Search results for: algorithm symbol recognition
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5240

Search results for: algorithm symbol recognition

4040 Evolved Bat Algorithm Based Adaptive Fuzzy Sliding Mode Control with LMI Criterion

Authors: P.-W. Tsai, C.-Y. Chen, C.-W. Chen

Abstract:

In this paper, the stability analysis of a GA-Based adaptive fuzzy sliding model controller for a nonlinear system is discussed. First, a nonlinear plant is well-approximated and described with a reference model and a fuzzy model, both involving FLC rules. Then, FLC rules and the consequent parameter are decided on via an Evolved Bat Algorithm (EBA). After this, we guarantee a new tracking performance inequality for the control system. The tracking problem is characterized to solve an eigenvalue problem (EVP). Next, an adaptive fuzzy sliding model controller (AFSMC) is proposed to stabilize the system so as to achieve good control performance. Lyapunov’s direct method can be used to ensure the stability of the nonlinear system. It is shown that the stability analysis can reduce nonlinear systems into a linear matrix inequality (LMI) problem. Finally, a numerical simulation is provided to demonstrate the control methodology.

Keywords: adaptive fuzzy sliding mode control, Lyapunov direct method, swarm intelligence, evolved bat algorithm

Procedia PDF Downloads 446
4039 Optimized Deep Learning-Based Facial Emotion Recognition System

Authors: Erick C. Valverde, Wansu Lim

Abstract:

Facial emotion recognition (FER) system has been recently developed for more advanced computer vision applications. The ability to identify human emotions would enable smart healthcare facility to diagnose mental health illnesses (e.g., depression and stress) as well as better human social interactions with smart technologies. The FER system involves two steps: 1) face detection task and 2) facial emotion recognition task. It classifies the human expression in various categories such as angry, disgust, fear, happy, sad, surprise, and neutral. This system requires intensive research to address issues with human diversity, various unique human expressions, and variety of human facial features due to age differences. These issues generally affect the ability of the FER system to detect human emotions with high accuracy. Early stage of FER systems used simple supervised classification task algorithms like K-nearest neighbors (KNN) and artificial neural networks (ANN). These conventional FER systems have issues with low accuracy due to its inefficiency to extract significant features of several human emotions. To increase the accuracy of FER systems, deep learning (DL)-based methods, like convolutional neural networks (CNN), are proposed. These methods can find more complex features in the human face by means of the deeper connections within its architectures. However, the inference speed and computational costs of a DL-based FER system is often disregarded in exchange for higher accuracy results. To cope with this drawback, an optimized DL-based FER system is proposed in this study.An extreme version of Inception V3, known as Xception model, is leveraged by applying different network optimization methods. Specifically, network pruning and quantization are used to enable lower computational costs and reduce memory usage, respectively. To support low resource requirements, a 68-landmark face detector from Dlib is used in the early step of the FER system.Furthermore, a DL compiler is utilized to incorporate advanced optimization techniques to the Xception model to improve the inference speed of the FER system. In comparison to VGG-Net and ResNet50, the proposed optimized DL-based FER system experimentally demonstrates the objectives of the network optimization methods used. As a result, the proposed approach can be used to create an efficient and real-time FER system.

Keywords: deep learning, face detection, facial emotion recognition, network optimization methods

Procedia PDF Downloads 120
4038 Study of Bima Tembe and Its Relation to Rimpu as a Cultural Women Clothes in Bima

Authors: Morinta Rosandini

Abstract:

Bima Tembe is an excellent sample of cultural artifact that many people regard it as: (1) manufactured by a traditional techniques, (2) contained with variety forms and great philosophical motifs, and (3) having valued functions related to women status in the society. This research examined elements of Bima Tembe and their relations and one of the usage of tembe, named Rimpus. The elements include: (1) the traditional techniques of making Bima Tembe, (2) the variety forms (3) and philosophical motifs of Bima Tembe. Rimpu, is a cultural women clothes in Bima, which use Bima Tembe as a main part. From this reseacrh found that the Bima Tembe made by weaving technique using a traditional loom, and has two types of Tembe; Tembe Istana and Tembe Rakyat, with various motif each type. The The usage of Rimpu is as a symbol of the obedience to God and the type of Rimpu indicate the women status in the society.

Keywords: bima, tembe, rimpu, clothes

Procedia PDF Downloads 422
4037 Series-Parallel Systems Reliability Optimization Using Genetic Algorithm and Statistical Analysis

Authors: Essa Abrahim Abdulgader Saleem, Thien-My Dao

Abstract:

The main objective of this paper is to optimize series-parallel system reliability using Genetic Algorithm (GA) and statistical analysis; considering system reliability constraints which involve the redundant numbers of selected components, total cost, and total weight. To perform this work, firstly the mathematical model which maximizes system reliability subject to maximum system cost and maximum system weight constraints is presented; secondly, a statistical analysis is used to optimize GA parameters, and thirdly GA is used to optimize series-parallel systems reliability. The objective is to determine the strategy choosing the redundancy level for each subsystem to maximize the overall system reliability subject to total cost and total weight constraints. Finally, the series-parallel system case study reliability optimization results are showed, and comparisons with the other previous results are presented to demonstrate the performance of our GA.

Keywords: reliability, optimization, meta-heuristic, genetic algorithm, redundancy

Procedia PDF Downloads 338
4036 Optimal Design of Friction Dampers for Seismic Retrofit of a Moment Frame

Authors: Hyungoo Kang, Jinkoo Kim

Abstract:

This study investigated the determination of the optimal location and friction force of friction dampers to effectively reduce the seismic response of a reinforced concrete structure designed without considering seismic load. To this end, the genetic algorithm process was applied and the results were compared with those obtained by simplified methods such as distribution of dampers based on the story shear or the inter-story drift ratio. The seismic performance of the model structure with optimally positioned friction dampers was evaluated by nonlinear static and dynamic analyses. The analysis results showed that compared with the system without friction dampers, the maximum roof displacement and the inter-story drift ratio were reduced by about 30% and 40%, respectively. After installation of the dampers about 70% of the earthquake input energy was dissipated by the dampers and the energy dissipated in the structural elements was reduced by about 50%. In comparison with the simplified methods of installation, the genetic algorithm provided more efficient solutions for seismic retrofit of the model structure.

Keywords: friction dampers, genetic algorithm, optimal design, RC buildings

Procedia PDF Downloads 245
4035 Event Data Representation Based on Time Stamp for Pedestrian Detection

Authors: Yuta Nakano, Kozo Kajiwara, Atsushi Hori, Takeshi Fujita

Abstract:

In association with the wave of electric vehicles (EV), low energy consumption systems have become more and more important. One of the key technologies to realize low energy consumption is a dynamic vision sensor (DVS), or we can call it an event sensor, neuromorphic vision sensor and so on. This sensor has several features, such as high temporal resolution, which can achieve 1 Mframe/s, and a high dynamic range (120 DB). However, the point that can contribute to low energy consumption the most is its sparsity; to be more specific, this sensor only captures the pixels that have intensity change. In other words, there is no signal in the area that does not have any intensity change. That is to say, this sensor is more energy efficient than conventional sensors such as RGB cameras because we can remove redundant data. On the other side of the advantages, it is difficult to handle the data because the data format is completely different from RGB image; for example, acquired signals are asynchronous and sparse, and each signal is composed of x-y coordinate, polarity (two values: +1 or -1) and time stamp, it does not include intensity such as RGB values. Therefore, as we cannot use existing algorithms straightforwardly, we have to design a new processing algorithm to cope with DVS data. In order to solve difficulties caused by data format differences, most of the prior arts make a frame data and feed it to deep learning such as Convolutional Neural Networks (CNN) for object detection and recognition purposes. However, even though we can feed the data, it is still difficult to achieve good performance due to a lack of intensity information. Although polarity is often used as intensity instead of RGB pixel value, it is apparent that polarity information is not rich enough. Considering this context, we proposed to use the timestamp information as a data representation that is fed to deep learning. Concretely, at first, we also make frame data divided by a certain time period, then give intensity value in response to the timestamp in each frame; for example, a high value is given on a recent signal. We expected that this data representation could capture the features, especially of moving objects, because timestamp represents the movement direction and speed. By using this proposal method, we made our own dataset by DVS fixed on a parked car to develop an application for a surveillance system that can detect persons around the car. We think DVS is one of the ideal sensors for surveillance purposes because this sensor can run for a long time with low energy consumption in a NOT dynamic situation. For comparison purposes, we reproduced state of the art method as a benchmark, which makes frames the same as us and feeds polarity information to CNN. Then, we measured the object detection performances of the benchmark and ours on the same dataset. As a result, our method achieved a maximum of 7 points greater than the benchmark in the F1 score.

Keywords: event camera, dynamic vision sensor, deep learning, data representation, object recognition, low energy consumption

Procedia PDF Downloads 101
4034 Development of a Few-View Computed Tomographic Reconstruction Algorithm Using Multi-Directional Total Variation

Authors: Chia Jui Hsieh, Jyh Cheng Chen, Chih Wei Kuo, Ruei Teng Wang, Woei Chyn Chu

Abstract:

Compressed sensing (CS) based computed tomographic (CT) reconstruction algorithm utilizes total variation (TV) to transform CT image into sparse domain and minimizes L1-norm of sparse image for reconstruction. Different from the traditional CS based reconstruction which only calculates x-coordinate and y-coordinate TV to transform CT images into sparse domain, we propose a multi-directional TV to transform tomographic image into sparse domain for low-dose reconstruction. Our method considers all possible directions of TV calculations around a pixel, so the sparse transform for CS based reconstruction is more accurate. In 2D CT reconstruction, we use eight-directional TV to transform CT image into sparse domain. Furthermore, we also use 26-directional TV for 3D reconstruction. This multi-directional sparse transform method makes CS based reconstruction algorithm more powerful to reduce noise and increase image quality. To validate and evaluate the performance of this multi-directional sparse transform method, we use both Shepp-Logan phantom and a head phantom as the targets for reconstruction with the corresponding simulated sparse projection data (angular sampling interval is 5 deg and 6 deg, respectively). From the results, the multi-directional TV method can reconstruct images with relatively less artifacts compared with traditional CS based reconstruction algorithm which only calculates x-coordinate and y-coordinate TV. We also choose RMSE, PSNR, UQI to be the parameters for quantitative analysis. From the results of quantitative analysis, no matter which parameter is calculated, the multi-directional TV method, which we proposed, is better.

Keywords: compressed sensing (CS), low-dose CT reconstruction, total variation (TV), multi-directional gradient operator

Procedia PDF Downloads 257
4033 Impact of Weather Conditions on Generalized Frequency Division Multiplexing over Gamma Gamma Channel

Authors: Muhammad Sameer Ahmed, Piotr Remlein, Tansal Gucluoglu

Abstract:

The technique called as Generalized frequency division multiplexing (GFDM) used in the free space optical channel can be a good option for implementation free space optical communication systems. This technique has several strengths e.g. good spectral efficiency, low peak-to-average power ratio (PAPR), adaptability and low co-channel interference. In this paper, the impact of weather conditions such as haze, rain and fog on GFDM over the gamma-gamma channel model is discussed. A Trade off between link distance and system performance under intense weather conditions is also analysed. The symbol error probability (SEP) of GFDM over the gamma-gamma turbulence channel is derived and verified with the computer simulations.

Keywords: free space optics, generalized frequency division multiplexing, weather conditions, gamma gamma distribution

Procedia PDF Downloads 176
4032 Non-Population Search Algorithms for Capacitated Material Requirement Planning in Multi-Stage Assembly Flow Shop with Alternative Machines

Authors: Watcharapan Sukkerd, Teeradej Wuttipornpun

Abstract:

This paper aims to present non-population search algorithms called tabu search (TS), simulated annealing (SA) and variable neighborhood search (VNS) to minimize the total cost of capacitated MRP problem in multi-stage assembly flow shop with two alternative machines. There are three main steps for the algorithm. Firstly, an initial sequence of orders is constructed by a simple due date-based dispatching rule. Secondly, the sequence of orders is repeatedly improved to reduce the total cost by applying TS, SA and VNS separately. Finally, the total cost is further reduced by optimizing the start time of each operation using the linear programming (LP) model. Parameters of the algorithm are tuned by using real data from automotive companies. The result shows that VNS significantly outperforms TS, SA and the existing algorithm.

Keywords: capacitated MRP, tabu search, simulated annealing, variable neighborhood search, linear programming, assembly flow shop, application in industry

Procedia PDF Downloads 235
4031 Evaluation of Dual Polarization Rainfall Estimation Algorithm Applicability in Korea: A Case Study on Biseulsan Radar

Authors: Chulsang Yoo, Gildo Kim

Abstract:

Dual polarization radar provides comprehensive information about rainfall by measuring multiple parameters. In Korea, for the rainfall estimation, JPOLE and CSU-HIDRO algorithms are generally used. This study evaluated the local applicability of JPOLE and CSU-HIDRO algorithms in Korea by using the observed rainfall data collected on August, 2014 by the Biseulsan dual polarization radar data and KMA AWS. A total of 11,372 pairs of radar-ground rain rate data were classified according to thresholds of synthetic algorithms into suitable and unsuitable data. Then, evaluation criteria were derived by comparing radar rain rate and ground rain rate, respectively, for entire, suitable, unsuitable data. The results are as follows: (1) The radar rain rate equation including KDP, was found better in the rainfall estimation than the other equations for both JPOLE and CSU-HIDRO algorithms. The thresholds were found to be adequately applied for both algorithms including specific differential phase. (2) The radar rain rate equation including horizontal reflectivity and differential reflectivity were found poor compared to the others. The result was not improved even when only the suitable data were applied. Acknowledgments: This work was supported by the Basic Science Research Program through the National Research Foundation of Korea, funded by the Ministry of Education (NRF-2013R1A1A2011012).

Keywords: CSU-HIDRO algorithm, dual polarization radar, JPOLE algorithm, radar rainfall estimation algorithm

Procedia PDF Downloads 217
4030 Riesz Mixture Model for Brain Tumor Detection

Authors: Mouna Zitouni, Mariem Tounsi

Abstract:

This research introduces an application of the Riesz mixture model for medical image segmentation for accurate diagnosis and treatment of brain tumors. We propose a pixel classification technique based on the Riesz distribution, derived from an extended Bartlett decomposition. To our knowledge, this is the first study addressing this approach. The Expectation-Maximization algorithm is implemented for parameter estimation. A comparative analysis, using both synthetic and real brain images, demonstrates the superiority of the Riesz model over a recent method based on the Wishart distribution.

Keywords: EM algorithm, segmentation, Riesz probability distribution, Wishart probability distribution

Procedia PDF Downloads 21
4029 An Efficient Design of Static Synchronous Series Compensator Based Fractional Order PID Controller Using Invasive Weed Optimization Algorithm

Authors: Abdelghani Choucha, Lakhdar Chaib, Salem Arif

Abstract:

This paper treated the problem of power system stability with the aid of Static Synchronous Series Compensator (SSSC) installed in the transmission line of single machine infinite bus (SMIB) power system. A fractional order PID (FOPID) controller has been applied as a robust controller for optimal SSSC design to control the power system characteristics. Additionally, the SSSC based FOPID parameters are smoothly tuned using Invasive Weed Optimization algorithm (IWO). To verify the strength of the proposed controller, SSSC based FOPID controller is validated in a wide range of operating condition and compared with the conventional scheme SSSC-POD controller. The main purpose of the proposed process is greatly enhanced the dynamic states of the tested system. Simulation results clearly prove the superiority and performance of the proposed controller design.

Keywords: SSSC-FOPID, SSSC-POD, SMIB power system, invasive weed optimization algorithm

Procedia PDF Downloads 189
4028 Deterministic Random Number Generator Algorithm for Cryptosystem Keys

Authors: Adi A. Maaita, Hamza A. A. Al Sewadi

Abstract:

One of the crucial parameters of digital cryptographic systems is the selection of the keys used and their distribution. The randomness of the keys has a strong impact on the system’s security strength being difficult to be predicted, guessed, reproduced or discovered by a cryptanalyst. Therefore, adequate key randomness generation is still sought for the benefit of stronger cryptosystems. This paper suggests an algorithm designed to generate and test pseudo random number sequences intended for cryptographic applications. This algorithm is based on mathematically manipulating a publically agreed upon information between sender and receiver over a public channel. This information is used as a seed for performing some mathematical functions in order to generate a sequence of pseudorandom numbers that will be used for encryption/decryption purposes. This manipulation involves permutations and substitutions that fulfills Shannon’s principle of “confusion and diffusion”. ASCII code characters wereutilized in the generation process instead of using bit strings initially, which adds more flexibility in testing different seed values. Finally, the obtained results would indicate sound difficulty of guessing keys by attackers.

Keywords: cryptosystems, information security agreement, key distribution, random numbers

Procedia PDF Downloads 269
4027 Study of the Best Algorithm to Estimate Sunshine Duration from Global Radiation on Horizontal Surface for Tropical Region

Authors: Tovondahiniriko Fanjirindratovo, Olga Ramiarinjanahary, Paulisimone Rasoavonjy

Abstract:

The sunshine duration, which is the sum of all the moments when the solar beam radiation is up to a minimal value, is an important parameter for climatology, tourism, agriculture and solar energy. Its measure is usually given by a pyrheliometer installed on a two-axis solar tracker. Due to the high cost of this device and the availability of global radiation on a horizontal surface, on the other hand, several studies have been done to make a correlation between global radiation and sunshine duration. Most of these studies are fitted for the northern hemisphere using a pyrheliometric database. The aim of the present work is to list and assess all the existing methods and apply them to Reunion Island, a tropical region in the southern hemisphere. Using a database of ten years, global, diffuse and beam radiation for a horizontal surface are employed in order to evaluate the uncertainty of existing algorithms for a tropical region. The methodology is based on indirect comparison because the solar beam radiation is not measured but calculated by the beam radiation on a horizontal surface and the sun elevation angle.

Keywords: Carpentras method, data fitting, global radiation, sunshine duration, Slob and Monna algorithm, step algorithm

Procedia PDF Downloads 128
4026 Kinematic Hardening Parameters Identification with Respect to Objective Function

Authors: Marina Franulovic, Robert Basan, Bozidar Krizan

Abstract:

Constitutive modelling of material behaviour is becoming increasingly important in prediction of possible failures in highly loaded engineering components, and consequently, optimization of their design. In order to account for large number of phenomena that occur in the material during operation, such as kinematic hardening effect in low cycle fatigue behaviour of steels, complex nonlinear material models are used ever more frequently, despite of the complexity of determination of their parameters. As a method for the determination of these parameters, genetic algorithm is good choice because of its capability to provide very good approximation of the solution in systems with large number of unknown variables. For the application of genetic algorithm to parameter identification, inverse analysis must be primarily defined. It is used as a tool to fine-tune calculated stress-strain values with experimental ones. In order to choose proper objective function for inverse analysis among already existent and newly developed functions, the research is performed to investigate its influence on material behaviour modelling.

Keywords: genetic algorithm, kinematic hardening, material model, objective function

Procedia PDF Downloads 336
4025 A Geometric Based Hybrid Approach for Facial Feature Localization

Authors: Priya Saha, Sourav Dey Roy Jr., Debotosh Bhattacharjee, Mita Nasipuri, Barin Kumar De, Mrinal Kanti Bhowmik

Abstract:

Biometric face recognition technology (FRT) has gained a lot of attention due to its extensive variety of applications in both security and non-security perspectives. It has come into view to provide a secure solution in identification and verification of person identity. Although other biometric based methods like fingerprint scans, iris scans are available, FRT is verified as an efficient technology for its user-friendliness and contact freeness. Accurate facial feature localization plays an important role for many facial analysis applications including biometrics and emotion recognition. But, there are certain factors, which make facial feature localization a challenging task. On human face, expressions can be seen from the subtle movements of facial muscles and influenced by internal emotional states. These non-rigid facial movements cause noticeable alterations in locations of facial landmarks, their usual shapes, which sometimes create occlusions in facial feature areas making face recognition as a difficult problem. The paper proposes a new hybrid based technique for automatic landmark detection in both neutral and expressive frontal and near frontal face images. The method uses the concept of thresholding, sequential searching and other image processing techniques for locating the landmark points on the face. Also, a Graphical User Interface (GUI) based software is designed that could automatically detect 16 landmark points around eyes, nose and mouth that are mostly affected by the changes in facial muscles. The proposed system has been tested on widely used JAFFE and Cohn Kanade database. Also, the system is tested on DeitY-TU face database which is created in the Biometrics Laboratory of Tripura University under the research project funded by Department of Electronics & Information Technology, Govt. of India. The performance of the proposed method has been done in terms of error measure and accuracy. The method has detection rate of 98.82% on JAFFE database, 91.27% on Cohn Kanade database and 93.05% on DeitY-TU database. Also, we have done comparative study of our proposed method with other techniques developed by other researchers. This paper will put into focus emotion-oriented systems through AU detection in future based on the located features.

Keywords: biometrics, face recognition, facial landmarks, image processing

Procedia PDF Downloads 413
4024 Application of Heuristic Integration Ant Colony Optimization in Path Planning

Authors: Zeyu Zhang, Guisheng Yin, Ziying Zhang, Liguo Zhang

Abstract:

This paper mainly studies the path planning method based on ant colony optimization (ACO), and proposes heuristic integration ant colony optimization (HIACO). This paper not only analyzes and optimizes the principle, but also simulates and analyzes the parameters related to the application of HIACO in path planning. Compared with the original algorithm, the improved algorithm optimizes probability formula, tabu table mechanism and updating mechanism, and introduces more reasonable heuristic factors. The optimized HIACO not only draws on the excellent ideas of the original algorithm, but also solves the problems of premature convergence, convergence to the sub optimal solution and improper exploration to some extent. HIACO can be used to achieve better simulation results and achieve the desired optimization. Combined with the probability formula and update formula, several parameters of HIACO are tested. This paper proves the principle of the HIACO and gives the best parameter range in the research of path planning.

Keywords: ant colony optimization, heuristic integration, path planning, probability formula

Procedia PDF Downloads 252
4023 Inverse Scattering of Two-Dimensional Objects Using an Enhancement Method

Authors: A.R. Eskandari, M.R. Eskandari

Abstract:

A 2D complete identification algorithm for dielectric and multiple objects immersed in air is presented. The employed technique consists of initially retrieving the shape and position of the scattering object using a linear sampling method and then determining the electric permittivity and conductivity of the scatterer using adjoint sensitivity analysis. This inversion algorithm results in high computational speed and efficiency, and it can be generalized for any scatterer structure. Also, this method is robust with respect to noise. The numerical results clearly show that this hybrid approach provides accurate reconstructions of various objects.

Keywords: inverse scattering, microwave imaging, two-dimensional objects, Linear Sampling Method (LSM)

Procedia PDF Downloads 388
4022 A Versatile Algorithm to Propose Optimized Solutions to the Dengue Disease Problem

Authors: Fernando L. P. Santos, Luiz G. Lyra, Helenice O. Florentino, Daniela R. Cantane

Abstract:

Dengue is a febrile infectious disease caused by a virus of the family Flaviridae. It is transmitted by the bite of mosquitoes, usually of the genus Aedes aegypti. It occurs in tropical and subtropical areas of the world. This disease has been a major public health problem worldwide, especially in tropical countries such as Brazil, and its incidence has increased in recent years. Dengue is a subject of intense research. Efficient forms of mosquito control must be considered. In this work, the mono-objective optimal control problem was solved for analysing the dengue disease problem. Chemical and biological controls were considered in the mathematical aspect. This model describes the dynamics of mosquitoes in water and winged phases. We applied the genetic algorithms (GA) to obtain optimal strategies for the control of dengue. Numerical simulations have been performed to verify the versatility and the applicability of this algorithm. On the basis of the present results we may recommend the GA to solve optimal control problem with a large region of feasibility.

Keywords: genetic algorithm, dengue, Aedes aegypti, biological control, chemical control

Procedia PDF Downloads 352
4021 A Genetic Algorithm Based Ensemble Method with Pairwise Consensus Score on Malware Cacophonous Labels

Authors: Shih-Yu Wang, Shun-Wen Hsiao

Abstract:

In the field of cybersecurity, there exists many vendors giving malware samples classified results, namely naming after the label that contains some important information which is also called AV label. Lots of researchers relay on AV labels for research. Unfortunately, AV labels are too cluttered. They do not have a fixed format and fixed naming rules because the naming results were based on each classifiers' viewpoints. A way to fix the problem is taking a majority vote. However, voting can sometimes create problems of bias. Thus, we create a novel ensemble approach which does not rely on the cacophonous naming result but depend on group identification to aggregate everyone's opinion. To achieve this purpose, we develop an scoring system called Pairwise Consensus Score (PCS) to calculate result similarity. The entire method architecture combine Genetic Algorithm and PCS to find maximum consensus in the group. Experimental results revealed that our method outperformed the majority voting by 10% in term of the score.

Keywords: genetic algorithm, ensemble learning, malware family, malware labeling, AV labels

Procedia PDF Downloads 88
4020 Color Fusion of Remote Sensing Images for Imparting Fluvial Geomorphological Features of River Yamuna and Ganga over Doon Valley

Authors: P. S. Jagadeesh Kumar, Tracy Lin Huan, Rebecca K. Rossi, Yanmin Yuan, Xianpei Li

Abstract:

The fiscal growth of any country hinges on the prudent administration of water resources. The river Yamuna and Ganga are measured as the life line of India as it affords the needs for life to endure. Earth observation over remote sensing images permits the precise description and identification of ingredients on the superficial from space and airborne platforms. Multiple and heterogeneous image sources are accessible for the same geographical section; multispectral, hyperspectral, radar, multitemporal, and multiangular images. In this paper, a taxonomical learning of the fluvial geomorphological features of river Yamuna and Ganga over doon valley using color fusion of multispectral remote sensing images was performed. Experimental results exhibited that the segmentation based colorization technique stranded on pattern recognition, and color mapping fashioned more colorful and truthful colorized images for geomorphological feature extraction.

Keywords: color fusion, geomorphology, fluvial processes, multispectral images, pattern recognition

Procedia PDF Downloads 307
4019 Performance Analysis of Bluetooth Low Energy Mesh Routing Algorithm in Case of Disaster Prediction

Authors: Asmir Gogic, Aljo Mujcic, Sandra Ibric, Nermin Suljanovic

Abstract:

Ubiquity of natural disasters during last few decades have risen serious questions towards the prediction of such events and human safety. Every disaster regardless its proportion has a precursor which is manifested as a disruption of some environmental parameter such as temperature, humidity, pressure, vibrations and etc. In order to anticipate and monitor those changes, in this paper we propose an overall system for disaster prediction and monitoring, based on wireless sensor network (WSN). Furthermore, we introduce a modified and simplified WSN routing protocol built on the top of the trickle routing algorithm. Routing algorithm was deployed using the bluetooth low energy protocol in order to achieve low power consumption. Performance of the WSN network was analyzed using a real life system implementation. Estimates of the WSN parameters such as battery life time, network size and packet delay are determined. Based on the performance of the WSN network, proposed system can be utilized for disaster monitoring and prediction due to its low power profile and mesh routing feature.

Keywords: bluetooth low energy, disaster prediction, mesh routing protocols, wireless sensor networks

Procedia PDF Downloads 390
4018 An Improved Tracking Approach Using Particle Filter and Background Subtraction

Authors: Amir Mukhtar, Dr. Likun Xia

Abstract:

An improved, robust and efficient visual target tracking algorithm using particle filtering is proposed. Particle filtering has been proven very successful in estimating non-Gaussian and non-linear problems. In this paper, the particle filter is used with color feature to estimate the target state with time. Color distributions are applied as this feature is scale and rotational invariant, shows robustness to partial occlusion and computationally efficient. The performance is made more robust by choosing the different (YIQ) color scheme. Tracking is performed by comparison of chrominance histograms of target and candidate positions (particles). Color based particle filter tracking often leads to inaccurate results when light intensity changes during a video stream. Furthermore, background subtraction technique is used for size estimation of the target. The qualitative evaluation of proposed algorithm is performed on several real-world videos. The experimental results demonstrate that the improved algorithm can track the moving objects very well under illumination changes, occlusion and moving background.

Keywords: tracking, particle filter, histogram, corner points, occlusion, illumination

Procedia PDF Downloads 382
4017 The Language of Landscape Architecture

Authors: Hosna Pourhashemi

Abstract:

Chahar Bagh, the symbol of the world, displayed around the pool of life in the centre, attempts to emulate Eden. It represents a duality concept based on the division of the universe into two perceptional insights, a celestial and an earthly one. Chahar Bagh garden pattern refers to the Garden of Eden, that was watered and framed by main four rivers. This microcosm is combined with a mystical love of flowers, sweet-scented trees, the variety of colors, and the sense of eternal life. This symbol of the integration of spontaneous expressivity of the natural elements and reasoning awareness of man strives for the ideal of divine perfection. Through collecting and analyzing the data, the prevalence and continuous influence of Chahar Bagh concept on selected historical gardens was elaborated and evaluated. After the conquest of Persia by the Arabs in the 7th century, Chahar Bagh was adopted and spread throughout the Islamic expansion, from the Middle East, westward across northern Africa to Morocco and the Iberian Peninsula, and eastward through Iran to Central Asia and India. Furthermore, its continuity to the mid of 16th century Renaissance period is shown. By adapting the semiotic theory of Peirce and Saussure on the Persian garden, Chahar Bagh was defined as the basic pattern language for the garden culture. The hypothesis of the continuous influence of Chahar Bagh pattern language on today’s landscape architecture was examined on selected works of Dieter Kienast, as the important and relevant protagonist of his time (end of twentieth ct.) and up to our time. Chahar Bagh pattern language offers collective cultural sensitive healing wisdom transmitted down through the millennia. Through my reflections in Dieter Kienast’s works, I transformed my personal experience into a transpersonal understanding regarding the Sufi philosophy and the Jung psychology, which brings me to define new design theories and methods to form a spiritual, as I call it” Quaternary Perception Model” for landscape architecture. Based on a cognition process through self-journeying in this holistic model, human consciousness can be developed to access to “higher” levels of being and embrace the unity. The self-purification and mindfulness through transpersonal confrontation in the ”Quaternary Perception Model” generates a form of heart-based treatment. I adapted the seven spiritual levels of Sufi self-development on the perception of landscape, representing the stages of the self, ranging from absolutely self-centered to pure spiritual humanity. I redefine and reread the elements and features of Chahar Bagh pattern language for today’s landscape architecture. The “lost paradise” lies in our heart and can be perceived by all humans in landscapes and cities designed in the spirit of” Quaternary Model”.

Keywords: persian garden, pattern language of Chahar Bagh, wholistic Perception, dieter kienast, “quaternary model”

Procedia PDF Downloads 84
4016 Battery Control with Moving Average Algorithm to Smoothen the Intermittent Output Power of Photovoltaic Solar Power Plants in Off-Grid Configuration

Authors: Muhammad Gillfran Samual, Rinaldy Dalimi, Fauzan Hanif Jufri, Budi Sudiarto, Ismi Rosyiana Fitri

Abstract:

Solar energy is increasingly recognized as an important future energy source due to its abundant availability and renewable nature. However, the intermittent nature of solar energy can cause fluctuations in the electricity produced, making it difficult to guarantee a stable and reliable electricity supply. One solution that can be implemented is to use batteries in a photovoltaic solar power plant system with a Moving Average control algorithm, which can help smooth and reduce fluctuations in solar power output power. The parameter that can be adjusted in the Moving Average algorithm is the window size or the arithmetic average width of the photovoltaic output power over time. This research evaluates the effect of a change of window size parameter in the Moving Average algorithm on the resulting smoothed photovoltaic output power and the technical effects on batteries, i.e., power and energy usage. Based on the evaluation, it is found that the increase of window size parameter will slow down the response of photovoltaic output power to changes in irradiation and increase the smoothing quality of the intermittent photovoltaic output power. In addition, increasing the window size will reduce the maximum power received on the load side, and the amount of energy used by the battery during the power smoothing process will increase, which, in turn, increases the required battery capacity.

Keywords: battery, intermittent, moving average, photovoltaic, power smoothing

Procedia PDF Downloads 64
4015 Influence of Human Resource Management Practices on Agricultural Employees’ Behavior

Authors: B. G. Abiona, O. E. Fapojuwo, T. Akinlawon

Abstract:

This study assessed the influence of human resource management practices on agricultural employees’ behavior. Data were collected from 75 randomly selected respondents using a well-structured questionnaire. The mean age of the employees’ was 43.2 years. Major human resource management practices that influence employees behaviors were: In-service training are given to employees on a regular basis (average value of x=3.44), management reward employees who are committed to their job (average value of x =3.41) and reward are designed to encourage wide participation and activity (average value of x=3.41). Also, major employees’ behavior include: Managers and employees’ wants to create better job performance (average value of x=3.13) and administrator provides praise and recognition for effective performance and show appreciation for special effort (average value of x=3.05). Major factors affecting employees’ behavior were: inadequate training (average value of x=2.93), inadequate local and international training (average value of x=2.87), inadequate grants for training programmes (average value of x= 2.81). A significant relationship was found between gender (χ2 = 37.204, P<0.05), educational qualification (χ2 = 59.093, P<0.05), income (r =0.122, P<0.05) and human resource management practices (r = 0.573, P< 0.05) of the respondents and employees’ behavior. Management should encourage employees who are committed to their job through awards and recognition.

Keywords: human resources management, agricultural employees, behaviour research institutes, Nigeria

Procedia PDF Downloads 255
4014 Relationships between Chinese Educated and Talented Women

Authors: Jianghe Niu, Mu-Qing Huang

Abstract:

This research applies qualitative approach to conduct literature review to explore and analyze the relationship between three pairs of female Chinese public figure with high levels of education and social recognitionto understand the role of male admiration in driving hostile response from the female pairs. Commonalities in the cases were found. Hong Huang and SuMang, both are coaches in the Chinese fashion industry, and their contemporaries are also editors-in-chief of major fashion publications. Lin Huiyin and XieBingxin are successful women in the field of literature and architecture. They are of similar age and share similar place of origin and family background; the former received high levels of male admiration, while the latter did not. Zhang Ailing and Su Qing, they are both highly established in the field of literature with very similar style, and they shared great admiration for each other’s talent once upon a time. Zhang’s husband used to be Su Qing's lover, and it was only through Su Qing that He met Zhang Ailing. Conclusion: The relationship between Chinese women, especially women with high levels of education and social recognition, the degree of similarities, and the closeness of relationship of these attributes (such as age, family background, education level, peer similarity, appearance, family, marriage) is positively correlated with increased level of discord, hostility, and hostility. This is observed across the three samples. The relationship between Chinese women, especially women with high levels of education and social recognition - if there are men romantically involved and the levels of male admiration is not equal between the two females - the imbalance of male admiration will act as a leverage that further drives up the levels of negative relationship between the women. This is the case with the first two examples above. The relationship between Chinese women, especially women with high levels of education and social recognition - if there is a man romantically involved and if he’s a previous lover to one woman - the transfer of male romantic interest from the first women to the second women, the new union will bring the hostile and negative relationship with the two females to a peak.

Keywords: Chinese, gender, relationship, women

Procedia PDF Downloads 122
4013 Genetic Algorithm Methods for Determination Over Flow Coefficient of Medium Throat Length Morning Glory Spillway Equipped Crest Vortex Breakers

Authors: Roozbeh Aghamajidi

Abstract:

Shaft spillways are circling spillways used generally for emptying unexpected floods on earth and concrete dams. There are different types of shaft spillways: Stepped and Smooth spillways. Stepped spillways pass more flow discharges through themselves in comparison to smooth spillways. Therefore, awareness of flow behavior of these spillways helps using them better and more efficiently. Moreover, using vortex breaker has great effect on passing flow through shaft spillway. In order to use more efficiently, the risk of flow pressure decreases to less than fluid vapor pressure, called cavitations, should be prevented as far as possible. At this research, it has been tried to study different behavior of spillway with different vortex shapes on spillway crest on flow. From the viewpoint of the effects of flow regime changes on spillway, changes of step dimensions, and the change of type of discharge will be studied effectively. Therefore, two spillway models with three different vortex breakers and three arrangements have been used to assess the hydraulic characteristics of flow. With regard to the inlet discharge to spillway, the parameters of pressure and flow velocity on spillway surface have been measured at several points and after each run. Using these kinds of information leads us to create better design criteria of spillway profile. To achieve these purposes, optimization has important role and genetic algorithm are utilized to study the emptying discharge. As a result, it turned out that the best type of spillway with maximum discharge coefficient is smooth spillway with ogee shapes as vortex breaker and 3 number as arrangement. Besides it has been concluded that the genetic algorithm can be used to optimize the results.

Keywords: shaft spillway, vortex breaker, flow, genetic algorithm

Procedia PDF Downloads 373
4012 Light-Weight Network for Real-Time Pose Estimation

Authors: Jianghao Hu, Hongyu Wang

Abstract:

The effective and efficient human pose estimation algorithm is an important task for real-time human pose estimation on mobile devices. This paper proposes a light-weight human key points detection algorithm, Light-Weight Network for Real-Time Pose Estimation (LWPE). LWPE uses light-weight backbone network and depthwise separable convolutions to reduce parameters and lower latency. LWPE uses the feature pyramid network (FPN) to fuse the high-resolution, semantically weak features with the low-resolution, semantically strong features. In the meantime, with multi-scale prediction, the predicted result by the low-resolution feature map is stacked to the adjacent higher-resolution feature map to intermediately monitor the network and continuously refine the results. At the last step, the key point coordinates predicted in the highest-resolution are used as the final output of the network. For the key-points that are difficult to predict, LWPE adopts the online hard key points mining strategy to focus on the key points that hard predicting. The proposed algorithm achieves excellent performance in the single-person dataset selected in the AI (artificial intelligence) challenge dataset. The algorithm maintains high-precision performance even though the model only contains 3.9M parameters, and it can run at 225 frames per second (FPS) on the generic graphics processing unit (GPU).

Keywords: depthwise separable convolutions, feature pyramid network, human pose estimation, light-weight backbone

Procedia PDF Downloads 155
4011 Space Time Adaptive Algorithm in Bi-Static Passive Radar Systems for Clutter Mitigation

Authors: D. Venu, N. V. Koteswara Rao

Abstract:

Space – time adaptive processing (STAP) is an effective tool for detecting a moving target in spaceborne or airborne radar systems. Since airborne passive radar systems utilize broadcast, navigation and excellent communication signals to perform various surveillance tasks and also has attracted significant interest from the distinct past, therefore the need of the hour is to have cost effective systems as compared to conventional active radar systems. Moreover, requirements of small number of secondary samples for effective clutter suppression in bi-static passive radar offer abundant illuminator resources for passive surveillance radar systems. This paper presents a framework for incorporating knowledge sources directly in the space-time beam former of airborne adaptive radars. STAP algorithm for clutter mitigation for passive bi-static radar has better quantitation of the reduction in sample size thereby amalgamating the earlier data bank with existing radar data sets. Also, we proposed a novel method to estimate the clutter matrix and perform STAP for efficient clutter suppression based on small sample size. Furthermore, the effectiveness of the proposed algorithm is verified using MATLAB simulations in order to validate STAP algorithm for passive bi-static radar. In conclusion, this study highlights the importance for various applications which augments traditional active radars using cost-effective measures.

Keywords: bistatic radar, clutter, covariance matrix passive radar, STAP

Procedia PDF Downloads 297