombo, Tunisia and Zagreb Stock Exchanges). On the other hand, we find that indices with lower past than present volatility fail to adequately deal with future extremes (Mauritius and Kazakhstan). We also conclude that using EVT alone produces quite static VaR figures not reflecting the actual dynamics of the data.

Keywords: extreme value theory, financial crisis 2008, value at risk, frontier markets

Procedia PDF Downloads 276
6544 Secure Image Retrieval Based on Orthogonal Decomposition under Cloud Environment

Authors: Y. Xu, L. Xiong, Z. Xu

Abstract:

In order to protect data privacy, image with sensitive or private information needs to be encrypted before being outsourced to the cloud. However, this causes difficulties in image retrieval and data management. A secure image retrieval method based on orthogonal decomposition is proposed in the paper. The image is divided into two different components, for which encryption and feature extraction are executed separately. As a result, cloud server can extract features from an encrypted image directly and compare them with the features of the queried images, so that the user can thus obtain the image. Different from other methods, the proposed method has no special requirements to encryption algorithms. Experimental results prove that the proposed method can achieve better security and better retrieval precision.

Keywords: secure image retrieval, secure search, orthogonal decomposition, secure cloud computing

Procedia PDF Downloads 487
6543 Unsupervised Neural Architecture for Saliency Detection

Authors: Natalia Efremova, Sergey Tarasenko

Abstract:

We propose a novel neural network architecture for visual saliency detections, which utilizes neuro physiologically plausible mechanisms for extraction of salient regions. The model has been significantly inspired by recent findings from neuro physiology and aimed to simulate the bottom-up processes of human selective attention. Two types of features were analyzed: color and direction of maximum variance. The mechanism we employ for processing those features is PCA, implemented by means of normalized Hebbian learning and the waves of spikes. To evaluate performance of our model we have conducted psychological experiment. Comparison of simulation results with those of experiment indicates good performance of our model.

Keywords: neural network models, visual saliency detection, normalized Hebbian learning, Oja's rule, psychological experiment

Procedia PDF Downloads 350
6542 The Effect of Soil-Structure Interaction on the Post-Earthquake Fire Performance of Structures

Authors: A. T. Al-Isawi, P. E. F. Collins

Abstract:

The behaviour of structures exposed to fire after an earthquake is not a new area of engineering research, but there remain a number of areas where further work is required. Such areas relate to the way in which seismic excitation is applied to a structure, taking into account the effect of soil-structure interaction (SSI) and the method of analysis, in addition to identifying the excitation load properties. The selection of earthquake data input for use in nonlinear analysis and the method of analysis are still challenging issues. Thus, realistic artificial ground motion input data must be developed to certify that site properties parameters adequately describe the effects of the nonlinear inelastic behaviour of the system and that the characteristics of these parameters are coherent with the characteristics of the target parameters. Conversely, ignoring the significance of some attributes, such as frequency content, soil site properties and earthquake parameters may lead to misleading results, due to the misinterpretation of required input data and the incorrect synthesise of analysis hypothesis. This paper presents a study of the post-earthquake fire (PEF) performance of a multi-storey steel-framed building resting on soft clay, taking into account the effects of the nonlinear inelastic behaviour of the structure and soil, and the soil-structure interaction (SSI). Structures subjected to an earthquake may experience various levels of damage; the geometrical damage, which indicates the change in the initial structure’s geometry due to the residual deformation as a result of plastic behaviour, and the mechanical damage which identifies the degradation of the mechanical properties of the structural elements involved in the plastic range of deformation. Consequently, the structure presumably experiences partial structural damage but is then exposed to fire under its new residual material properties, which may result in building failure caused by a decrease in fire resistance. This scenario would be more complicated if SSI was also considered. Indeed, most earthquake design codes ignore the probability of PEF as well as the effect that SSI has on the behaviour of structures, in order to simplify the analysis procedure. Therefore, the design of structures based on existing codes which neglect the importance of PEF and SSI can create a significant risk of structural failure. In order to examine the criteria for the behaviour of a structure under PEF conditions, a two-dimensional nonlinear elasto-plastic model is developed using ABAQUS software; the effects of SSI are included. Both geometrical and mechanical damages have been taken into account after the earthquake analysis step. For comparison, an identical model is also created, which does not include the effects of soil-structure interaction. It is shown that damage to structural elements is underestimated if SSI is not included in the analysis, and the maximum percentage reduction in fire resistance is detected in the case when SSI is included in the scenario. The results are validated using the literature.

Keywords: Abaqus Software, Finite Element Analysis, post-earthquake fire, seismic analysis, soil-structure interaction

Procedia PDF Downloads 123
6541 Integrating Dynamic Brain Connectivity and Transcriptomic Imaging in Major Depressive Disorder

Authors: Qingjin Liu, Jinpeng Niu, Kangjia Chen, Jiao Li, Huafu Chen, Wei Liao

Abstract:

Functional connectomics is essential in cognitive science and neuropsychiatry, offering insights into the brain's complex network structures and dynamic interactions. Although neuroimaging has uncovered functional connectivity issues in Major Depressive Disorder (MDD) patients, the dynamic shifts in connectome topology and their link to gene expression are yet to be fully understood. To explore the differences in dynamic connectome topology between MDD patients and healthy individuals, we conducted an extensive analysis of resting-state functional magnetic resonance imaging (fMRI) data from 434 participants (226 MDD patients and 208 controls). We used multilayer network models to evaluate brain module dynamics and examined the association between whole-brain gene expression and dynamic module variability in MDD using publicly available transcriptomic data. Our findings revealed that compared to healthy individuals, MDD patients showed lower global mean values and higher standard deviations, indicating unstable patterns and increased regional differentiation. Notably, MDD patients exhibited more frequent module switching, primarily within the executive control network (ECN), particularly in the left dorsolateral prefrontal cortex and right fronto-insular regions, whereas the default mode network (DMN), including the superior frontal gyrus, temporal lobe, and right medial prefrontal cortex, displayed lower variability. These brain dynamics predicted the severity of depressive symptoms. Analyzing human brain gene expression data, we found that the spatial distribution of MDD-related gene expression correlated with dynamic module differences. Cell type-specific gene analyses identified oligodendrocytes (OPCs) as major contributors to the transcriptional relationships underlying module variability in MDD. To the best of our knowledge, this is the first comprehensive description of altered brain module dynamics in MDD patients linked to depressive symptom severity and changes in whole-brain gene expression profiles.

Keywords: major depressive disorder, module dynamics, magnetic resonance imaging, transcriptomic

Procedia PDF Downloads 30
6540 Faster, Lighter, More Accurate: A Deep Learning Ensemble for Content Moderation

Authors: Arian Hosseini, Mahmudul Hasan

Abstract:

To address the increasing need for efficient and accurate content moderation, we propose an efficient and lightweight deep classification ensemble structure. Our approach is based on a combination of simple visual features, designed for high-accuracy classification of violent content with low false positives. Our ensemble architecture utilizes a set of lightweight models with narrowed-down color features, and we apply it to both images and videos. We evaluated our approach using a large dataset of explosion and blast contents and compared its performance to popular deep learning models such as ResNet-50. Our evaluation results demonstrate significant improvements in prediction accuracy, while benefiting from 7.64x faster inference and lower computation cost. While our approach is tailored to explosion detection, it can be applied to other similar content moderation and violence detection use cases as well. Based on our experiments, we propose a "think small, think many" philosophy in classification scenarios. We argue that transforming a single, large, monolithic deep model into a verification-based step model ensemble of multiple small, simple, and lightweight models with narrowed-down visual features can possibly lead to predictions with higher accuracy.

Keywords: deep classification, content moderation, ensemble learning, explosion detection, video processing

Procedia PDF Downloads 55
6539 Optimising the Reservoir Operation Using Water Resources Yield and Planning Model at Inanda Dam, uMngeni Basin

Authors: O. Nkwonta, B. Dzwairo, F. Otieno, J. Adeyemo

Abstract:

The effective management of water resources is of great importance to ensure the supply of water resources to support changing water requirements over a selected planning horizon and in a sustainable and cost-effective way. Essentially, the purpose of the water resources planning process is to balance the available water resources in a system with the water requirements and losses to which the system is subjected. In such situations, water resources yield and planning model can be used to solve those difficulties. It has an advantage over other models by managing model runs, developing a representative system network, modelling incremental sub-catchments, creating a variety of standard system features, special modelling features, and run result output options.

Keywords: complex, water resources, planning, cost effective, management

Procedia PDF Downloads 451
6538 Development and Experimental Validation of Coupled Flow-Aerosol Microphysics Model for Hot Wire Generator

Authors: K. Ghosh, S. N. Tripathi, Manish Joshi, Y. S. Mayya, Arshad Khan, B. K. Sapra

Abstract:

We have developed a CFD coupled aerosol microphysics model in the context of aerosol generation from a glowing wire. The governing equations can be solved implicitly for mass, momentum, energy transfer along with aerosol dynamics. The computationally efficient framework can simulate temporal behavior of total number concentration and number size distribution. This formulation uniquely couples standard K-Epsilon scheme with boundary layer model with detailed aerosol dynamics through residence time. This model uses measured temperatures (wire surface and axial/radial surroundings) and wire compositional data apart from other usual inputs for simulations. The model predictions show that bulk fluid motion and local heat distribution can significantly affect the aerosol behavior when the buoyancy effect in momentum transfer is considered. Buoyancy generated turbulence was found to be affecting parameters related to aerosol dynamics and transport as well. The model was validated by comparing simulated predictions with results obtained from six controlled experiments performed with a laboratory-made hot wire nanoparticle generator. Condensation particle counter (CPC) and scanning mobility particle sizer (SMPS) were used for measurement of total number concentration and number size distribution at the outlet of reactor cell during these experiments. Our model-predicted results were found to be in reasonable agreement with observed values. The developed model is fast (fully implicit) and numerically stable. It can be used specifically for applications in the context of the behavior of aerosol particles generated from glowing wire technique and in general for other similar large scale domains. Incorporation of CFD in aerosol microphysics framework provides a realistic platform to study natural convection driven systems/ applications. Aerosol dynamics sub-modules (nucleation, coagulation, wall deposition) have been coupled with Navier Stokes equations modified to include buoyancy coupled K-Epsilon turbulence model. Coupled flow-aerosol dynamics equation was solved numerically and in the implicit scheme. Wire composition and temperature (wire surface and cell domain) were obtained/measured, to be used as input for the model simulations. Model simulations showed a significant effect of fluid properties on the dynamics of aerosol particles. The role of buoyancy was highlighted by observation and interpretation of nucleation zones in the planes above the wire axis. The model was validated against measured temporal evolution, total number concentration and size distribution at the outlet of hot wire generator cell. Experimentally averaged and simulated total number concentrations were found to match closely, barring values at initial times. Steady-state number size distribution matched very well for sub 10 nm particle diameters while reasonable differences were noticed for higher size ranges. Although tuned specifically for the present context (i.e., aerosol generation from hotwire generator), the model can also be used for diverse applications, e.g., emission of particles from hot zones (chimneys, exhaust), fires and atmospheric cloud dynamics.

Keywords: nanoparticles, k-epsilon model, buoyancy, CFD, hot wire generator, aerosol dynamics

Procedia PDF Downloads 143
6537 Changing Dynamics of Women Entrepreneurship: A Literature Review of a Decade

Authors: Viral Nagori, Preeti Shroff, Prathana Dodia

Abstract:

The paper presents the study on women entrepreneurship over the last decade in Indian and Global Context. This research study has its basis primarily in the literature review. The research methodology classifies the literature review paper based on different parameters of women entrepreneurship. The literature review relies on research papers in journals, articles in periodicals, and books published on women entrepreneurship. To accomplish this, the criteria included finding the most relevant, recent, and cited studies on women entrepreneurship over the last decade. It aims to evaluate the issues and challenges faced by women entrepreneurs. The finding suggested that there are several common obstacles, which hinders the pathway to success towards being a successful woman entrepreneur. The paper also describes such common obstacles like the level of education, family responsibilities, lack of business information, religious and cultural constraints, limited mobility, exposure, lack of working capital, and more. The in-depth analysis of literature review indicates that despite the numerous barriers, the arrival of social media has played a crucial role in enabling women to start and scale up their enterprises. Further, technology innovation has given them access to have relevant market information, increase reach and network with the customers. It enabled them to achieve work life balance and pursuing entrepreneur in them. The paper also describes the Government and Nongovernmental initiatives for promotion of women entrepreneurship. At the end, the study provides insights into the changing dynamics of women entrepreneurship in the current scenario and future prospects.

Keywords: changing dynamics, government initiatives, literature review, social media, technology innovation, women entrepreneurship

Procedia PDF Downloads 156