Search results for: transmission optimization
3954 Prediction-Based Midterm Operation Planning for Energy Management of Exhibition Hall
Authors: Doseong Eom, Jeongmin Kim, Kwang Ryel Ryu
Abstract:
Large exhibition halls require a lot of energy to maintain comfortable atmosphere for the visitors viewing inside. One way of reducing the energy cost is to have thermal energy storage systems installed so that the thermal energy can be stored in the middle of night when the energy price is low and then used later when the price is high. To minimize the overall energy cost, however, we should be able to decide how much energy to save during which time period exactly. If we can foresee future energy load and the corresponding cost, we will be able to make such decisions reasonably. In this paper, we use machine learning technique to obtain models for predicting weather conditions and the number of visitors on hourly basis for the next day. Based on the energy load thus predicted, we build a cost-optimal daily operation plan for the thermal energy storage systems and cooling and heating facilities through simulation-based optimization.Keywords: building energy management, machine learning, operation planning, simulation-based optimization
Procedia PDF Downloads 3223953 Optimization of Extraction Conditions and Characteristics of Scale collagen From Sardine: Sardina pilchardus
Authors: F. Bellali, M. Kharroubi, M. Loutfi, N.Bourhim
Abstract:
In Morocco, fish processing industry is an important source income for a large amount of byproducts including skins, bones, heads, guts and scales. Those underutilized resources particularly scales contain a large amount of proteins and calcium. Scales from Sardina plichardus resulting from the transformation operation have the potential to be used as raw material for the collagen production. Taking into account this strong expectation of the regional fish industry, scales sardine upgrading is well justified. In addition, political and societal demands for sustainability and environment-friendly industrial production systems, coupled with the depletion of fish resources, drive this trend forward. Therefore, fish scale used as a potential source to isolate collagen has a wide large of applications in food, cosmetic and bio medical industry. The main aim of this study is to isolate and characterize the acid solubilize collagen from sardine fish scale, Sardina pilchardus. Experimental design methodology was adopted in collagen processing for extracting optimization. The first stage of this work is to investigate the optimization conditions of the sardine scale deproteinization on using response surface methodology (RSM). The second part focus on the demineralization with HCl solution or EDTA. Moreover, the last one is to establish the optimum condition for the isolation of collagen from fish scale by solvent extraction. The basic principle of RSM is to determinate model equations that describe interrelations between the independent variables and the dependent variables.Keywords: Sardina pilchardus, scales, valorization, collagen extraction, response surface methodology
Procedia PDF Downloads 4173952 Parameter Identification Analysis in the Design of Rock Fill Dams
Authors: G. Shahzadi, A. Soulaimani
Abstract:
This research work aims to identify the physical parameters of the constitutive soil model in the design of a rockfill dam by inverse analysis. The best parameters of the constitutive soil model, are those that minimize the objective function, defined as the difference between the measured and numerical results. The Finite Element code (Plaxis) has been utilized for numerical simulation. Polynomial and neural network-based response surfaces have been generated to analyze the relationship between soil parameters and displacements. The performance of surrogate models has been analyzed and compared by evaluating the root mean square error. A comparative study has been done based on objective functions and optimization techniques. Objective functions are categorized by considering measured data with and without uncertainty in instruments, defined by the least square method, which estimates the norm between the predicted displacements and the measured values. Hydro Quebec provided data sets for the measured values of the Romaine-2 dam. Stochastic optimization, an approach that can overcome local minima, and solve non-convex and non-differentiable problems with ease, is used to obtain an optimum value. Genetic Algorithm (GA), Particle Swarm Optimization (PSO) and Differential Evolution (DE) are compared for the minimization problem, although all these techniques take time to converge to an optimum value; however, PSO provided the better convergence and best soil parameters. Overall, parameter identification analysis could be effectively used for the rockfill dam application and has the potential to become a valuable tool for geotechnical engineers for assessing dam performance and dam safety.Keywords: Rockfill dam, parameter identification, stochastic analysis, regression, PLAXIS
Procedia PDF Downloads 1463951 Design Parameters Optimization of a Gas Turbine with Exhaust Gas Recirculation: An Energy and Exergy Approach
Authors: Joe Hachem, Marianne Cuif-Sjostrand, Thierry Schuhler, Dominique Orhon, Assaad Zoughaib
Abstract:
The exhaust gas recirculation, EGR, implementation on gas turbines is increasingly gaining the attention of many researchers. This emerging technology presents many advantages, such as lowering the NOx emissions and facilitating post-combustion carbon capture as the carbon dioxide concentration in the cycle increases. As interesting as this technology may seem, the gas turbine, or its thermodynamic equivalent, the Brayton cycle, shows an intrinsic efficiency decrease with increasing EGR rate. In this paper, a thermodynamic model is presented to show the cycle efficiency decrease with EGR, alternative values of design parameters of both the pressure ratio (PR) and the turbine inlet temperature (TIT) are then proposed to optimize the cycle efficiency with different EGR rates. Results show that depending on the given EGR rate, both the design PR & TIT should be increased to compensate for the deficit in efficiency.Keywords: gas turbines, exhaust gas recirculation, design parameters optimization, thermodynamic approach
Procedia PDF Downloads 1453950 A Hybrid Distributed Algorithm for Multi-Objective Dynamic Flexible Job Shop Scheduling Problem
Authors: Aydin Teymourifar, Gurkan Ozturk
Abstract:
In this paper, a hybrid distributed algorithm has been suggested for multi-objective dynamic flexible job shop scheduling problem. The proposed algorithm is high level, in which several algorithms search the space on different machines simultaneously also it is a hybrid algorithm that takes advantages of the artificial intelligence, evolutionary and optimization methods. Distribution is done at different levels and new approaches are used for design of the algorithm. Apache spark and Hadoop frameworks have been used for the distribution of the algorithm. The Pareto optimality approach is used for solving the multi-objective benchmarks. The suggested algorithm that is able to solve large-size problems in short times has been compared with the successful algorithms of the literature. The results prove high speed and efficiency of the algorithm.Keywords: distributed algorithms, apache-spark, Hadoop, flexible dynamic job shop scheduling, multi-objective optimization
Procedia PDF Downloads 3543949 Objects Tracking in Catadioptric Images Using Spherical Snake
Authors: Khald Anisse, Amina Radgui, Mohammed Rziza
Abstract:
Tracking objects on video sequences is a very challenging task in many works in computer vision applications. However, there is no article that treats this topic in catadioptric vision. This paper is an attempt that tries to describe a new approach of omnidirectional images processing based on inverse stereographic projection in the half-sphere. We used the spherical model proposed by Gayer and al. For object tracking, our work is based on snake method, with optimization using the Greedy algorithm, by adapting its different operators. The algorithm will respect the deformed geometries of omnidirectional images such as spherical neighborhood, spherical gradient and reformulation of optimization algorithm on the spherical domain. This tracking method that we call "spherical snake" permitted to know the change of the shape and the size of object in different replacements in the spherical image.Keywords: computer vision, spherical snake, omnidirectional image, object tracking, inverse stereographic projection
Procedia PDF Downloads 4023948 Evaporative Air Coolers Optimization for Energy Consumption Reduction and Energy Efficiency Ratio Increment
Authors: Leila Torkaman, Nasser Ghassembaglou
Abstract:
Significant quota of Municipal Electrical Energy consumption is related to Decentralized Air Conditioning which is mostly provided by evaporative coolers. So the aim is to optimize design of air conditioners to increase their efficiencies. To achieve this goal, results of practical standardized tests for 40 evaporative coolers in different types collected and simultaneously results for same coolers based on one of EER (Energy Efficiency Ratio) modeling styles are figured out. By comparing experimental results of different coolers standardized tests with modeling results, preciseness of used model is assessed and after comparing gained preciseness with international standards based on EER for cooling capacity, aeration and also electrical energy consumption, energy label from A (most effective) to G (less effective) is classified. finally needed methods to optimize energy consumption and cooler's classification are provided.Keywords: cooler, EER, energy label, optimization
Procedia PDF Downloads 3443947 Analytic Hierarchy Process and Multi-Criteria Decision-Making Approach for Selecting the Most Effective Soil Erosion Zone in Gomati River Basin
Authors: Rajesh Chakraborty, Dibyendu Das, Rabindra Nath Barman, Uttam Kumar Mandal
Abstract:
In the present study, the objective is to find out the most effective zone causing soil erosion in the Gumati river basin located in the state of Tripura, a north eastern state of India using analytical hierarchy process (AHP) and multi-objective optimization on the basis of ratio analysis (MOORA).The watershed is segmented into 20 zones based on Area. The watershed is considered by pointing the maximum elevation from sea lever from Google earth. The soil erosion is determined using the universal soil loss equation. The different independent variables of soil loss equation bear different weightage for different soil zones. And therefore, to find the weightage factor for all the variables of soil loss equation like rainfall runoff erosivity index, soil erodibility factor etc, analytical hierarchy process (AHP) is used. And thereafter, multi-objective optimization on the basis of ratio analysis (MOORA) approach is used to select the most effective zone causing soil erosion. The MCDM technique concludes that the maximum soil erosion is occurring in the zone 14.Keywords: soil erosion, analytic hierarchy process (AHP), multi criteria decision making (MCDM), universal soil loss equation (USLE), multi-objective optimization on the basis of ratio analysis (MOORA)
Procedia PDF Downloads 5383946 Investigation of Xanthomonas euvesicatoria on Seed Germination and Seed to Seedling Transmission in Tomato
Authors: H. Mayton, X. Yan, A. G. Taylor
Abstract:
Infested tomato seeds were used to investigate the influence of Xanthomonas euvesicatoria on germination and seed to seedling transmission in a controlled environment and greenhouse assays in an effort to develop effective seed treatments and characterize seed borne transmission of bacterial leaf spot of tomato. Bacterial leaf spot of tomato, caused by four distinct Xanthomonas species, X. euvesicatoria, X. gardneri, X. perforans, and X. vesicatoria, is a serious disease worldwide. In the United States, disease prevention is expensive for commercial growers in warm, humid regions of the country, and crop losses can be devastating. In this study, four different infested tomato seed lots were extracted from tomato fruits infected with bacterial leaf spot from a field in New York State in 2017 that had been inoculated with X. euvesicatoria. In addition, vacuum infiltration at 61 kilopascals for 1, 5, 10, and 15 minutes and seed soaking for 5, 10, 15, and 30 minutes with different bacterial concentrations were used to artificially infest seed in the laboratory. For controlled environment assays, infested tomato seeds from the field and laboratory were placed othe n moistened blue blotter in square plastic boxes (10 cm x 10 cm) and incubated at 20/30 ˚C with an 8/16 hour light cycle, respectively. Infested tomato seeds from the field and laboratory were also planted in small plastic trays in soil (peat-lite medium) and placed in the greenhouse with 24/18 ˚C day and night temperatures, respectively, with a 14-hour photoperiod. Seed germination was assessed after eight days in the laboratory and 14 days in the greenhouse. Polymerase chain reaction (PCR) using the hrpB7 primers (RST65 [5’- GTCGTCGTTACGGCAAGGTGGTG-3’] and RST69 [5’-TCGCCCAGCGTCATCAGGCCATC-3’]) was performed to confirm presence or absence of the bacterial pathogen in seed lots collected from the field and in germinating seedlings in all experiments. For infested seed lots from the field, germination was lowest (84%) in the seed lot with the highest level of bacterial infestation (55%) and ranged from 84-98%. No adverse effect on germination was observed from artificially infested seeds for any bacterial concentration and method of infiltration when compared to a non-infested control. Germination in laboratory assays for artificially infested seeds ranged from 82-100%. In controlled environment assays, 2.5 % were PCR positive for the pathogen, and in the greenhouse assays, no infected seedlings were detected. From these experiments, X. euvesicatoria does not appear to adversely influence germination. The lowest rate of germination from field collected seed may be due to contamination with multiple pathogens and saprophytic organisms as no effect of artificial bacterial seed infestation in the laboratory on germination was observed. No evidence of systemic movement from seed to seedling was observed in the greenhouse assays; however, in the controlled environment assays, some seedlings were PCR positive. Additional experiments are underway with green fluorescent protein-expressing isolates to further characterize seed to seedling transmission of the bacterial leaf spot pathogen in tomato.Keywords: bacterial leaf spot, seed germination, tomato, Xanthomonas euvesicatoria
Procedia PDF Downloads 1343945 Data Analytics in Energy Management
Authors: Sanjivrao Katakam, Thanumoorthi I., Antony Gerald, Ratan Kulkarni, Shaju Nair
Abstract:
With increasing energy costs and its impact on the business, sustainability today has evolved from a social expectation to an economic imperative. Therefore, finding methods to reduce cost has become a critical directive for Industry leaders. Effective energy management is the only way to cut costs. However, Energy Management has been a challenge because it requires a change in old habits and legacy systems followed for decades. Today exorbitant levels of energy and operational data is being captured and stored by Industries, but they are unable to convert these structured and unstructured data sets into meaningful business intelligence. It must be noted that for quick decisions, organizations must learn to cope with large volumes of operational data in different formats. Energy analytics not only helps in extracting inferences from these data sets, but also is instrumental in transformation from old approaches of energy management to new. This in turn assists in effective decision making for implementation. It is the requirement of organizations to have an established corporate strategy for reducing operational costs through visibility and optimization of energy usage. Energy analytics play a key role in optimization of operations. The paper describes how today energy data analytics is extensively used in different scenarios like reducing operational costs, predicting energy demands, optimizing network efficiency, asset maintenance, improving customer insights and device data insights. The paper also highlights how analytics helps transform insights obtained from energy data into sustainable solutions. The paper utilizes data from an array of segments such as retail, transportation, and water sectors.Keywords: energy analytics, energy management, operational data, business intelligence, optimization
Procedia PDF Downloads 3643944 Optimization of Tundish Geometry for Minimizing Dead Volume Using OpenFOAM
Authors: Prateek Singh, Dilshad Ahmad
Abstract:
Growing demand for high-quality steel products has inspired researchers to investigate the unit operations involved in the manufacturing of these products (slabs, rods, sheets, etc.). One such operation is tundish operation, in which a vessel (tundish) acts as a buffer of molten steel for the solidification operation in mold. It is observed that tundish also plays a crucial role in the quality and cleanliness of the steel produced, besides merely acting as a reservoir for the mold. It facilitates removal of dissolved oxygen (inclusions) from the molten steel thus improving its cleanliness. Inclusion removal can be enhanced by increasing the residence time of molten steel in the tundish by incorporation of flow modifiers like dams, weirs, turbo-pad, etc. These flow modifiers also help in reducing the dead or short circuit zones within the tundish which is significant for maintaining thermal and chemical homogeneity of molten steel. Thus, it becomes important to analyze the flow of molten steel in the tundish for different configuration of flow modifiers. In the present work, effect of varying positions and heights/depths of dam and weir on the dead volume in tundish is studied. Steady state thermal and flow profiles of molten steel within the tundish are obtained using OpenFOAM. Subsequently, Residence Time Distribution analysis is performed to obtain the percentage of dead volume in the tundish. Design of Experiment method is then used to configure different tundish geometries for varying positions and heights/depths of dam and weir, and dead volume for each tundish design is obtained. A second-degree polynomial with two-term interactions of independent variables to predict the dead volume in the tundish with positions and heights/depths of dam and weir as variables are computed using Multiple Linear Regression model. This polynomial is then used in an optimization framework to obtain the optimal tundish geometry for minimizing dead volume using Sequential Quadratic Programming optimization.Keywords: design of experiments, multiple linear regression, OpenFOAM, residence time distribution, sequential quadratic programming optimization, steel, tundish
Procedia PDF Downloads 2083943 Antibiotic and Fungicide Exposure Reveal the Evolution of Soil-Lettuce System Resistome
Authors: Chenyu Huang, Minrong Cui, Hua Fang, Luqing Zhang, Yunlong Yu
Abstract:
The emergence and spread of antibiotic resistance genes (ARGs) have become a pressing issue in global agricultural production. However, understanding how these ARGs spread across different spatial scales, especially when exposed to both pesticides and antibiotics, has remained a challenge. Here, metagenomic assembly and binning methodologies were used to determine the mechanism of ARG propagation within soil-lettuce systems exposed to both fungicides and antibiotics. The results of our study showed that the presence of fungicide and antibiotic stresses had a significant impact on certain bacterial communities. Notably, we observed that ARGs were primarily transferred from the soil to the plant through plasmids. The selective pressure exerted by fungicides and antibiotics contributed to an increase in unique ARGs present on lettuce leaves. Moreover, ARGs located on chromosomes and plasmids followed different transmission patterns. The presence of diverse selective pressures, a result of compound treatments involving antibiotics and fungicides, amplifies this phenomenon. Consequently, there is a higher probability of bacteria developing multi-antibiotic resistance under the combined pressure of fungicides and antibiotics. In summary, our findings highlight that combined fungicide and antibiotic treatments are more likely to drive the acquisition of ARGs within the soil-plant system and may increase the risk of human ingestion.Keywords: soil-lettuce system, fungicide, antibiotic, ARG, transmission
Procedia PDF Downloads 1073942 Microwave Synthesis, Optical Properties and Surface Area Studies of NiO Nanoparticles
Authors: Ayed S. Al-Shihri, Abul Kalam, Abdullah G. Al-Sehemi, Gaohui Du, Tokeer Ahmad, Ahmad Irfan
Abstract:
We report here the synthesis of nickel oxide (NiO) nanoparticles by microwave-assisted method, using a common precipitating agent followed by calcination in air at 400°C. The effect of the microwave and pH on the crystallite size, morphology, structure, energy band gap and surface area of NiO have been investigated by means of powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), Fourier transform infrared spectroscopy (FTIR), ultraviolet visible spectroscopy (UV-vis) and BET surface area studies. X-ray diffraction studies showed the formation of monophasic and highly crystalline cubic NiO. TEM analysis led to decrease the average grain size of NiO nanoparticles from 16.5 nm to 14 nm on increasing the amount of NaOH. FTIR studies also confirm the formation of NiO nanoparticles. It was observed that on increasing the volume of NaOH, the optical band gap energy (2.85 eV to 2.95 eV) and specific surface area (33.1 to 39.8 m2/g) increases, however the average particles size decreases (16.5 nm to 14 nm). This method may be extended to large scale synthesis of other metal oxides nanoparticles and the present study could be used for the potential applications in water treatment and many other fields.Keywords: BET surface area analysis, electron microscopy, optical properties, X-ray techniques
Procedia PDF Downloads 3973941 Zika Virus NS5 Protein Potential Inhibitors: An Enhanced in silico Approach in Drug Discovery
Authors: Pritika Ramharack, Mahmoud E. S. Soliman
Abstract:
The re-emerging Zika virus is an arthropod-borne virus that has been described to have explosive potential as a worldwide pandemic. The initial transmission of the virus was through a mosquito vector, however, evolving modes of transmission has allowed the spread of the disease over continents. The virus already been linked to irreversible chronic central nervous system (CNS) conditions. The concerns of the scientific and clinical community are the consequences of Zika viral mutations, thus suggesting the urgent need for viral inhibitors. There have been large strides in vaccine development against the virus but there are still no FDA-approved drugs available. Rapid rational drug design and discovery research is fundamental in the production of potent inhibitors against the virus that will not just mask the virus, but destroy it completely. In silico drug design allows for this prompt screening of potential leads, thus decreasing the consumption of precious time and resources. This study demonstrates an optimized and proven screening technique in the discovery of two potential small molecule inhibitors of Zika virus Methyltransferase and RNA-dependent RNA polymerase. This in silico “per-residue energy decomposition pharmacophore” virtual screening approach will be critical in aiding scientists in the discovery of not only effective inhibitors of Zika viral targets, but also a wide range of anti-viral agents.Keywords: NS5 protein inhibitors, per-residue decomposition, pharmacophore model, virtual screening, Zika virus
Procedia PDF Downloads 2263940 The Persuasive Influence of Nollywood Film in Cultural Transmission: Negotiating Nigerian Culture in a South African Environment
Authors: Oluwayemisi Onyenankeya
Abstract:
The popularity and viewership of Nollywood films have expanded across African countries as well as European and American cities especially those with considerable Diaspora population. This appears to underscore the assumption that Nollywood films not only project or transmit the embedded Nigerian cultural values to audience members but also actually make appreciable impression on those audience members. This study sought to ascertain the role of Nollywood film in the transference of Nigerian cultural heritage across other cultures using students at the University of Fort Hare as a case study. This study sought to determine if audience members learn, imbibe or manifest any behavioural tendencies that can be ascribed to the influence of watching Nollywood films. Specifically, the study sought to establish the aspect of Nigerian culture that Nollywood films transmit to audience members. The survey research method was used while data was analysed using descriptive statistics. In all, 400 questionnaires were distributed while 370 were returned. Results show that students who were exposed to Nollywood film could mimic some common Nigerian expressions and exclamations. A small percentage of viewers could actually speak a smattering of some Nigerian language while a few have bought or made dresses in the pattern of what they saw in the films. It could be concluded that Nollywood films do exert significant influence on the viewers in the University of Fort Hare.Keywords: culture, film, Nollywood, transmission
Procedia PDF Downloads 2413939 Optimization Techniques for Microwave Structures
Authors: Malika Ourabia
Abstract:
A new and efficient method is presented for the analysis of arbitrarily shaped discontinuities. The discontinuities is characterized using a hybrid spectral/numerical technique. This structure presents an arbitrary number of ports, each one with different orientation and dimensions. This article presents a hybrid method based on multimode contour integral and mode matching techniques. The process is based on segmentation and dividing the structure into key building blocks. We use the multimode contour integral method to analyze the blocks including irregular shape discontinuities. Finally, the multimode scattering matrix of the whole structure can be found by cascading the blocks. Therefore, the new method is suitable for analysis of a wide range of waveguide problems. Therefore, the present approach can be applied easily to the analysis of any multiport junctions and cascade blocks. The accuracy of the method is validated comparing with results for several complex problems found in the literature. CPU times are also included to show the efficiency of the new method proposed.Keywords: segmentation, s parameters, simulation, optimization
Procedia PDF Downloads 5283938 Performance Optimization on Waiting Time Using Queuing Theory in an Advanced Manufacturing Environment: Robotics to Enhance Productivity
Authors: Ganiyat Soliu, Glen Bright, Chiemela Onunka
Abstract:
Performance optimization plays a key role in controlling the waiting time during manufacturing in an advanced manufacturing environment to improve productivity. Queuing mathematical modeling theory was used to examine the performance of the multi-stage production line. Robotics as a disruptive technology was implemented into a virtual manufacturing scenario during the packaging process to study the effect of waiting time on productivity. The queuing mathematical model was used to determine the optimum service rate required by robots during the packaging stage of manufacturing to yield an optimum production cost. Different rates of production were assumed in a virtual manufacturing environment, cost of packaging was estimated with optimum production cost. An equation was generated using queuing mathematical modeling theory and the theorem adopted for analysis of the scenario is the Newton Raphson theorem. Queuing theory presented here provides an adequate analysis of the number of robots required to regulate waiting time in order to increase the number of output. Arrival rate of the product was fast which shows that queuing mathematical model was effective in minimizing service cost and the waiting time during manufacturing. At a reduced waiting time, there was an improvement in the number of products obtained per hour. The overall productivity was improved based on the assumptions used in the queuing modeling theory implemented in the virtual manufacturing scenario.Keywords: performance optimization, productivity, queuing theory, robotics
Procedia PDF Downloads 1543937 Optimization Study of Adsorption of Nickel(II) on Bentonite
Authors: B. Medjahed, M. A. Didi, B. Guezzen
Abstract:
This work concerns with the experimental study of the adsorption of the Ni(II) on bentonite. The effects of various parameters such as contact time, stirring rate, initial concentration of Ni(II), masse of clay, initial pH of aqueous solution and temperature on the adsorption yield, were carried out. The study of the effect of the ionic strength on the yield of adsorption was examined by the identification and the quantification of the present chemical species in the aqueous phase containing the metallic ion Ni(II). The adsorbed species were investigated by a calculation program using CHEAQS V. L20.1 in order to determine the relation between the percentages of the adsorbed species and the adsorption yield. The optimization process was carried out using 23 factorial designs. The individual and combined effects of three process parameters, i.e. initial Ni(II) concentration in aqueous solution (2.10−3 and 5.10−3 mol/L), initial pH of the solution (2 and 6.5), and mass of bentonite (0.03 and 0.3 g) on Ni(II) adsorption, were studied.Keywords: adsorption, bentonite, factorial design, Nickel(II)
Procedia PDF Downloads 1593936 Study on the Non-Contact Sheet Resistance Measuring of Silver Nanowire Coated Film Using Terahertz Wave
Authors: Dong-Hyun Kim, Wan-Ho Chung, Hak-Sung Kim
Abstract:
In this work, non-destructive evaluation was conducted to measure the sheet resistance of silver nanowire coated film and find a damage of that film using terahertz (THz) wave. Pulse type THz instrument was used, and the measurement was performed under transmission and pitch-catch reflection modes with 30 degree of incidence angle. In the transmission mode, the intensity of the THz wave was gradually increased as the conductivity decreased. Meanwhile, the intensity of THz wave was decreased as the conductivity decreased in the pitch-catch reflection mode. To confirm the conductivity of the film, sheet resistance was measured by 4-point probe station. Interaction formula was drawn from a relation between the intensity and the sheet resistance. Through substituting sheet resistance to the formula and comparing the resultant value with measured maximum THz wave intensity, measurement of sheet resistance using THz wave was more suitable than that using 4-point probe station. In addition, the damage on the silver nanowire coated film was detected by applying the THz image system. Therefore, the reliability of the entire film can be also be ensured. In conclusion, real-time monitoring using the THz wave can be applied in the transparent electrodes with detecting the damaged area as well as measuring the sheet resistance.Keywords: terahertz wave, sheet resistance, non-destructive evaluation, silver nanowire
Procedia PDF Downloads 4903935 Determining the Presence of Brucella abortus Antibodies by the Indirect Elisa Method in Bovine Bulk Milk and Risk Factors in the Peri-Urban Zones of Bamenda Cameroon
Authors: Cha-ah C. N., Awah N. J., Mouiche M. M. M.
Abstract:
Brucellosis is a neglected zoonotic disease of animals and man caused by bacteria of genus Brucella. Though eradicated in some parts of the world, it remains endemic in sub-Saharan Africa including Cameroon. The aim of this study was to contribute to the epidemiology of brucellosis in the North-West region of Cameroon by detecting the presence of anti-Brucella antibodies in bovine bulk milk as this serves as a route of transmission from animals to man. A cross sectional study was conducted to determine the prevalence of Brucella abortus antibodies in bovine bulk milk in the peri-urban zones of Bamenda. One hundred bulk milk samples were collected from 100 herds and tested by milk I-ELISA test. The conducted study revealed the presence of anti-Brucella abortus antibodies in bovine bulk milk. The study revealed that bovine brucellosis is widespread in animal production systems in this area. The animal infection pressure in these systems has remained strong due to movement of livestock in search of pasture, co-existence of animal husbandry, communal sharing of grazing land, concentration of animals around water points, abortions in production systems, locality of production systems and failure to quarantine upon introduction of new animals. The circulation of Brucella abortus antibodies in cattle farms recorded in the study revealed potential public health implication and suggest economic importance of brucellosis to the cattle industry in the Northwest region of Cameroon. The risk for re-emergence and transmission of brucellosis is evident as a result of the co-existence of animal husbandry activities and social-cultural activities that promote brucellosis transmission. Well-designed countrywide, evidence-based studies of brucellosis are needed. These could help to generate reliable frequency and potential impact estimates, to identify Brucella reservoirs, and to propose control strategies of proven efficacy.Keywords: brucellosis, bulk milk, northwest region Cameroon, prevalence
Procedia PDF Downloads 1473934 Thermodynamic Optimization of an R744 Based Transcritical Refrigeration System with Dedicated Mechanical Subcooling Cycle
Authors: Mihir Mouchum Hazarika, Maddali Ramgopal, Souvik Bhattacharyya
Abstract:
The thermodynamic analysis shows that the performance of the R744 based transcritical refrigeration cycle drops drastically for higher ambient temperatures. This is due to the peculiar s-shape of the isotherm in the supercritical region. However, subcooling of the refrigerant at the gas cooler exit enhances the performance of the R744 based system. The present study is carried out to analyze the R744 based transcritical system with dedicated mechanical subcooling cycle. Based on this proposed cycle, the thermodynamic analysis is performed, and optimum operating parameters are determined. The amount of subcooling and the pressure ratio in the subcooling cycle are the parameters which are needed to be optimized to extract the maximum COP from this proposed cycle. It is expected that this study will be helpful in implementing the dedicated subcooling cycle with R744 based transcritical system to improve the performance.Keywords: optimization, R744, subcooling, transcritical
Procedia PDF Downloads 3063933 Krill-Herd Step-Up Approach Based Energy Efficiency Enhancement Opportunities in the Offshore Mixed Refrigerant Natural Gas Liquefaction Process
Authors: Kinza Qadeer, Muhammad Abdul Qyyum, Moonyong Lee
Abstract:
Natural gas has become an attractive energy source in comparison with other fossil fuels because of its lower CO₂ and other air pollutant emissions. Therefore, compared to the demand for coal and oil, that for natural gas is increasing rapidly world-wide. The transportation of natural gas over long distances as a liquid (LNG) preferable for several reasons, including economic, technical, political, and safety factors. However, LNG production is an energy-intensive process due to the tremendous amount of power requirements for compression of refrigerants, which provide sufficient cold energy to liquefy natural gas. Therefore, one of the major issues in the LNG industry is to improve the energy efficiency of existing LNG processes through a cost-effective approach that is 'optimization'. In this context, a bio-inspired Krill-herd (KH) step-up approach was examined to enhance the energy efficiency of a single mixed refrigerant (SMR) natural gas liquefaction (LNG) process, which is considered as a most promising candidate for offshore LNG production (FPSO). The optimal design of a natural gas liquefaction processes involves multivariable non-linear thermodynamic interactions, which lead to exergy destruction and contribute to process irreversibility. As key decision variables, the optimal values of mixed refrigerant flow rates and process operating pressures were determined based on the herding behavior of krill individuals corresponding to the minimum energy consumption for LNG production. To perform the rigorous process analysis, the SMR process was simulated in Aspen Hysys® software and the resulting model was connected with the Krill-herd approach coded in MATLAB. The optimal operating conditions found by the proposed approach significantly reduced the overall energy consumption of the SMR process by ≤ 22.5% and also improved the coefficient of performance in comparison with the base case. The proposed approach was also compared with other well-proven optimization algorithms, such as genetic and particle swarm optimization algorithms, and was found to exhibit a superior performance over these existing approaches.Keywords: energy efficiency, Krill-herd, LNG, optimization, single mixed refrigerant
Procedia PDF Downloads 1553932 Optimization of Electrical Discharge Machining Parameters in Machining AISI D3 Tool Steel by Grey Relational Analysis
Authors: Othman Mohamed Altheni, Abdurrahman Abusaada
Abstract:
This study presents optimization of multiple performance characteristics [material removal rate (MRR), surface roughness (Ra), and overcut (OC)] of hardened AISI D3 tool steel in electrical discharge machining (EDM) using Taguchi method and Grey relational analysis. Machining process parameters selected were pulsed current Ip, pulse-on time Ton, pulse-off time Toff and gap voltage Vg. Based on ANOVA, pulse current is found to be the most significant factor affecting EDM process. Optimized process parameters are simultaneously leading to a higher MRR, lower Ra, and lower OC are then verified through a confirmation experiment. Validation experiment shows an improved MRR, Ra and OC when Taguchi method and grey relational analysis were usedKeywords: edm parameters, grey relational analysis, Taguchi method, ANOVA
Procedia PDF Downloads 2943931 An Optimization Model for the Arrangement of Assembly Areas Considering Time Dynamic Area Requirements
Authors: Michael Zenker, Henrik Prinzhorn, Christian Böning, Tom Strating
Abstract:
Large-scale products are often assembled according to the job-site principle, meaning that during the assembly the product is located at a fixed position, while the area requirements are constantly changing. On one hand, the product itself is growing with each assembly step, whereas varying areas for storage, machines or working areas are temporarily required. This is an important factor when arranging products to be assembled within the factory. Currently, it is common to reserve a fixed area for each product to avoid overlaps or collisions with the other assemblies. Intending to be large enough to include the product and all adjacent areas, this reserved area corresponds to the superposition of the maximum extents of all required areas of the product. In this procedure, the reserved area is usually poorly utilized over the course of the entire assembly process; instead a large part of it remains unused. If the available area is a limited resource, a systematic arrangement of the products, which complies with the dynamic area requirements, will lead to an increased area utilization and productivity. This paper presents the results of a study on the arrangement of assembly objects assuming dynamic, competing area requirements. First, the problem situation is extensively explained, and existing research on associated topics is described and evaluated on the possibility of an adaptation. Then, a newly developed mathematical optimization model is introduced. This model allows an optimal arrangement of dynamic areas, considering logical and practical constraints. Finally, in order to quantify the potential of the developed method, some test series results are presented, showing the possible increase in area utilization.Keywords: dynamic area requirements, facility layout problem, optimization model, product assembly
Procedia PDF Downloads 2333930 Investigation of Optical, Film Formation and Magnetic Properties of PS Lates/MNPs Composites
Authors: Saziye Ugur
Abstract:
In this study, optical, film formation, morphological and the magnetic properties of a nanocomposite system, composed of polystyrene (PS) latex polymer and core-shell magnetic nanoparticles (MNPs) is presented. Nine different mixtures were prepared by mixing of PS latex dispersion with different amount of MNPs in the range of (0- 100 wt%). PS/MNPs films were prepared from these mixtures on glass substrates by drop casting method. After drying at room temperature, each film sample was separately annealed at temperatures from 100 to 250 °C for 10 min. In order to monitor film formation process, the transmittance of these composites was measured after each annealing step as a function of MNPs content. Below a critical MNPs content (30 wt%), it was found that PS percolates into the MNPs hard phase and forms an interconnected network upon annealing. The transmission results showed above this critical value, PS latexes were no longer film forming at all temperatures. Besides, the PS/MNPs composite films also showed excellent magnetic properties. All composite films showed superparamagnetic behaviors. The saturation magnetisation (Ms) first increased up to 0.014 emu in the range of (0-50) wt% MNPs content and then decreased to 0.010 emu with increasing MNPs content. The highest value of Ms was approximately 0.020 emu and was obtained for the film filled with 85 wt% MNPs content. These results indicated that the optical, film formation and magnetic properties of PS/MNPs composite films can be readily tuned by varying loading content of MNPs nanoparticles.Keywords: composite film, film formation, magnetic nanoparticles, ps latex, transmission
Procedia PDF Downloads 2553929 Analyzing Test Data Generation Techniques Using Evolutionary Algorithms
Authors: Arslan Ellahi, Syed Amjad Hussain
Abstract:
Software Testing is a vital process in software development life cycle. We can attain the quality of software after passing it through software testing phase. We have tried to find out automatic test data generation techniques that are a key research area of software testing to achieve test automation that can eventually decrease testing time. In this paper, we review some of the approaches presented in the literature which use evolutionary search based algorithms like Genetic Algorithm, Particle Swarm Optimization (PSO), etc. to validate the test data generation process. We also look into the quality of test data generation which increases or decreases the efficiency of testing. We have proposed test data generation techniques for model-based testing. We have worked on tuning and fitness function of PSO algorithm.Keywords: search based, evolutionary algorithm, particle swarm optimization, genetic algorithm, test data generation
Procedia PDF Downloads 1903928 Fragment Domination for Many-Objective Decision-Making Problems
Authors: Boris Djartov, Sanaz Mostaghim
Abstract:
This paper presents a number-based dominance method. The main idea is how to fragment the many attributes of the problem into subsets suitable for the well-established concept of Pareto dominance. Although other similar methods can be found in the literature, they focus on comparing the solutions one objective at a time, while the focus of this method is to compare entire subsets of the objective vector. Given the nature of the method, it is computationally costlier than other methods and thus, it is geared more towards selecting an option from a finite set of alternatives, where each solution is defined by multiple objectives. The need for this method was motivated by dynamic alternate airport selection (DAAS). In DAAS, pilots, while en route to their destination, can find themselves in a situation where they need to select a new landing airport. In such a predicament, they need to consider multiple alternatives with many different characteristics, such as wind conditions, available landing distance, the fuel needed to reach it, etc. Hence, this method is primarily aimed at human decision-makers. Many methods within the field of multi-objective and many-objective decision-making rely on the decision maker to initially provide the algorithm with preference points and weight vectors; however, this method aims to omit this very difficult step, especially when the number of objectives is so large. The proposed method will be compared to Favour (1 − k)-Dom and L-dominance (LD) methods. The test will be conducted using well-established test problems from the literature, such as the DTLZ problems. The proposed method is expected to outperform the currently available methods in the literature and hopefully provide future decision-makers and pilots with support when dealing with many-objective optimization problems.Keywords: multi-objective decision-making, many-objective decision-making, multi-objective optimization, many-objective optimization
Procedia PDF Downloads 913927 Core Number Optimization Based Scheduler to Order/Mapp Simulink Application
Authors: Asma Rebaya, Imen Amari, Kaouther Gasmi, Salem Hasnaoui
Abstract:
Over these last years, the number of cores witnessed a spectacular increase in digital signal and general use processors. Concurrently, significant researches are done to get benefit from the high degree of parallelism. Indeed, these researches are focused to provide an efficient scheduling from hardware/software systems to multicores architecture. The scheduling process consists on statically choose one core to execute one task and to specify an execution order for the application tasks. In this paper, we describe an efficient scheduler that calculates the optimal number of cores required to schedule an application, gives a heuristic scheduling solution and evaluates its cost. Our proposal results are evaluated and compared with Preesm scheduler results and we prove that ours allows better scheduling in terms of latency, computation time and number of cores.Keywords: computation time, hardware/software system, latency, optimization, multi-cores platform, scheduling
Procedia PDF Downloads 2833926 An Approach to Electricity Production Utilizing Waste Heat of a Triple-Pressure Cogeneration Combined Cycle Power Plant
Authors: Soheil Mohtaram, Wu Weidong, Yashar Aryanfar
Abstract:
This research investigates the points with heat recovery potential in a triple-pressure cogeneration combined cycle power plant and determines the amount of waste heat that can be recovered. A modified cycle arrangement is then adopted for accessing thermal potentials. Modeling the energy system is followed by thermodynamic and energetic evaluation, and then the price of the manufactured products is also determined using the Total Revenue Requirement (TRR) method and term economic analysis. The results of optimization are then presented in a Pareto chart diagram by implementing a new model with dual objective functions, which include power cost and produce heat. This model can be utilized to identify the optimal operating point for such power plants based on electricity and heat prices in different regions.Keywords: heat loss, recycling, unused energy, efficient production, optimization, triple-pressure cogeneration
Procedia PDF Downloads 823925 Machine learning Assisted Selective Emitter design for Solar Thermophotovoltaic System
Authors: Ambali Alade Odebowale, Andargachew Mekonnen Berhe, Haroldo T. Hattori, Andrey E. Miroshnichenko
Abstract:
Solar thermophotovoltaic systems (STPV) have emerged as a promising solution to overcome the Shockley-Queisser limit, a significant impediment in the direct conversion of solar radiation into electricity using conventional solar cells. The STPV system comprises essential components such as an optical concentrator, selective emitter, and a thermophotovoltaic (TPV) cell. The pivotal element in achieving high efficiency in an STPV system lies in the design of a spectrally selective emitter or absorber. Traditional methods for designing and optimizing selective emitters are often time-consuming and may not yield highly selective emitters, posing a challenge to the overall system performance. In recent years, the application of machine learning techniques in various scientific disciplines has demonstrated significant advantages. This paper proposes a novel nanostructure composed of four-layered materials (SiC/W/SiO2/W) to function as a selective emitter in the energy conversion process of an STPV system. Unlike conventional approaches widely adopted by researchers, this study employs a machine learning-based approach for the design and optimization of the selective emitter. Specifically, a random forest algorithm (RFA) is employed for the design of the selective emitter, while the optimization process is executed using genetic algorithms. This innovative methodology holds promise in addressing the challenges posed by traditional methods, offering a more efficient and streamlined approach to selective emitter design. The utilization of a machine learning approach brings several advantages to the design and optimization of a selective emitter within the STPV system. Machine learning algorithms, such as the random forest algorithm, have the capability to analyze complex datasets and identify intricate patterns that may not be apparent through traditional methods. This allows for a more comprehensive exploration of the design space, potentially leading to highly efficient emitter configurations. Moreover, the application of genetic algorithms in the optimization process enhances the adaptability and efficiency of the overall system. Genetic algorithms mimic the principles of natural selection, enabling the exploration of a diverse range of emitter configurations and facilitating the identification of optimal solutions. This not only accelerates the design and optimization process but also increases the likelihood of discovering configurations that exhibit superior performance compared to traditional methods. In conclusion, the integration of machine learning techniques in the design and optimization of a selective emitter for solar thermophotovoltaic systems represents a groundbreaking approach. This innovative methodology not only addresses the limitations of traditional methods but also holds the potential to significantly improve the overall performance of STPV systems, paving the way for enhanced solar energy conversion efficiency.Keywords: emitter, genetic algorithm, radiation, random forest, thermophotovoltaic
Procedia PDF Downloads 61