Search results for: customer discovery
438 Patient Support Program in Pharmacovigilance: Foster Patient Confidence and Compliance
Authors: Atul Khurana, Rajul Rastogi, Hans-Joachim Gamperl
Abstract:
The pharmaceutical companies are getting more inclined towards patient support programs (PSPs) which assist patients and/or healthcare professionals (HCPs) in more desirable disease management and cost-effective treatment. The utmost objective of these programs is patient care. The PSPs may include financial assistance to patients, medicine compliance programs, access to HCPs via phone or online chat centers, etc. The PSP has a crucial role in terms of customer acquisition and retention strategies. During the conduct of these programs, Marketing Authorisation Holder (MAH) may receive information related to concerned medicinal products, which is usually reported by patients or involved HCPs. This information may include suspected adverse reaction(s) during/after administration of medicinal products. Hence, the MAH should design PSP to comply with regulatory reporting requirements and avoid non-compliance during PV inspection. The emergence of wireless health devices is lowering the burden on patients to manually incorporate safety data, and building a significant option for patients to observe major swings in reference to drug safety. Therefore, to enhance the adoption of these programs, MAH not only needs to aware patients about advantages of the program, but also recognizes the importance of time of patients and commitments made in a constructive manner. It is indispensable that strengthening the public health is considered as the topmost priority in such programs, and the MAH is compliant to Pharmacovigilance (PV) requirements along with regulatory obligations.Keywords: drug safety, good pharmacovigilance practice, patient support program, pharmacovigilance
Procedia PDF Downloads 314437 Mining Riding Patterns in Bike-Sharing System Connecting with Public Transportation
Authors: Chong Zhang, Guoming Tang, Bin Ge, Jiuyang Tang
Abstract:
With the fast growing road traffic and increasingly severe traffic congestion, more and more citizens choose to use the public transportation for daily travelling. Meanwhile, the shared bike provides a convenient option for the first and last mile to the public transit. As of 2016, over one thousand cities around the world have deployed the bike-sharing system. The combination of these two transportations have stimulated the development of each other and made significant contribution to the reduction of carbon footprint. A lot of work has been done on mining the riding behaviors in various bike-sharing systems. Most of them, however, treated the bike-sharing system as an isolated system and thus their results provide little reference for the public transit construction and optimization. In this work, we treat the bike-sharing and public transit as a whole and investigate the customers’ bike-and-ride behaviors. Specifically, we develop a spatio-temporal traffic delivery model to study the riding patterns between the two transportation systems and explore the traffic characteristics (e.g., distributions of customer arrival/departure and traffic peak hours) from the time and space dimensions. During the model construction and evaluation, we make use of large open datasets from real-world bike-sharing systems (the CitiBike in New York, GoBike in San Francisco and BIXI in Montreal) along with corresponding public transit information. The developed two-dimension traffic model, as well as the mined bike-and-ride behaviors, can provide great help to the deployment of next-generation intelligent transportation systems.Keywords: riding pattern mining, bike-sharing system, public transportation, bike-and-ride behavior
Procedia PDF Downloads 786436 Short Text Classification Using Part of Speech Feature to Analyze Students' Feedback of Assessment Components
Authors: Zainab Mutlaq Ibrahim, Mohamed Bader-El-Den, Mihaela Cocea
Abstract:
Students' textual feedback can hold unique patterns and useful information about learning process, it can hold information about advantages and disadvantages of teaching methods, assessment components, facilities, and other aspects of teaching. The results of analysing such a feedback can form a key point for institutions’ decision makers to advance and update their systems accordingly. This paper proposes a data mining framework for analysing end of unit general textual feedback using part of speech feature (PoS) with four machine learning algorithms: support vector machines, decision tree, random forest, and naive bays. The proposed framework has two tasks: first, to use the above algorithms to build an optimal model that automatically classifies the whole data set into two subsets, one subset is tailored to assessment practices (assessment related), and the other one is the non-assessment related data. Second task to use the same algorithms to build an optimal model for whole data set, and the new data subsets to automatically detect their sentiment. The significance of this paper is to compare the performance of the above four algorithms using part of speech feature to the performance of the same algorithms using n-grams feature. The paper follows Knowledge Discovery and Data Mining (KDDM) framework to construct the classification and sentiment analysis models, which is understanding the assessment domain, cleaning and pre-processing the data set, selecting and running the data mining algorithm, interpreting mined patterns, and consolidating the discovered knowledge. The results of this paper experiments show that both models which used both features performed very well regarding first task. But regarding the second task, models that used part of speech feature has underperformed in comparison with models that used unigrams and bigrams.Keywords: assessment, part of speech, sentiment analysis, student feedback
Procedia PDF Downloads 143435 Anti-Parasite Targeting with Amino Acid-Capped Nanoparticles Modulates Multiple Cellular Processes in Host
Authors: Oluyomi Stephen Adeyemi, Kentaro Kato
Abstract:
Toxoplasma gondii is the etiological agent of toxoplasmosis, a common parasitic disease capable of infecting a range of hosts, including nearly one-third of the human population. Current treatment options for toxoplasmosis patients are limited. In consequence, toxoplasmosis represents a large global burden that is further enhanced by the shortcomings of the current therapeutic options. These factors underscore the need for better anti-T. gondii agents and/or new treatment approach. In the present study, we sought to find out whether preparing and capping nanoparticles (NPs) in amino acids, would enhance specificity toward the parasite versus the host cell. The selection of amino acids was premised on the fact that T. gondii is auxotrophic for some amino acids. The amino acid-nanoparticles (amino-NPs) were synthesized, purified and characterized following established protocols. Next, we tested to determine the anti-T. gondii activity of the amino-NPs using in vitro experimental model of infection. Overall, our data show evidence that supports enhanced and excellent selective action against the parasite versus the host cells by amino-NPs. The findings are promising and provide additional support that warrants exploring the prospects of NPs as alternative anti-parasite agents. In addition, the anti-parasite action by amino-NPs indicates that nutritional requirement of parasite may represent a viable target in the development of better alternative anti-parasite agents. Furthermore, data suggest the anti-parasite mechanism of the amino-NPs involves multiple cellular processes including the production of reactive oxygen species (ROS), modulation of hypoxia-inducing factor-1 alpha (HIF-1α) as well as the activation of kynurenine pathway. Taken together, findings highlight further, the prospects of NPs as alternative source of anti-parasite agents.Keywords: drug discovery, infectious diseases, mode of action, nanomedicine
Procedia PDF Downloads 112434 Application of Fuzzy Analytical Hierarchical Process in Evaluation Supply Chain Performance Measurement
Authors: Riyadh Jamegh, AllaEldin Kassam, Sawsan Sabih
Abstract:
In modern trends of market, organizations face high-pressure environment which is characterized by globalization, high competition, and customer orientation, so it is very crucial to control and know the weak and strong points of the supply chain in order to improve their performance. So the performance measurements presented as an important tool of supply chain management because it's enabled the organizations to control, understand, and improve their efficiency. This paper aims to identify supply chain performance measurement (SCPM) by using Fuzzy Analytical Hierarchical Process (FAHP). In our real application, the performance of organizations estimated based on four parameters these are cost parameter indicator of cost (CPI), inventory turnover parameter indicator of (INPI), raw material parameter (RMPI), and safety stock level parameter indicator (SSPI), these indicators vary in impact on performance depending upon policies and strategies of organization. In this research (FAHP) technique has been used to identify the importance of such parameters, and then first fuzzy inference (FIR1) is applied to identify performance indicator of each factor depending on the importance of the factor and its value. Then, the second fuzzy inference (FIR2) also applied to integrate the effect of these indicators and identify (SCPM) which represent the required output. The developed approach provides an effective tool for evaluation of supply chain performance measurement.Keywords: fuzzy performance measurements, supply chain, fuzzy logic, key performance indicator
Procedia PDF Downloads 145433 A Preliminary Literature Review of Digital Transformation Case Studies
Authors: Vesna Bosilj Vukšić, Lucija Ivančić, Dalia Suša Vugec
Abstract:
While struggling to succeed in today’s complex market environment and provide better customer experience and services, enterprises encompass digital transformation as a means for reaching competitiveness and foster value creation. A digital transformation process consists of information technology implementation projects, as well as organizational factors such as top management support, digital transformation strategy, and organizational changes. However, to the best of our knowledge, there is little evidence about digital transformation endeavors in organizations and how they perceive it – is it only about digital technologies adoption or a true organizational shift is needed? In order to address this issue and as the first step in our research project, a literature review is conducted. The analysis included case study papers from Scopus and Web of Science databases. The following attributes are considered for classification and analysis of papers: time component; country of case origin; case industry and; digital transformation concept comprehension, i.e. focus. Research showed that organizations – public, as well as private ones, are aware of change necessity and employ digital transformation projects. Also, the changes concerning digital transformation affect both manufacturing and service-based industries. Furthermore, we discovered that organizations understand that besides technologies implementation, organizational changes must also be adopted. However, with only 29 relevant papers identified, research positioned digital transformation as an unexplored and emerging phenomenon in information systems research. The scarcity of evidence-based papers calls for further examination of this topic on cases from practice.Keywords: digital strategy, digital technologies, digital transformation, literature review
Procedia PDF Downloads 220432 A Mathematical Programming Model for Lot Sizing and Production Planning in Multi-Product Companies: A Case Study of Azar Battery Company
Authors: Farzad Jafarpour Taher, Maghsud Solimanpur
Abstract:
Production planning is one of the complex tasks in multi-product firms that produce a wide range of products. Since resources in mass production companies are limited and different products use common resources, there must be a careful plan so that firms can respond to customer needs efficiently. Azar-battery Company is a firm that provides twenty types of products for its customers. Therefore, careful planning must be performed in this company. In this research, the current conditions of Azar-battery Company were investigated to provide a mathematical programming model to determine the optimum production rate of the products in this company. The production system of this company is multi-stage, multi-product and multi-period. This system is studied in terms of a one-year planning horizon regarding the capacity of machines and warehouse space limitation. The problem has been modeled as a linear programming model with deterministic demand in which shortage is not allowed. The objective function of this model is to minimize costs (including raw materials, assembly stage, energy costs, packaging, and holding). Finally, this model has been solved by Lingo software using the branch and bound approach. Since the computation time was very long, the solver interrupted, and the obtained feasible solution was used for comparison. The proposed model's solution costs have been compared to the company’s real data. This non-optimal solution reduces the total production costs of the company by about %35.Keywords: multi-period, multi-product production, multi-stage, production planning
Procedia PDF Downloads 99431 Back to Basics: Redefining Quality Measurement for Hybrid Software Development Organizations
Authors: Satya Pradhan, Venky Nanniyur
Abstract:
As the software industry transitions from a license-based model to a subscription-based Software-as-a-Service (SaaS) model, many software development groups are using a hybrid development model that incorporates Agile and Waterfall methodologies in different parts of the organization. The traditional metrics used for measuring software quality in Waterfall or Agile paradigms do not apply to this new hybrid methodology. In addition, to respond to higher quality demands from customers and to gain a competitive advantage in the market, many companies are starting to prioritize quality as a strategic differentiator. As a result, quality metrics are included in the decision-making activities all the way up to the executive level, including board of director reviews. This paper presents key challenges associated with measuring software quality in organizations using the hybrid development model. We introduce a framework called Prevention-Inspection-Evaluation-Removal (PIER) to provide a comprehensive metric definition for hybrid organizations. The framework includes quality measurements, quality enforcement, and quality decision points at different organizational levels and project milestones. The metrics framework defined in this paper is being used for all Cisco systems products used in customer premises. We present several field metrics for one product portfolio (enterprise networking) to show the effectiveness of the proposed measurement system. As the results show, this metrics framework has significantly improved in-process defect management as well as field quality.Keywords: quality management system, quality metrics framework, quality metrics, agile, waterfall, hybrid development system
Procedia PDF Downloads 176430 Explore Customers' Perceptions of U.K. Fast Fashion Retailers' Identities
Authors: Ranis Cheng
Abstract:
Corporate identity is an asset of a company that is unique, valuable and provides a source of competitive advantage. This research taking a holistic view to explore all dimensions of corporate identity and influence of each on customers’ shopping experience in the fast fashion retail sector in the U.K. Unfortunately these issues have not been explored sufficiently in the extant literature, especially in the area of the identity gap. To date, there is still a lack of empirical research on corporate identity, especially in the retail sector despite the importance of the concept to all organisations. Furthermore, although customer group is one of the essential audiences of organisations and the importance of customers in corporate identity management cannot be ignored, to date limited studies have been conducted in order to understand how customers interpret and perceive corporate identity (perceived identity). Therefore, this research investigates customers’ perceptions of corporate identity in the fast fashion retail sector. 1) To explore customers’ perceptions of fast fashion retailers’ corporate identities; 2) To uncover the important constructs of corporate identity which contribute to the U.K. fast fashion retail sector. 40 semi-structured interviews with the fast fashion consumers have been carried out to identify their perceptions of fast fashion retailers' corporate identities. Secondary research on retailers' websites and press releases have been evaluated to identify their desired corporate identities. The findings have revealed that there are significant gaps between how fast fashion retailers present their identities and how their consumers perceive them. This has posed customers' negative perceptions towards the retailers and their shopping experience as a whole. This study has studied how the corporate identity constructs could be applied in the fashion context and has helped retailers to shed lights on how to minimise the gap between desired and perceived identity.Keywords: corporate identity, fast fashion, fashion retailing, identity gap
Procedia PDF Downloads 271429 An Exploratory Study to Investigate the Impact of Corporate Social Responsibility on Luxury Brand Avoidance in India
Authors: Glyn Atwal, Douglas Bryson
Abstract:
The rapid expansion of a consumer class in India has also coincided with an increasing awareness of social and environmental issues. The overall objective of this study explores to what extent Corporate Social Responsibility (CSR) can lead to luxury brand avoidance within an Indian context. In-depth interviews were conducted with luxury consumers in New Delhi. The demographic breakdown of those interviewed was 16 males and 9 females, aged between 21 and 44. Antecedents of brand avoidance could be sorted according to two main categories. The first category was consumer dissatisfaction due to poor product or service performance. Customer service, particularly within the hospitality sector, was identified as a defining source of brand avoidance. The second category was negative stereotypes of brand users. A salient finding was that no single participant explicitly identified CSR as a source of brand avoidance. However, the interviews revealed that luxury consumers are in fact concerned about CSR issues but assume that international luxury brands have a positive record on CSR performance. Interestingly, participants placed greater emphasis on the broader interpretation of ‘corporate reputation’ rather than specific social or environmental issues to determine the CSR performance of a luxury brand. The findings reported in this exploratory study suggest that Indian luxury consumers do value the overall CSR performance of luxury brands expressed as a brand responsibility or brand reputation, and this is a potential source of brand avoidance. International luxury brands need, therefore, consider developing but also communicating a positive CSR strategy in order to reduce the risk of customers forming negative opinions about the brand.Keywords: brand avoidance, CSR, luxury
Procedia PDF Downloads 318428 Investigation into the Phytochemistry and Biological Activities of Medicinal Plants Used in Algerian Folk Medicine: Potential Use in Human Medicine
Authors: Djebbar Atmani, Dina Kilani, Tristan Richard
Abstract:
Medicinal plants are an important source for the discovery of potential new substances for use in medicine and food. Pistacia lentiscus, Fraxinus angustifolia and Clematis flammula, plants growing in the Mediterranean basin, are widely used in traditional medicine. Therefore, the present study was designed to investigate their antioxidant, anti-inflammatory, antidiabetic, anti-mutagenic/genotoxic and neuroprotective potential and identification of active compounds using appropriate methodology. Plant extracts and fractions exhibited high scavenging capacity against known radicals, enhanced superoxide dismutase and catalase activitiesand restored blood glucose levels, in vivo, to normal values, in agreement with the in vitro enzymatic inhibition data, through inhibition of amylase and glucosidase activities. Administration of Pistacia lentiscus extracts significantly decreased carrageenan-induced mice paw oedema and reduced effectively IL-1β levels in cell culture, whereas Fraxinus angustifolia extracts showed good healing capacity against wounds when applied topically on rabbits. Pistacia lentiscus and Fraxinus angustifolia extracts showed good neuro-protection and restored cognitive functions in mice, while Clematis flammula extracts showed potent anti-ulcerogenic activity associated to a promising anti-mutagenic/genotoxic activity. HPLC-MS and NMR analyses allowed the identification and structural elucidation of several known and new anthocyanins, flavonols and flavanols. Therefore, Pistacia lentiscus, Fraxinus angustifolia and Clematis flammulacould be used in palliative treatments against inflammatory conditions and diabetes complications, as well as against deterioration of cognitive functions.Keywords: pistacia lentiscus, clematis flammula, fraxinus angustifolia, phenolic compounds, biological activity
Procedia PDF Downloads 74427 Pomegranate Attenuated Levodopa-Induced Dyskinesia and Dopaminergic Degeneration in MPTP Mice Models of Parkinson’s Disease
Authors: Mahsa Hadipour Jahromy, Sara Rezaii
Abstract:
Parkinson’s disease (PD) results primarily from the death of dopaminergic neurons in the substantia nigra. Soon after the discovery of levodopa and its beneficial effects in chronic administration, debilitating involuntary movements observed, termed levodopa-induced dyskinesia (LID) with poorly understood pathogenesis. Polyphenol-rich compounds, like pomegranate, provided neuroprotection in several animal models of brain diseases. In the present work, we investigated whether pomegranate has preventive effects following 4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced dopaminergic degenerations and the potential to diminish LID in mice. Mice model of PD was induced by MPTP (30 mg/kg daily for five consecutive days). To induce a mice model of LID, valid PD mice were treated with levodopa (50 mg/kg, i.p) for 15 days. Then the effects of chronic co-administration of pomegranate juice (20 ml/kg) with levodopa and continuing for 10 days, evaluated. Behavioural tests were performed in all groups, every other day including: Abnormal involuntary movements (AIMS), forelimb adjusting steps, cylinder, and catatonia tests. Finally, brain tissue sections were prepared to study substantia nigra changes and dopamine neuron density after treatments. With this MPTP regimen, significant movement disorders revealed in AIMS tests and there was a reduction in dopamine striatal density. Levodopa attenuates their loss caused by MPTP, however, in chronic administration, dyskinesia observed in forelimb adjusting step and cylinder tests. Besides, catatonia observed in some cases. Chronic pomegranate co-administration significantly improved LID in both tests and reduced dopaminergic loss in substantia nigra. These data indicate that pomegranate might be a good adjunct for preserving dopaminergic neurons in the substantia nigra and reducing LID in mice.Keywords: levodopa-induced dyskinesia, MPTP, Parkinson’s disease, pomegranate
Procedia PDF Downloads 494426 Measuring Corporate Brand Loyalties in Business Markets: A Case for Caution
Authors: Niklas Bondesson
Abstract:
Purpose: This paper attempts to examine how different facets of attitudinal brand loyalty are determined by different brand image elements in business markets. Design/Methodology/Approach: Statistical analysis is employed to data from a web survey, covering 226 professional packaging buyers in eight countries. Findings: The results reveal that different brand loyalty facets have different antecedents. Affective brand loyalties (or loyalty 'feelings') are mainly driven by customer associations to service relationships, whereas customers’ loyalty intentions (to purchase and recommend a brand) are triggered by associations to the general reputation of the company. The findings also indicate that willingness to pay a price premium is a distinct form of loyalty, with unique determinants. Research implications: Theoretically, the paper suggests that corporate B2B brand loyalty needs to be conceptualised with more refinement than has been done in extant B2B branding work. Methodologically, the paper highlights that single-item approaches can be fruitful when measuring B2B brand loyalty, and that multi-item scales can conceal important nuances in terms of understanding why customers are loyal. Practical implications: The idea of a loyalty 'silver metric' is an attractive idea, but this study indicates that firms who rely too much on one single type of brand loyalty risk to miss important building blocks. Originality/Value/Contribution: The major contribution is a more multi-faceted conceptualisation, and measurement, of corporate B2B brand loyalty and its brand image determinants than extant work has provided.Keywords: brand equity, business-to-business branding, industrial marketing, buying behaviour
Procedia PDF Downloads 415425 Clinical and Molecular Characterization of 120 Families with Sporadic Juvenile Onset Open Angle Glaucoma
Authors: Bindu I. Somarajan, Viney Gupta, Gagandeep Kaur Walia, Jasbir Kaur, Sunil Kumar, Shikha Gupta, Abadh K. Chaurasia, Dinesh Gupa, Abhinav Kaushik, Aditi Mehta, Vipin Gupta, Arundhati Sharma
Abstract:
Background: Juvenile onset primary open angle glaucoma (JOAG), affects individuals under the age of 40 years. Studies on a few families of JOAG, that led to the discovery of the Myocilin gene, reported the disease to have an autosomal dominant pattern of inheritance. However, sporadic forms of JOAG been seen to be more common in some populations. Most pathological homozygous mutations in the CYP1B1 gene associated with JOAG have been seen among sporadic cases. Given the higher prevalence of sporadic JOAG cases in our population, we aimed to look for common mutations E229K and R368H, the two most common variants in the CYP1B1 gene associated with glaucoma. Objective: To determine the frequency and evaluate genotype phenotype correlation of CYP1B1 E229K and R368H mutations in a cohort of 120 sporadic Juvenile open angle glaucoma patients.Methods: Unrelated JOAG patients whose first degree relatives had been examined and found to be unaffected were included in the study. The patients and their parents were screened for E229K and R368H mutations. The phenotypic characteristics were compared between probands with and with out these mutations by SPSS v16. Results: Out of 120 JOAG patients included in the study, the E229K mutation was seen in 9 probands (7.5%) and R368H in 7 (5.8%). The average age of onset of the disease (p=0.3) and the highest untreated IOP (p=0.4) among those carrying mutations was not significantly different from those who did not have these mutations. The proportion of probands with angle dysgenesis among those with E229K and R368H mutations was 70% (11 out of 16) in comparison to 65% (67 out of 104) of those who did not harbour these mutations (p=0.56). Similarly the probands with moderate to high myopia among those with E229K and R368H mutations was 20% (3 out of 16) in comparison to 18% (18 out of 104) of those who did not harbour these mutations(p=0.59). Conclusion: The frequency of E229K and R368H mutations of the CYP1B1 gene is low even among sporadic JOAG patients. Moreover there is no clinical correlation between the presence of these mutations and disease severityKeywords: CYP1B1, gene, IOP, JOAG, mutation
Procedia PDF Downloads 334424 Improve B-Tree Index’s Performance Using Lock-Free Hash Table
Authors: Zhanfeng Ma, Zhiping Xiong, Hu Yin, Zhengwei She, Aditya P. Gurajada, Tianlun Chen, Ying Li
Abstract:
Many RDBMS vendors use B-tree index to achieve high performance for point queries and range queries, and some of them also employ hash index to further enhance the performance as hash table is more efficient for point queries. However, there are extra overheads to maintain a separate hash index, for example, hash mapping for all data records must always be maintained, which results in more memory space consumption; locking, logging and other mechanisms are needed to guarantee ACID, which affects the concurrency and scalability of the system. To relieve the overheads, Hash Cached B-tree (HCB) index is proposed in this paper, which consists of a standard disk-based B-tree index and an additional in-memory lock-free hash table. Initially, only the B-tree index is constructed for all data records, the hash table is built on the fly based on runtime workload, only data records accessed by point queries are indexed using hash table, this helps reduce the memory footprint. Changes to hash table are done using compare-and-swap (CAS) without performing locking and logging, this helps improve the concurrency and avoid contention. The hash table is also optimized to be cache conscious. HCB index is implemented in SAP ASE database, compared with the standard B-tree index, early experiments and customer adoptions show significant performance improvement. This paper provides an overview of the design of HCB index and reports the experimental results.Keywords: B-tree, compare-and-swap, lock-free hash table, point queries, range queries, SAP ASE database
Procedia PDF Downloads 288423 Does Innovation Impact on Performance of Organizations? An Empirical Discovery
Authors: Zachary Bolo Awino
Abstract:
The need to gain and sustain a competitive advantage is overwhelming for businesses, especially now with cut throat competition. Innovation has been suggested as one way of gaining the advantage sustainably. But innovation can only happen within certain enabling environment and cultures. This study had one hypothesis: that there is no relationship between innovation and performance. This research was a cross sectional survey in which variables of interest are not controlled or manipulated. The cross sectional survey design is also appropriate for this study as it improves accuracy in generalizing findings, since it involves detailed study of a unit. Also known as one shot study, this design enhances uniform data collection and comparison across respondents. The population of the study was the 55 publicly quoted corporations in the Nairobi Securities Exchange (NSE) as at October 2013.The number was initially envisaged to be 60 but 5 firms were delisted or suspended during the year, hence leaving 55 firms as the population of study. The rationale for the choice for these firms is because they cut across the key economic sectors in Kenyan economy which include agriculture, commercial and services, manufacturing, finance and investment. This was a census survey and targeted all the firms listed at the Nairobi Securities Exchange as of October 2013. The primary data for the study was collected through the use of a structured questionnaire. A five point type Likert scale ranging from 1 - denoting to a less event to 5 - denoting to a greater extent was used. Respondents were from senior management of NSE. From the analyses, the study established that there was a strong positive relationship between innovation and performance, and organization innovation significantly contributes to employee engagement. Also there was a moderate positive relationship between innovation and performance. The study drew expressions of interrelations between various variables, offered generalization of understanding and meaning of these relationships, thus expanding the frontiers of knowledge both theoretical and practical with respect to innovation and firm performance. Major conclusion in this study was that there is a positive strong relationship between innovation and major measures of firm performance.Keywords: emperical, innovation, NSE, organizations, performance
Procedia PDF Downloads 281422 Modelling, Simulation, and Experimental Validation of the Influence of Golf-Ball-Inspired Dimpled Design in Drag Reduction and Improved Fuel Efficiency of Super-Mileage Vehicle
Authors: Bibin Sagaram, Ronith Stanly, S. S. Suneesh
Abstract:
Due to the dwindling supply of fuel reserves, engineers and designers now focus on fuel efficient designs for the solution of any problem; the transportation industry is not new to this kind of approach. Though the aerodynamic benefits of the dimples on a Golf-ball are known, it has never been scientifically tested on how such a design philosophy can improve the fuel efficiency of a real-life vehicle by imparting better aerodynamic performance. The main purpose of the paper is to establish the aerodynamic benefits of the Golf-ball-Inspired Dimpled Design in improving the fuel efficiency of a Super-mileage vehicle, constructed by Team Go Viridis for ‘Shell Eco Marathon Asia 2015’, and to predict the extent to which the results can be held valid for a road car. The body design was modeled in Autodesk Inventor and the Computational Fluid Dynamics (CFD) simulations were carried out using Ansys Fluent software. The aerodynamic parameters of designs (with and without the Golf-ball-Inspired Dimples) have been studied and the results are experimentally validated against those obtained from wind tunnel tests carried out on a 1:10 scaled-down 3D printed model. Test drives of the Super-mileage vehicle were carried out, under various conditions, to compare the variation in fuel efficiency with and without the Golf-ball-Inspired design. Primary investigations reveal an aerodynamic advantage of 25% for the vehicle with the Golf Ball Inspired Dimpled Design as opposed to the normal design. Initial tests conducted by ‘Mythbusters’ on Discovery Network using a modified road car has shown positive results which has motivated us to conduct such a research work using a custom-built experimental Super-Mileage vehicle. The content of the paper becomes relevant to the present Automotive and Energy industry where improving the fuel efficiency is of the top most priority.Keywords: aerodynamics, CFD, fuel efficiency, golf ball
Procedia PDF Downloads 334421 Systems Engineering Management Using Transdisciplinary Quality System Development Lifecycle Model
Authors: Mohamed Asaad Abdelrazek, Amir Taher El-Sheikh, M. Zayan, A.M. Elhady
Abstract:
The successful realization of complex systems is dependent not only on the technology issues and the process for implementing them, but on the management issues as well. Managing the systems development lifecycle requires technical management. Systems engineering management is the technical management. Systems engineering management is accomplished by incorporating many activities. The three major activities are development phasing, systems engineering process and lifecycle integration. Systems engineering management activities are performed across the system development lifecycle. Due to the ever-increasing complexity of systems as well the difficulty of managing and tracking the development activities, new ways to achieve systems engineering management activities are required. This paper presents a systematic approach used as a design management tool applied across systems engineering management roles. In this approach, Transdisciplinary System Development Lifecycle (TSDL) Model has been modified and integrated with Quality Function Deployment. Hereinafter, the name of the systematic approach is the Transdisciplinary Quality System Development Lifecycle (TQSDL) Model. The QFD translates the voice of customers (VOC) into measurable technical characteristics. The modified TSDL model is based on Axiomatic Design developed by Suh which is applicable to all designs: products, processes, systems and organizations. The TQSDL model aims to provide a robust structure and systematic thinking to support the implementation of systems engineering management roles. This approach ensures that the customer requirements are fulfilled as well as satisfies all the systems engineering manager roles and activities.Keywords: axiomatic design, quality function deployment, systems engineering management, system development lifecycle
Procedia PDF Downloads 364420 DeepLig: A de-novo Computational Drug Design Approach to Generate Multi-Targeted Drugs
Authors: Anika Chebrolu
Abstract:
Mono-targeted drugs can be of limited efficacy against complex diseases. Recently, multi-target drug design has been approached as a promising tool to fight against these challenging diseases. However, the scope of current computational approaches for multi-target drug design is limited. DeepLig presents a de-novo drug discovery platform that uses reinforcement learning to generate and optimize novel, potent, and multitargeted drug candidates against protein targets. DeepLig’s model consists of two networks in interplay: a generative network and a predictive network. The generative network, a Stack- Augmented Recurrent Neural Network, utilizes a stack memory unit to remember and recognize molecular patterns when generating novel ligands from scratch. The generative network passes each newly created ligand to the predictive network, which then uses multiple Graph Attention Networks simultaneously to forecast the average binding affinity of the generated ligand towards multiple target proteins. With each iteration, given feedback from the predictive network, the generative network learns to optimize itself to create molecules with a higher average binding affinity towards multiple proteins. DeepLig was evaluated based on its ability to generate multi-target ligands against two distinct proteins, multi-target ligands against three distinct proteins, and multi-target ligands against two distinct binding pockets on the same protein. With each test case, DeepLig was able to create a library of valid, synthetically accessible, and novel molecules with optimal and equipotent binding energies. We propose that DeepLig provides an effective approach to design multi-targeted drug therapies that can potentially show higher success rates during in-vitro trials.Keywords: drug design, multitargeticity, de-novo, reinforcement learning
Procedia PDF Downloads 99419 The Use of Beneficial Microorganisms from Diverse Environments for the Management of Aflatoxin in Maize
Authors: Mathias Twizeyimana, Urmila Adhikari, Julius P. Sserumaga, David Ingham
Abstract:
The management of aflatoxins (naturally occurring toxins produced by certain fungi, most importantly Aspergillus flavus and A. parasiticus) relies mostly on the use of best cultural practices and, in some cases, the use of the biological control consisting of atoxigenic strains inhibiting the toxigenic strains through competition resulting in considerable toxin reduction. At AgBiome, we have built a core collection of over 100,000 fully sequenced microbes from diverse environments and employ both the microbes and their sequences in the discovery of new biological products for disease and pest control. The most common approach to finding beneficial microbes consists of isolating microorganisms from samples collected from diverse environments, selecting antagonistic strains through empirical screening, studying modes of action, and stabilization through the formulation of selected microbial isolates. A total of 608 diverse bacterial strains were screened using a high-throughput assay (48-well assay) to identify strains that inhibit toxigenic A. flavus growth on maize kernels. Active strains in 48-well assay had their pathogen inhibiting activity confirmed using the Flask Assay and were concurrently tested for their ability to reduce the aflatoxin content in maize grains. Strains with best growth inhibition and reduction of aflatoxin were tested in the greenhouse and field trials. From the field trials, three bacterial strains, AFS000009 (Pseudomonas chlororaphis), AFS032321 (Bacillus subtilis), AFS024683 (Bacillus velezensis), had aflatoxin concentrations (ppb) values that were significantly lower than those of inoculated control. The identification of biological products with high efficacy in inhibiting pathogen growth and eventually reducing the aflatoxin content will provide a valuable alternative to control strategies used in aflatoxin contamination management.Keywords: aflatoxin, microorganism bacteria, biocontrol, beneficial microbes
Procedia PDF Downloads 184418 Performance Study of Classification Algorithms for Consumer Online Shopping Attitudes and Behavior Using Data Mining
Authors: Rana Alaa El-Deen Ahmed, M. Elemam Shehab, Shereen Morsy, Nermeen Mekawie
Abstract:
With the growing popularity and acceptance of e-commerce platforms, users face an ever increasing burden in actually choosing the right product from the large number of online offers. Thus, techniques for personalization and shopping guides are needed by users. For a pleasant and successful shopping experience, users need to know easily which products to buy with high confidence. Since selling a wide variety of products has become easier due to the popularity of online stores, online retailers are able to sell more products than a physical store. The disadvantage is that the customers might not find products they need. In this research the customer will be able to find the products he is searching for, because recommender systems are used in some ecommerce web sites. Recommender system learns from the information about customers and products and provides appropriate personalized recommendations to customers to find the needed product. In this paper eleven classification algorithms are comparatively tested to find the best classifier fit for consumer online shopping attitudes and behavior in the experimented dataset. The WEKA knowledge analysis tool, which is an open source data mining workbench software used in comparing conventional classifiers to get the best classifier was used in this research. In this research by using the data mining tool (WEKA) with the experimented classifiers the results show that decision table and filtered classifier gives the highest accuracy and the lowest accuracy classification via clustering and simple cart.Keywords: classification, data mining, machine learning, online shopping, WEKA
Procedia PDF Downloads 352417 The Characteristics of Porcine Immune Synapse via Flow Cytometry and Transmission Electron Microscope
Authors: Ann Ying-An Chen, Yi-Lun Tsai, Hso-Chi Chaung
Abstract:
An understanding of pathogens and the immune system has played an utmost important role in agricultural research for the development of vaccinations. The immunological synapse, cell to cell interaction play a crucial role in triggering the body's immune system, such as activation between antigen-presenting cells (APCs) and different subsets of T-cell. If these interactions are regulated appropriately, the host has the ability to defend itself against a wide spectrum of infectious pathogens. The aim of this study is to establish and to characterize a porcine immune synapse system by co-culturing T cell/APC. In this study, blood samples were collected from specific-pathogen-free piglets, and peripheral blood mononuclear cells (PBMC) were separated by using Ficoll-Pague. The PBMC were then stained with CD4 (FITC) and CD25 (PE) antibodies. Different subsets of T cells sorted by fluorescence-activated cell sorting flow cytometer were co-cultured for 24 hrs with alveolar macrophages, and the profiles of cytokine secretion and mRNA transcription levels of Toll-like receptors were examined after. Results showed that the three stages of immune synapse were clearly visible and identified under both transmission and scanning electron microscope (TEM and SEM). The significant interaction differences in toll-like receptor expressions within the co-cultured cell system were observed. The TLR7 mRNA expressions in CD4+CD25- cells were lower than those in CD4+CD25+ and CD4 -CD25+. Interestingly, the IL-10 production levels in CD4+CD25- cells (7.732 pg/mL) were significantly higher than those of CD4+CD25+ (2.636 pg/mL) and CD4 -CD25+ (2.48 pg/mL). These findings demonstrated that a clear understanding of the porcine immune synapse system can contribute greatly for further investigations on the mechanism of T-cell activation, which can benefit in the discovery of potential adjuvant candidate or effective antigen epitopes in the development of vaccinations with high efficacy.Keywords: antigen-presenting cells, immune synapse, pig, T subsets, toll-like receptor
Procedia PDF Downloads 127416 Optimization of Reliability Test Plans: Increase Wafer Fabrication Equipments Uptime
Authors: Swajeeth Panchangam, Arun Rajendran, Swarnim Gupta, Ahmed Zeouita
Abstract:
Semiconductor processing chambers tend to operate in controlled but aggressive operating conditions (chemistry, plasma, high temperature etc.) Owing to this, the design of this equipment requires developing robust and reliable hardware and software. Any equipment downtime due to reliability issues can have cost implications both for customers in terms of tool downtime (reduced throughput) and for equipment manufacturers in terms of high warranty costs and customer trust deficit. A thorough reliability assessment of critical parts and a plan for preventive maintenance/replacement schedules need to be done before tool shipment. This helps to save significant warranty costs and tool downtimes in the field. However, designing a proper reliability test plan to accurately demonstrate reliability targets with proper sample size and test duration is quite challenging. This is mainly because components can fail in different failure modes that fit into different Weibull beta value distributions. Without apriori Weibull beta of a failure mode under consideration, it always leads to over/under utilization of resources, which eventually end up in false positives or false negatives estimates. This paper proposes a methodology to design a reliability test plan with optimal model size/duration/both (independent of apriori Weibull beta). This methodology can be used in demonstration tests and can be extended to accelerated life tests to further decrease sample size/test duration.Keywords: reliability, stochastics, preventive maintenance
Procedia PDF Downloads 17415 A Proposed Optimized and Efficient Intrusion Detection System for Wireless Sensor Network
Authors: Abdulaziz Alsadhan, Naveed Khan
Abstract:
In recent years intrusions on computer network are the major security threat. Hence, it is important to impede such intrusions. The hindrance of such intrusions entirely relies on its detection, which is primary concern of any security tool like Intrusion Detection System (IDS). Therefore, it is imperative to accurately detect network attack. Numerous intrusion detection techniques are available but the main issue is their performance. The performance of IDS can be improved by increasing the accurate detection rate and reducing false positive. The existing intrusion detection techniques have the limitation of usage of raw data set for classification. The classifier may get jumble due to redundancy, which results incorrect classification. To minimize this problem, Principle Component Analysis (PCA), Linear Discriminant Analysis (LDA), and Local Binary Pattern (LBP) can be applied to transform raw features into principle features space and select the features based on their sensitivity. Eigen values can be used to determine the sensitivity. To further classify, the selected features greedy search, back elimination, and Particle Swarm Optimization (PSO) can be used to obtain a subset of features with optimal sensitivity and highest discriminatory power. These optimal feature subset used to perform classification. For classification purpose, Support Vector Machine (SVM) and Multilayer Perceptron (MLP) used due to its proven ability in classification. The Knowledge Discovery and Data mining (KDD’99) cup dataset was considered as a benchmark for evaluating security detection mechanisms. The proposed approach can provide an optimal intrusion detection mechanism that outperforms the existing approaches and has the capability to minimize the number of features and maximize the detection rates.Keywords: Particle Swarm Optimization (PSO), Principle Component Analysis (PCA), Linear Discriminant Analysis (LDA), Local Binary Pattern (LBP), Support Vector Machine (SVM), Multilayer Perceptron (MLP)
Procedia PDF Downloads 367414 Sustainable Packaging and Consumer Behavior in a Customer Experience: A Neuromarketing Perspective
Authors: Francesco Pinci
Abstract:
This study focuses on sustainability and consumer behavior in relation to packaging aesthetics. It investigates the significance of product packaging as a potent marketing tool with a specific emphasis on commercially available pasta as a case study. The research delves into the visual components of packaging, encompassing aspects such as color, shape, packaging material, and logo design. The findings of this study hold particular relevance for food and beverage companies as they seek to gain a comprehensive understanding of the factors influencing consumer purchasing decisions. Furthermore, the study places a significant emphasis on the sustainability aspects of packaging, exploring how eco-friendly and environmentally conscious packaging choices can impact consumer preferences and behaviors. The insights generated from this research contribute to a more sustainable approach to packaging practices and inform marketers on the effective integration of sustainability principles in their branding strategies. Overall, this study provides valuable insights into the dynamic interplay between aesthetics, sustainability, and consumer behavior, offering practical implications for businesses seeking to align their packaging practices with sustainable and consumer-centric approaches. In this study, packaging designs and images from the website of Eataly US.Eataly is one of the leading distributors of authentic Italian pasta worldwide, and its website serves as a rich source of packaging visuals and product representations. By analyzing the packaging and images showcased on the Eataly website, the study gained valuable insights into consumer behavior and preferences regarding pasta packaging in the context of sustainability and aesthetics.Keywords: consumer behaviour, sustainability, food marketing, neuromarketing
Procedia PDF Downloads 115413 Process Assessment Model for Process Capability Determination Based on ISO/IEC 20000-1:2011
Authors: Harvard Najoan, Sarwono Sutikno, Yusep Rosmansyah
Abstract:
Most enterprises are now using information technology services as their assets to support business objectives. These kinds of services are provided by the internal service provider (inside the enterprise) or external service provider (outside enterprise). To deliver quality information technology services, the service provider (which from now on will be called ‘organization’) either internal or external, must have a standard for service management system. At present, the standard that is recognized as best practice for service management system for the organization is international standard ISO/IEC 20000:2011. The most important part of this international standard is the first part or ISO/IEC 20000-1:2011-Service Management System Requirement, because it contains 22 for organization processes as a requirement to be implemented in an organizational environment in order to build, manage and deliver quality service to the customer. Assessing organization management processes is the first step to implementing ISO/IEC 20000:2011 into the organization management processes. This assessment needs Process Assessment Model (PAM) as an assessment instrument. PAM comprises two parts: Process Reference Model (PRM) and Measurement Framework (MF). PRM is built by transforming the 22 process of ISO/IEC 20000-1:2011 and MF is based on ISO/IEC 33020. This assessment instrument was designed to assess the capability of service management process in Divisi Teknologi dan Sistem Informasi (Information Systems and Technology Division) as an internal organization of PT Pos Indonesia. The result of this assessment model can be proposed to improve the capability of service management system.Keywords: ISO/IEC 20000-1:2011, ISO/IEC 33020:2015, process assessment, process capability, service management system
Procedia PDF Downloads 467412 Niftiness of the COLME to Promote Shared Decision-Making in Organizations
Authors: Prakash Singh
Abstract:
The question that arises is whether a theory such as the Collegial Leadership Model of Emancipation (COLME) has the potency to introduce leadership change by empowering and emancipating their employees. It is a fallacy to simply assume that experience alone, in the absence of theory, will contribute to this knowledge base to develop collegial leaders. The focus of this study is to therefore ascertain whether the COLME can serve as a conceptual framework to transform traditional bureaucratic management practices (TBMPs) in order to promote shared decision-making in organizations such as schools. All the respondents in this exploratory qualitative study embraced collegiality to transform TBMPs in their organizations. For the positive effects to be sustained, the collegial practices need to be evolutionary and emancipatory in order to evoke the values of collegial leadership as elucidated by the findings of this study. Interviewees affirmed that the COLME provides an astute framework to develop commendable collegial leadership practices as it clearly outlines procedures to develop and use the leadership potential of all the employees in order to foster joint accountability. They acknowledged that when the principles of collegiality are flexibly applied, they contribute to the creation of a holistic milieu in which all employees are able to express themselves freely, without fear of failure, and thus feel that they are part of the democratic decision-making process. Evidently, a conceptual framework such as the COLME can serve as a benchmark for leadership effectiveness because organizational outcomes need to be measured against standards of excellence in meeting both employee and customer expectations.Keywords: collegial leadership model, employee empowerment, shared decision-making, traditional bureaucratic management practices
Procedia PDF Downloads 495411 A Geophysical Study for Delineating the Subsurface Minerals at El Qusier Area, Central Eastern Desert, Egypt
Authors: Ahmed Khalil, Elhamy Tarabees, Svetlana Kovacikova
Abstract:
The Red Sea Mountains have been famous for their ore deposits since ancient times. Also, petrographic analysis and previous potential field surveys indicated large unexplored accumulations of ore minerals in the area. Therefore, the main goal of the presented study is to contribute to the discovery of hitherto unknown ore mineral deposits in the Red Sea region. To achieve this goal, we used two geophysical techniques: land magnetic survey and magnetotelluric data. A high-resolution land magnetic survey has been acquired using two proton magnetometers, one instrument used as a base station for the diurnal correction and the other used to measure the magnetic field along the study area. Two hundred eighty land magnetic stations were measured over a mesh-like area with a 500m spacing interval. The necessary reductions concerning daily variation, regional gradient and time observation were applied. Then, the total intensity anomaly map was constructed and transformed into the reduced magnetic pole (RTP). The magnetic interpretation was carried out using the analytical signal as well as regional–residual separation is carried out using the power spectrum. Also, the tilt derivative method (TDR) technique is applied to delineate the structure and hidden anomalies. Data analysis has been performed using trend analysis and Euler deconvolution. The results indicate that magnetic contacts are not the dominant geological feature of the study area. The magnetotleruric survey consisted of two profiles with a total of 8 broadband measurement points with a duration of about 24 hours crossing a wadi um Gheig approximately 50 km south of El Quseir. Collected data have been inverted to the electrical resistivity model using the 3D modular 3D inversion technique ModEM. The model revealed a non-conductive body in its central part, probably corresponding to a dolerite dyke, with which possible ore mineralization could be related.Keywords: magnetic survey, magnetotelluric, mineralization, 3d modeling
Procedia PDF Downloads 31410 A Web Service-Based Framework for Mining E-Learning Data
Authors: Felermino D. M. A. Ali, S. C. Ng
Abstract:
E-learning is an evolutionary form of distance learning and has become better over time as new technologies emerged. Today, efforts are still being made to embrace E-learning systems with emerging technologies in order to make them better. Among these advancements, Educational Data Mining (EDM) is one that is gaining a huge and increasing popularity due to its wide application for improving the teaching-learning process in online practices. However, even though EDM promises to bring many benefits to educational industry in general and E-learning environments in particular, its principal drawback is the lack of easy to use tools. The current EDM tools usually require users to have some additional technical expertise to effectively perform EDM tasks. Thus, in response to these limitations, this study intends to design and implement an EDM application framework which aims at automating and simplify the development of EDM in E-learning environment. The application framework introduces a Service-Oriented Architecture (SOA) that hides the complexity of technical details and enables users to perform EDM in an automated fashion. The framework was designed based on abstraction, extensibility, and interoperability principles. The framework implementation was made up of three major modules. The first module provides an abstraction for data gathering, which was done by extending Moodle LMS (Learning Management System) source code. The second module provides data mining methods and techniques as services; it was done by converting Weka API into a set of Web services. The third module acts as an intermediary between the first two modules, it contains a user-friendly interface that allows dynamically locating data provider services, and running knowledge discovery tasks on data mining services. An experiment was conducted to evaluate the overhead of the proposed framework through a combination of simulation and implementation. The experiments have shown that the overhead introduced by the SOA mechanism is relatively small, therefore, it has been concluded that a service-oriented architecture can be effectively used to facilitate educational data mining in E-learning environments.Keywords: educational data mining, e-learning, distributed data mining, moodle, service-oriented architecture, Weka
Procedia PDF Downloads 236409 Brain Connectome of Glia, Axons, and Neurons: Cognitive Model of Analogy
Authors: Ozgu Hafizoglu
Abstract:
An analogy is an essential tool of human cognition that enables connecting diffuse and diverse systems with physical, behavioral, principal relations that are essential to learning, discovery, and innovation. The Cognitive Model of Analogy (CMA) leads and creates patterns of pathways to transfer information within and between domains in science, just as happens in the brain. The connectome of the brain shows how the brain operates with mental leaps between domains and mental hops within domains and the way how analogical reasoning mechanism operates. This paper demonstrates the CMA as an evolutionary approach to science, technology, and life. The model puts forward the challenges of deep uncertainty about the future, emphasizing the need for flexibility of the system in order to enable reasoning methodology to adapt to changing conditions in the new era, especially post-pandemic. In this paper, we will reveal how to draw an analogy to scientific research to discover new systems that reveal the fractal schema of analogical reasoning within and between the systems like within and between the brain regions. Distinct phases of the problem-solving processes are divided thusly: stimulus, encoding, mapping, inference, and response. Based on the brain research so far, the system is revealed to be relevant to brain activation considering each of these phases with an emphasis on achieving a better visualization of the brain’s mechanism in macro context; brain and spinal cord, and micro context: glia and neurons, relative to matching conditions of analogical reasoning and relational information, encoding, mapping, inference and response processes, and verification of perceptual responses in four-term analogical reasoning. Finally, we will relate all these terminologies with these mental leaps, mental maps, mental hops, and mental loops to make the mental model of CMA clear.Keywords: analogy, analogical reasoning, brain connectome, cognitive model, neurons and glia, mental leaps, mental hops, mental loops
Procedia PDF Downloads 165