Search results for: text classification
2184 Development of GIS-Based Geotechnical Guidance Maps for Prediction of Soil Bearing Capacity
Authors: Q. Toufeeq, R. Kauser, U. R. Jamil, N. Sohaib
Abstract:
Foundation design of a structure needs soil investigation to avoid failures due to settlements. This soil investigation is expensive and time-consuming. Developments of new residential societies involve huge leveling of large sites that is accompanied by heavy land filling. Poor practices of land fill for deep depths cause differential settlements and consolidations of underneath soil that sometimes result in the collapse of structures. The extent of filling remains unknown to the individual developer unless soil investigation is carried out. Soil investigation cannot be performed on each available site due to involved costs. However, fair estimate of bearing capacity can be made if such tests are already done in the surrounding areas. The geotechnical guidance maps can provide a fair assessment of soil properties. Previously, GIS-based approaches have been used to develop maps using extrapolation and interpolations techniques for bearing capacities, underground recharge, soil classification, geological hazards, landslide hazards, socio-economic, and soil liquefaction mapping. Standard penetration test (SPT) data of surrounding sites were already available. Google Earth is used for digitization of collected data. Few points were considered for data calibration and validation. Resultant Geographic information system (GIS)-based guidance maps are helpful to anticipate the bearing capacity in the real estate industry.Keywords: bearing capacity, soil classification, geographical information system, inverse distance weighted, radial basis function
Procedia PDF Downloads 1352183 Finding the Theory of Riba Avoidance: A Scoping Review to Set the Research Agenda
Authors: Randa Ismail Sharafeddine
Abstract:
The Islamic economic system is distinctive in that it implicitly recognizes money as a separate, independent component of production capable of assuming risk and so entitled to the same reward as other Entrepreneurial Factors of Production (EFP). Conventional theory does not identify money capital explicitly as a component of production; rather, interest is recognized as a reward for capital, the interest rate is the cost of money capital, and it is also seen as a cost of physical capital. The conventional theory of production examines how diverse non-entrepreneurial resources (Land, Labor, and Capital) are selected; however, the economic theory community is largely unaware of the reasons why these resources choose to remain as non-entrepreneurial resources as opposed to becoming entrepreneurial resources. Should land, labor, and financial asset owners choose to work for others in return for rent, income, or interest, or should they engage in entrepreneurial risk-taking in order to profit. This is a decision made often in the actual world, but it has never been effectively treated in economic theory. This article will conduct a critical analysis of the conventional classification of factors of production and propose a classification for resource allocation and income distribution (Rent, Wages, Interest, and Profits) that is more rational, even within the conventional theoretical framework for evaluating and developing production and distribution theories. Money is an essential component of production in an Islamic economy, and it must be used to sustain economic activity.Keywords: financial capital, production theory, distribution theory, economic activity, riba avoidance, institution of participation
Procedia PDF Downloads 912182 Multi-Temporal Urban Land Cover Mapping Using Spectral Indices
Authors: Mst Ilme Faridatul, Bo Wu
Abstract:
Multi-temporal urban land cover mapping is of paramount importance for monitoring urban sprawl and managing the ecological environment. For diversified urban activities, it is challenging to map land covers in a complex urban environment. Spectral indices have proved to be effective for mapping urban land covers. To improve multi-temporal urban land cover classification and mapping, we evaluate the performance of three spectral indices, e.g. modified normalized difference bare-land index (MNDBI), tasseled cap water and vegetation index (TCWVI) and shadow index (ShDI). The MNDBI is developed to evaluate its performance of enhancing urban impervious areas by separating bare lands. A tasseled cap index, TCWVI is developed to evaluate its competence to detect vegetation and water simultaneously. The ShDI is developed to maximize the spectral difference between shadows of skyscrapers and water and enhance water detection. First, this paper presents a comparative analysis of three spectral indices using Landsat Enhanced Thematic Mapper (ETM), Thematic Mapper (TM) and Operational Land Imager (OLI) data. Second, optimized thresholds of the spectral indices are imputed to classify land covers, and finally, their performance of enhancing multi-temporal urban land cover mapping is assessed. The results indicate that the spectral indices are competent to enhance multi-temporal urban land cover mapping and achieves an overall classification accuracy of 93-96%.Keywords: land cover, mapping, multi-temporal, spectral indices
Procedia PDF Downloads 1532181 Optimizing Agricultural Packaging in Fiji: Strategic Barrier Analysis Using Interpretive Structural Modeling and Cross-Impact Matrix Multiplication Applied to Classification
Authors: R. Ananthanarayanan, S. B. Nakula, D. R. Seenivasagam, J. Naua, B. Sharma
Abstract:
Product packaging is a critical component of production, trade, and marketing, playing numerous vital roles that often go unnoticed by consumers. Packaging is essential for maintaining the shelf life, quality assurance, and safety of both manufactured and agricultural products. For example, harvested produce or processed foods can quickly lose quality and freshness, making secure packaging crucial for preservation and safety throughout the food supply chain. In Fiji, agricultural packaging has primarily been managed by local companies for international trade, with gradual advancements in these practices. To further enhance the industry’s performance, this study examines the challenges and constraints hindering the optimization of agricultural packaging practices in Fiji. The study utilizes Multi-Criteria Decision Making (MCDM) tools, specifically Interpretive Structural Modeling (ISM) and Cross-Impact Matrix Multiplication Applied to Classification (MICMAC). ISM analyzes the hierarchical structure of barriers, categorizing them from the least to the most influential, while MICMAC classifies barriers based on their driving and dependence power. This approach helps identify the interrelationships between barriers, providing valuable insights for policymakers and decision-makers to propose innovative solutions for sustainable development in the agricultural packaging sector, ultimately shaping the future of packaging practices in Fiji.Keywords: agricultural packaging, barriers, ISM, MICMAC
Procedia PDF Downloads 282180 Comprehensive Feature Extraction for Optimized Condition Assessment of Fuel Pumps
Authors: Ugochukwu Ejike Akpudo, Jank-Wook Hur
Abstract:
The increasing demand for improved productivity, maintainability, and reliability has prompted rapidly increasing research studies on the emerging condition-based maintenance concept- Prognostics and health management (PHM). Varieties of fuel pumps serve critical functions in several hydraulic systems; hence, their failure can have daunting effects on productivity, safety, etc. The need for condition monitoring and assessment of these pumps cannot be overemphasized, and this has led to the uproar in research studies on standard feature extraction techniques for optimized condition assessment of fuel pumps. By extracting time-based, frequency-based and the more robust time-frequency based features from these vibrational signals, a more comprehensive feature assessment (and selection) can be achieved for a more accurate and reliable condition assessment of these pumps. With the aid of emerging deep classification and regression algorithms like the locally linear embedding (LLE), we propose a method for comprehensive condition assessment of electromagnetic fuel pumps (EMFPs). Results show that the LLE as a comprehensive feature extraction technique yields better feature fusion/dimensionality reduction results for condition assessment of EMFPs against the use of single features. Also, unlike other feature fusion techniques, its capabilities as a fault classification technique were explored, and the results show an acceptable accuracy level using standard performance metrics for evaluation.Keywords: electromagnetic fuel pumps, comprehensive feature extraction, condition assessment, locally linear embedding, feature fusion
Procedia PDF Downloads 1172179 Lexical Semantic Analysis to Support Ontology Modeling of Maintenance Activities– Case Study of Offshore Riser Integrity
Authors: Vahid Ebrahimipour
Abstract:
Word representation and context meaning of text-based documents play an essential role in knowledge modeling. Business procedures written in natural language are meant to store technical and engineering information, management decision and operation experience during the production system life cycle. Context meaning representation is highly dependent upon word sense, lexical relativity, and sematic features of the argument. This paper proposes a method for lexical semantic analysis and context meaning representation of maintenance activity in a mass production system. Our approach constructs a straightforward lexical semantic approach to analyze facilitates semantic and syntactic features of context structure of maintenance report to facilitate translation, interpretation, and conversion of human-readable interpretation into computer-readable representation and understandable with less heterogeneity and ambiguity. The methodology will enable users to obtain a representation format that maximizes shareability and accessibility for multi-purpose usage. It provides a contextualized structure to obtain a generic context model that can be utilized during the system life cycle. At first, it employs a co-occurrence-based clustering framework to recognize a group of highly frequent contextual features that correspond to a maintenance report text. Then the keywords are identified for syntactic and semantic extraction analysis. The analysis exercises causality-driven logic of keywords’ senses to divulge the structural and meaning dependency relationships between the words in a context. The output is a word contextualized representation of maintenance activity accommodating computer-based representation and inference using OWL/RDF.Keywords: lexical semantic analysis, metadata modeling, contextual meaning extraction, ontology modeling, knowledge representation
Procedia PDF Downloads 1052178 Rangeland Monitoring by Computerized Technologies
Abstract:
Every piece of rangeland has a different set of physical and biological characteristics. This requires the manager to synthesis various information for regular monitoring to define changes trend to get wright decision for sustainable management. So range managers need to use computerized technologies to monitor rangeland, and select. The best management practices. There are four examples of computerized technologies that can benefit sustainable management: (1) Photographic method for cover measurement: The method was tested in different vegetation communities in semi humid and arid regions. Interpretation of pictures of quadrats was done using Arc View software. Data analysis was done by SPSS software using paired t test. Based on the results, generally, photographic method can be used to measure ground cover in most vegetation communities. (2) GPS application for corresponding ground samples and satellite pixels: In two provinces of Tehran and Markazi, six reference points were selected and in each point, eight GPS models were tested. Significant relation among GPS model, time and location with accuracy of estimated coordinates was found. After selection of suitable method, in Markazi province coordinates of plots along four transects in each 6 sites of rangelands was recorded. The best time of GPS application was in the morning hours, Etrex Vista had less error than other models, and a significant relation among GPS model, time and location with accuracy of estimated coordinates was found. (3) Application of satellite data for rangeland monitoring: Focusing on the long term variation of vegetation parameters such as vegetation cover and production is essential. Our study in grass and shrub lands showed that there were significant correlations between quantitative vegetation characteristics and satellite data. So it is possible to monitor rangeland vegetation using digital data for sustainable utilization. (4) Rangeland suitability classification with GIS: Range suitability assessment can facilitate sustainable management planning. Three sub-models of sensitivity to erosion, water suitability and forage production out puts were entered to final range suitability classification model. GIS was facilitate classification of range suitability and produced suitability maps for sheep grazing. Generally digital computers assist range managers to interpret, modify, calibrate or integrating information for correct management.Keywords: computer, GPS, GIS, remote sensing, photographic method, monitoring, rangeland ecosystem, management, suitability, sheep grazing
Procedia PDF Downloads 3672177 Stabilization of Spent Engine Oil Contaminated Lateritic Soil Admixed with Cement Kiln Dust for Use as Road Construction Materials
Authors: Johnson Rotimi Oluremi, A. Adedayo Adegbola, A. Samson Adediran, O. Solomon Oladapo
Abstract:
Spent engine oil contains heavy metals and polycyclic aromatic hydrocarbons which contribute to chronic health hazards, poor soil aeration, immobilisation of nutrients and lowering of pH in soil. It affects geotechnical properties of lateritic soil thereby constituting geotechnical and foundation problems. This study is therefore based on the stabilization of spent engine oil (SEO) contaminated lateritic soil using cement kiln dust (CKD) as a mean of restoring it to its pristine state. Geotechnical tests which include sieve analysis, atterberg limit, compaction, California bearing ratio and unconfined compressive strength tests were carried out on the natural, SEO contaminated and CKD stabilized SEO contaminated lateritic soil samples. The natural soil classified as A-2-7 (2) by AASHTO classification and GC according to the Unified Soil Classification System changed to A-4 non-plastic soil due to SEO contaminated even under the influence of CKD it remained unchanged. However, the maximum dry density (MDD) of the SEO contaminated soil increased while the optimum moisture content (OMC) behaved vice versa with the increase in the percentages of CKD. Similarly, the bearing strength of the stabilized SEO contaminated soil measured by California Bearing Ratio (CBR) increased with percentage increment in CKD. In conclusion, spent engine oil has a detrimental effect on the geotechnical properties of the lateritic soil sample but which can be remediated using 10% CKD as a stand alone admixture in stabilizing spent engine oil contaminated soil.Keywords: spent engine oil, lateritic soil, cement kiln dust, stabilization, compaction, unconfined compressive strength
Procedia PDF Downloads 3892176 [Keynote Talk]: sEMG Interface Design for Locomotion Identification
Authors: Rohit Gupta, Ravinder Agarwal
Abstract:
Surface electromyographic (sEMG) signal has the potential to identify the human activities and intention. This potential is further exploited to control the artificial limbs using the sEMG signal from residual limbs of amputees. The paper deals with the development of multichannel cost efficient sEMG signal interface for research application, along with evaluation of proposed class dependent statistical approach of the feature selection method. The sEMG signal acquisition interface was developed using ADS1298 of Texas Instruments, which is a front-end interface integrated circuit for ECG application. Further, the sEMG signal is recorded from two lower limb muscles for three locomotions namely: Plane Walk (PW), Stair Ascending (SA), Stair Descending (SD). A class dependent statistical approach is proposed for feature selection and also its performance is compared with 12 preexisting feature vectors. To make the study more extensive, performance of five different types of classifiers are compared. The outcome of the current piece of work proves the suitability of the proposed feature selection algorithm for locomotion recognition, as compared to other existing feature vectors. The SVM Classifier is found as the outperformed classifier among compared classifiers with an average recognition accuracy of 97.40%. Feature vector selection emerges as the most dominant factor affecting the classification performance as it holds 51.51% of the total variance in classification accuracy. The results demonstrate the potentials of the developed sEMG signal acquisition interface along with the proposed feature selection algorithm.Keywords: classifiers, feature selection, locomotion, sEMG
Procedia PDF Downloads 2932175 Breaking the Barrier of Service Hostility: A Lean Approach to Achieve Operational Excellence
Authors: Mofizul Islam Awwal
Abstract:
Due to globalization, industries are rapidly growing throughout the world which leads to many manufacturing organizations. But recently, service industries are beginning to emerge in large numbers almost in all parts of the world including some developing countries. In this context, organizations need to have strong competitive advantage over their rivals to achieve their strategic business goals. Manufacturing industries are adopting many methods and techniques in order to achieve such competitive edge. Over the last decades, manufacturing industries have been successfully practicing lean concept to optimize their production lines. Due to its huge success in manufacturing context, lean has made its way into the service industry. Very little importance has been addressed to service in the area of operations management. Service industries are far behind than manufacturing industries in terms of operations improvement. It will be a hectic job to transfer the lean concept from production floor to service back/front office which will obviously yield possible improvement. Service processes are not as visible as production processes and can be very complex. Lack of research in this area made it quite difficult for service industries as there are no standardized frameworks for successfully implementing lean concept in service organization. The purpose of this research paper is to capture the present scenario of service industry in terms of lean implementation. Thorough analysis of past literature will be done on the applicability and understanding of lean in service structure. Classification of research papers will be done and critical factors will be unveiled for implementing lean in service industry to achieve operational excellence.Keywords: lean service, lean literature classification, lean implementation, service industry, service excellence
Procedia PDF Downloads 3752174 Impacts of Aquaculture Farms on the Mangroves Forests of Sundarbans, India (2010-2018): Temporal Changes of NDVI
Authors: Sandeep Thakur, Ismail Mondal, Phani Bhusan Ghosh, Papita Das, Tarun Kumar De
Abstract:
Sundarbans Reserve forest of India has been undergoing major transformations in the recent past owing to population pressure and related changes. This has brought about major changes in the spatial landscape of the region especially in the western parts. This study attempts to assess the impacts of the Landcover changes on the mangrove habitats. Time series imageries of Landsat were used to analyze the Normalized Differential Vegetation Index (NDVI) patterns over the western parts of Indian Sundarbans forest in order to assess the heath of the mangroves in the region. The images were subjected to Land use Land cover (LULC) classification using sub-pixel classification techniques in ERDAS Imagine software and the changes were mapped. The spatial proliferation of aquaculture farms during the study period was also mapped. A multivariate regression analysis was carried out between the obtained NDVI values and the LULC classes. Similarly, the observed meteorological data sets (time series rainfall and minimum and maximum temperature) were also statistically correlated for regression. The study demonstrated the application of NDVI in assessing the environmental status of mangroves as the relationship between the changes in the environmental variables and the remote sensing based indices felicitate an efficient evaluation of environmental variables, which can be used in the coastal zone monitoring and development processes.Keywords: aquaculture farms, LULC, Mangrove, NDVI
Procedia PDF Downloads 1822173 The Role of Smart Educational Aids in Learning Listening Among Pupils with Attention and Listening Problems
Authors: Sadeq Al Yaari, Muhammad Alkhunayn, Adham Al Yaari, Aayah Al Yaari, Montaha Al Yaari, Ayman Al Yaari, Sajedah Al Yaari, Fatehi Eissa
Abstract:
The recent rise of smart educational aids and the move away from traditional listening aids are leading to a fundamental shift in the way in which individuals with attention and listening problems (ALP) manipulate listening inputs and/or act appropriately to the spoken information presented to them. A total sample of twenty-six ALP pupils (m=20 and f=6) between 7-12 years old was selected from different strata based on gender, region and school. In the sample size, thirteen (10 males and 3 females) received the treatment in terms of smart classes provided with smart educational aids in a listening course that lasted for four months, while others did not (they studied the same course by the same instructor but in ordinary class). A pretest was administered to assess participants’ levels, and a posttest was given to evaluate their attention and listening comprehension performance, namely in phonetic and phonological tests with sociolinguistic themes that have been designed for this purpose. Test results were analyzed both psychoneurolinguistically and statistically. Results reveal a remarkable change in pupils’ behavioral listening where scores witnessed a significant difference in the performance of the experimental ALP group in the pretest compared to the posttest (Pupils performed better at the pretest-posttest on phonetics than at the two tests on phonology). It is concluded that smart educational aids designed for listening skills help not only increase the listening command of pupils with ALP to understand what they listen to but also develop their interactive listening capability and, at the same rate, are responsible for increasing concentrated and in-depth listening capacity. Plus, ALP pupils become able to grasp the audio content of text recordings, including educational audio recordings, news, oral stories and tales, views, spiritual/religious text and general knowledge. However, the pupils have not experienced individual smart audio-visual aids that connect listening to other language receptive and productive skills, which could be the future area of research.Keywords: smart aids, attention, listening, problems
Procedia PDF Downloads 432172 Archaeological Study of Statues of King Thutmosis III from Luxor
Authors: Ahmed Mamdouh
Abstract:
Introduction: The era of Thutmosis III represents a transitional period between the art of the Thutmoside art and the Amarna period, so we intend to declare that it serves as the cradle of Amarna art. The study will examine the Statues of king Thutmose III that was discovered in Luxor by an Egyptian mission. These Statues have been transferred to the Conservation Center of the Grand Egyptian Museum (GEM) to be conserved and made ready to bedisplayed at the new museum (the project of the century). We focus upon three Statues (GEM numbers 45863, 45864, 45865), chosen because they relate to different years of the king's reign. These Statues were all made of granite. The first one is a Kneeling statue representing the god Amun showing king Thutmose III offering to the goddess Hathor. The second is decorated with king Thutmose III with the red crown, between the goddess Hathor and the royal wife, Nefertari. The third shows the king offering NW vessels and bread to the god Seker. Each Statue is divided into registers containing a description and decorated with scenes of the king presenting offerings to gods. Methodology: The proposed study will focus on the development which happened sequentially according to differences that occur in each Statue. We will use comparative research to determine the workshops of these statues, whether one or several, and what are the distinguishing features of each one. We will examine what innovations the artisans added to royal art. The description and the texts will be translated with linguistic comments. This research focuses on text analyses and technology. Paleographic information found on these objects includes the names and titles of the king. Conclusion: This research focuses on text analyses and technology. The study aims to create a manual that may help in dating the artwork of Thutmosis III. This research will be beneficial and useful for heritage and ancient civilizations, particularly when we talk about opening museums like the Grand Egyptian museum, which will exhibit a collection of statues. Indeed this kind of study will open a new destination in order to know how to identify these collections and how to exhibit them commensurate with the nature of ancient Egyptian history and heritage.Keywords: archaeological study, Giza, new kingdom, statues, royal art
Procedia PDF Downloads 682171 The Impact of Smart Educational Aids in Learning Listening Among Pupils with Attention and Listening Problems
Authors: Sadeq Al Yaari, Muhammad Alkhunayn, Adham Al Yaari, Ayah Al Yaari, Ayman Al Yaari, Montaha Al Yaari, Sajedah Al Yaari, Fatehi Eissa
Abstract:
The recent rise of smart educational aids and the move away from traditional listening aids are leading to a fundamental shift in the way in which individuals with attention and listening problems (ALP) manipulate listening inputs and/or act appropriately to the spoken information presented to them. A total sample of twenty-six ALP pupils (m=20 and f=6) between 7-12 years old was selected from different strata based on gender, region and school. In the sample size, thirteen (10 males and 3 females) received the treatment in terms of smart classes provided with smart educational aids in a listening course that lasted for four months, while others did not (they studied the same course by the same instructor but in ordinary class). A pretest was administered to assess participants’ levels, and a posttest was given to evaluate their attention and listening comprehension performance, namely in phonetic and phonological tests with sociolinguistic themes that have been designed for this purpose. Test results were analyzed both psychoneurolinguistically and statistically. Results reveal a remarkable change in pupils’ behavioral listening where scores witnessed a significant difference in the performance of the experimental ALP group in the pretest compared to the posttest (Pupils performed better at the pretest-posttest on phonetics than at the two tests on phonology). It is concluded that smart educational aids designed for listening skills help not only increase the listening command of pupils with ALP to understand what they listen to but also develop their interactive listening capability and, at the same rate, are responsible for increasing concentrated and in-depth listening capacity. Plus, ALP pupils become able to grasp the audio content of text recordings, including educational audio recordings, news, oral stories and tales, views, spiritual/religious text and general knowledge. However, the pupils have not experienced individual smart audio-visual aids that connect listening to other language receptive and productive skills, which could be the future area of research.Keywords: smart educational aids, listening attention, pupils, problems
Procedia PDF Downloads 522170 A Robust Spatial Feature Extraction Method for Facial Expression Recognition
Authors: H. G. C. P. Dinesh, G. Tharshini, M. P. B. Ekanayake, G. M. R. I. Godaliyadda
Abstract:
This paper presents a new spatial feature extraction method based on principle component analysis (PCA) and Fisher Discernment Analysis (FDA) for facial expression recognition. It not only extracts reliable features for classification, but also reduces the feature space dimensions of pattern samples. In this method, first each gray scale image is considered in its entirety as the measurement matrix. Then, principle components (PCs) of row vectors of this matrix and variance of these row vectors along PCs are estimated. Therefore, this method would ensure the preservation of spatial information of the facial image. Afterwards, by incorporating the spectral information of the eigen-filters derived from the PCs, a feature vector was constructed, for a given image. Finally, FDA was used to define a set of basis in a reduced dimension subspace such that the optimal clustering is achieved. The method of FDA defines an inter-class scatter matrix and intra-class scatter matrix to enhance the compactness of each cluster while maximizing the distance between cluster marginal points. In order to matching the test image with the training set, a cosine similarity based Bayesian classification was used. The proposed method was tested on the Cohn-Kanade database and JAFFE database. It was observed that the proposed method which incorporates spatial information to construct an optimal feature space outperforms the standard PCA and FDA based methods.Keywords: facial expression recognition, principle component analysis (PCA), fisher discernment analysis (FDA), eigen-filter, cosine similarity, bayesian classifier, f-measure
Procedia PDF Downloads 4252169 A Study of the Use of Arguments in Nominalizations as Instanciations of Grammatical Metaphors Finished in -TION in Academic Texts of Native Speakers
Authors: Giovana Perini-Loureiro
Abstract:
The purpose of this research was to identify whether the nominalizations terminating in -TION in the academic discourse of native English speakers contain the arguments required by their input verbs. In the perspective of functional linguistics, ideational metaphors, with nominalization as their most pervasive realization, are lexically dense, and therefore frequent in formal texts. Ideational metaphors allow the academic genre to instantiate objectification, de-personalization, and the ability to construct a chain of arguments. The valence of those nouns present in nominalizations tends to maintain the same elements of the valence from its original verbs, but these arguments are not always expressed. The initial hypothesis was that these arguments would also be present alongside the nominalizations, through anaphora or cataphora. In this study, a qualitative analysis of the occurrences of the five more frequent nominalized terminations in -TION in academic texts was accomplished, and thus a verification of the occurrences of the arguments required by the original verbs. The assembling of the concordance lines was done through COCA (Corpus of Contemporary American English). After identifying the five most frequent nominalizations (attention, action, participation, instruction, intervention), the concordance lines were selected at random to be analyzed, assuring the representativeness and reliability of the sample. It was possible to verify, in all the analyzed instances, the presence of arguments. In most instances, the arguments were not expressed, but recoverable, either in the context or in the shared knowledge among the interactants. It was concluded that the realizations of the arguments which were not expressed alongside the nominalizations are part of a continuum, starting from the immediate context with anaphora and cataphora; up to a knowledge shared outside the text, such as specific area knowledge. The study also has implications for the teaching of academic writing, especially with regards to the impact of nominalizations on the thematic and informational flow of the text. Grammatical metaphors are essential to academic writing, hence acknowledging the occurrence of its arguments is paramount to achieve linguistic awareness and the writing prestige required by the academy.Keywords: corpus, functional linguistics, grammatical metaphors, nominalizations, academic English
Procedia PDF Downloads 1472168 Writing the Roaming Female Self: Identity and Romantic Selfhood in Mary Wollstonecraft’s Letters Written during a Short Stay in Sweden, Denmark, and Norway (1796)
Authors: Kalyani Gandhi
Abstract:
The eighteenth century in Britain saw a great burst of activity in writing (letters, journals, newspapers, essays); often these modes of writing had a public-spirited bent in-step with the prevailing intellectual atmosphere. Mary Wollstonecraft was one of the leading intellectuals of that period who utilized letter writing to convey her thoughts on the exciting political developments of the late eighteenth century. Fusing together her anxieties and concerns about humanity in general and herself in particular, Wollstonecraft’s views of the world around her are filtered through the lens of her subjectivity. Thus, Wollstonecraft’s letters covered a wide range of topics on both the personal and political level (for the two are often entwined in Wollstonecraft’s characteristic style of analysis) such as sentiment, gender, nature, peasantry, the class system, the legal system, political duties and rights of both rulers and subjects, death, immortality, religion, family and education. Therefore, this paper intends to examine the manner in which Wollstonecraft utilizes letter-writing to constitute and develop Romantic self-hood, understand the world around her and illustrate her ideas on the political and social happenings in Europe. The primary text analyzed will be Mary Wollstonecraft's Letters Written During a Short Stay in Sweden, Denmark and Norway (1796) and the analysis of this text will be supplemented by researching 18th-century British letter writing culture, with a special emphasis on the epistolary habits of women. Within this larger framework, this paper intends to examine the manner in which this hybrid of travel and epistolary writing aided Mary Wollstonecraft's expression on Romantic selfhood and how it was complicated by ideas of gender. This paper reveals Wollstonecraft's text to be wrought with anxiety about the world around her and within her; thus, the personal-public nature of the epistolary format particularly suits her characteristic point of view that looks within and without. That is to say, Wollstonecraft’s anxieties about gender and self, are as much about the women she sees in the world around her as much as they are about her young daughter and herself. Wollstonecraft constantly explores and examines this anxiety within the different but interconnected realms of politics, economics, history and society. In fact, it is her complex technique of entwining these aforementioned concerns with a closer look at interpersonal relationships among men and women (she often mentions specific anecdotes and instances) that make Wollstonecraft's Letters so engaging and insightful. Thus, Wollstonecraft’s Letters is an exemplar of British Romantic writing due to the manner in which it explores the bond between the individual and society. Mary Wollstonecraft's nuances this exploration by incorporating her concerns about women and the playing out of gender in society. Thus, Wollstonecraft’s Letters is an invaluable contribution to the field of British Romanticism, particularly as it offers crucial insight on female Romantic writing that can broaden and enrich the current academic understanding of the field.Keywords: British romanticism, letters, feminism, travel writing
Procedia PDF Downloads 2152167 The Outcome of Using Machine Learning in Medical Imaging
Authors: Adel Edwar Waheeb Louka
Abstract:
Purpose AI-driven solutions are at the forefront of many pathology and medical imaging methods. Using algorithms designed to better the experience of medical professionals within their respective fields, the efficiency and accuracy of diagnosis can improve. In particular, X-rays are a fast and relatively inexpensive test that can diagnose diseases. In recent years, X-rays have not been widely used to detect and diagnose COVID-19. The under use of Xrays is mainly due to the low diagnostic accuracy and confounding with pneumonia, another respiratory disease. However, research in this field has expressed a possibility that artificial neural networks can successfully diagnose COVID-19 with high accuracy. Models and Data The dataset used is the COVID-19 Radiography Database. This dataset includes images and masks of chest X-rays under the labels of COVID-19, normal, and pneumonia. The classification model developed uses an autoencoder and a pre-trained convolutional neural network (DenseNet201) to provide transfer learning to the model. The model then uses a deep neural network to finalize the feature extraction and predict the diagnosis for the input image. This model was trained on 4035 images and validated on 807 separate images from the ones used for training. The images used to train the classification model include an important feature: the pictures are cropped beforehand to eliminate distractions when training the model. The image segmentation model uses an improved U-Net architecture. This model is used to extract the lung mask from the chest X-ray image. The model is trained on 8577 images and validated on a validation split of 20%. These models are calculated using the external dataset for validation. The models’ accuracy, precision, recall, f1-score, IOU, and loss are calculated. Results The classification model achieved an accuracy of 97.65% and a loss of 0.1234 when differentiating COVID19-infected, pneumonia-infected, and normal lung X-rays. The segmentation model achieved an accuracy of 97.31% and an IOU of 0.928. Conclusion The models proposed can detect COVID-19, pneumonia, and normal lungs with high accuracy and derive the lung mask from a chest X-ray with similarly high accuracy. The hope is for these models to elevate the experience of medical professionals and provide insight into the future of the methods used.Keywords: artificial intelligence, convolutional neural networks, deeplearning, image processing, machine learningSarapin, intraarticular, chronic knee pain, osteoarthritisFNS, trauma, hip, neck femur fracture, minimally invasive surgery
Procedia PDF Downloads 732166 Open Source Knowledge Management Approach to Manage and Disseminate Distributed Content in a Global Enterprise
Authors: Rahul Thakur, Onkar Chandel
Abstract:
Red Hat is the world leader in providing open source software and solutions. A global enterprise, like Red Hat, has unique issues of connecting employees with content because of distributed offices, multiple teams spread across geographies, multiple languages, and different cultures. Employees, of a global company, create content that is distributed across departments, teams, regions, and countries. This makes finding the best content difficult since owners keep iterating on the existing content. When employees are unable to find the content, they end up creating it once again and in the process duplicating existing material and effort. Also, employees may not find the relevant content and spend time reviewing obsolete duplicate, or irrelevant content. On an average, a person spends 15 minutes/day in failed searches that might result in missed business opportunities, employee frustration, and substandard deliverables. Red Hat Knowledge Management Office (KMO) applied 'open source strategy' to solve the above problems. Under the Open Source Strategy, decisions are taken collectively. The strategy aims at accomplishing common goals with the help of communities. The objectives of this initiative were to save employees' time, get them authentic content, improve their content search experience, avoid duplicate content creation, provide context based search, improve analytics, improve content management workflows, automate content classification, and automate content upload. This session will describe open source strategy, its applicability in content management, challenges, recommended solutions, and outcome.Keywords: content classification, content management, knowledge management, open source
Procedia PDF Downloads 2102165 Deep Learning for Qualitative and Quantitative Grain Quality Analysis Using Hyperspectral Imaging
Authors: Ole-Christian Galbo Engstrøm, Erik Schou Dreier, Birthe Møller Jespersen, Kim Steenstrup Pedersen
Abstract:
Grain quality analysis is a multi-parameterized problem that includes a variety of qualitative and quantitative parameters such as grain type classification, damage type classification, and nutrient regression. Currently, these parameters require human inspection, a multitude of instruments employing a variety of sensor technologies, and predictive model types or destructive and slow chemical analysis. This paper investigates the feasibility of applying near-infrared hyperspectral imaging (NIR-HSI) to grain quality analysis. For this study two datasets of NIR hyperspectral images in the wavelength range of 900 nm - 1700 nm have been used. Both datasets contain images of sparsely and densely packed grain kernels. The first dataset contains ~87,000 image crops of bulk wheat samples from 63 harvests where protein value has been determined by the FOSS Infratec NOVA which is the golden industry standard for protein content estimation in bulk samples of cereal grain. The second dataset consists of ~28,000 image crops of bulk grain kernels from seven different wheat varieties and a single rye variety. In the first dataset, protein regression analysis is the problem to solve while variety classification analysis is the problem to solve in the second dataset. Deep convolutional neural networks (CNNs) have the potential to utilize spatio-spectral correlations within a hyperspectral image to simultaneously estimate the qualitative and quantitative parameters. CNNs can autonomously derive meaningful representations of the input data reducing the need for advanced preprocessing techniques required for classical chemometric model types such as artificial neural networks (ANNs) and partial least-squares regression (PLS-R). A comparison between different CNN architectures utilizing 2D and 3D convolution is conducted. These results are compared to the performance of ANNs and PLS-R. Additionally, a variety of preprocessing techniques from image analysis and chemometrics are tested. These include centering, scaling, standard normal variate (SNV), Savitzky-Golay (SG) filtering, and detrending. The results indicate that the combination of NIR-HSI and CNNs has the potential to be the foundation for an automatic system unifying qualitative and quantitative grain quality analysis within a single sensor technology and predictive model type.Keywords: deep learning, grain analysis, hyperspectral imaging, preprocessing techniques
Procedia PDF Downloads 992164 An Interactive Online Academic Writing Resource for Research Students in Engineering
Authors: Eleanor K. P. Kwan
Abstract:
English academic writing, it has been argued, is an acquired language even for English speakers. For research students whose English is not their first language, however, the acquisition process is often more challenging. Instead of hoping that students would acquire the conventions themselves through extensive reading, there is a need for the explicit teaching of linguistic conventions in academic writing, as explicit teaching could help students to be more aware of the different generic conventions in different disciplines in science. This paper presents an interuniversity effort to develop an online academic writing resource for research students in five subdisciplines in engineering, upon the completion of the needs analysis which indicates that students and faculty members are more concerned about students’ ability to organize an extended text than about grammatical accuracy per se. In particular, this paper focuses on the materials developed for thesis writing (also called dissertation writing in some tertiary institutions), as theses form an essential graduation requirement for all research students and this genre is also expected to demonstrate the writer’s competence in research and contributions to the research community. Drawing on Swalesian move analysis of research articles, this online resource includes authentic materials written by students and faculty members from the participating institutes. Highlight will be given to several aspects and challenges of developing this online resource. First, as the online resource aims at moving beyond providing instructions on academic writing, a range of interactive activities need to be designed to engage the users, which is one feature which differentiates this online resource from other equally informative websites on academic writing. Second, it will also include discussion on divergent textual practices in different subdisciplines, which help to illustrate different practices among these subdisciplines. Third, since theses, probably one of the most extended texts a research student will complete, require effective use of signposting devices to facility readers’ understanding, this online resource will also provide both explanation and activities on different components that contribute to text coherence. Finally results from piloting will also be included to shed light on the effectiveness of the materials, which could be useful for future development.Keywords: academic writing, English for academic purposes, online language learning materials, scientific writing
Procedia PDF Downloads 2692163 Shared Decision Making in Oropharyngeal Cancer: The Development of a Decision Aid for Resectable Oropharyngeal Carcinoma, a Mixed Methods Study
Authors: Anne N. Heirman, Lisette van der Molen, Richard Dirven, Gyorgi B. Halmos, Michiel W.M. van den Brekel
Abstract:
Background: Due to the rising incidence of oropharyngeal squamous cell cancer (OPSCC), many patients are challenged with choosing between transoral(robotic) surgery and radiotherapy, with equal survival and oncological outcomes. Also, functional outcomes are of little difference over the years. With this study, the wants and needs of patients and caregivers are identified to develop a comprehensible patient decision aid (PDA). Methods: The development of this PDA is based on the International Patient Decision Aid Standards criteria. In phase 1, relevant literature was reviewed and compared to current counseling papers. We interviewed ten post-treatment patients and ten doctors from four head and neck centers in the Netherlands, which were transcribed verbatim and analyzed. With these results, the first draft of the PDA was developed. Phase 2 beholds testing the first draft for comprehensibility and usability. Phase 3 beholds testing for feasibility. After this phase, the final version of the PDA was developed. Results: All doctors and patients agreed a PDA was needed. Phase 1 showed that 50% of patients felt well-informed after standard care and 35% missed information about treatment possibilities. Side effects and functional outcomes were rated as the most important for decision-making. With this information, the first version was developed. Doctors and patients stated (phase 2) that they were satisfied with the comprehensibility and usability, but there was too much text. The PDA underwent text reduction revisions and got more graphics. After revisions, all doctors found the PDA feasible and would contribute to regular counseling. Patients were satisfied with the results and wished they would have seen it before their treatment. Conclusion: Decision-making for OPSCC should focus on differences in side-effects and functional outcomes. Patients and doctors found the PDA to be of great value. Future research will explore the benefits of the PDA in clinical practice.Keywords: head-and-neck oncology, oropharyngeal cancer, patient decision aid, development, shared decision making
Procedia PDF Downloads 1442162 User-Awareness from Eye Line Tracing During Specification Writing to Improve Specification Quality
Authors: Yoshinori Wakatake
Abstract:
Many defects after the release of software packages are caused due to omissions of sufficient test items in test specifications. Poor test specifications are detected by manual review, which imposes a high human load. The prevention of omissions depends on the end-user awareness of test specification writers. If test specifications were written while envisioning the behavior of end-users, the number of omissions in test items would be greatly reduced. The paper pays attention to the point that writers who can achieve it differ from those who cannot in not only the description richness but also their gaze information. It proposes a method to estimate the degree of user-awareness of writers through the analysis of their gaze information when writing test specifications. We conduct an experiment to obtain the gaze information of a writer of the test specifications. Test specifications are automatically classified using gaze information. In this method, a Random Forest model is constructed for the classification. The classification is highly accurate. By looking at the explanatory variables which turn out to be important variables, we know behavioral features to distinguish test specifications of high quality from others. It is confirmed they are pupil diameter size and the number and the duration of blinks. The paper also investigates test specifications automatically classified with gaze information to discuss features in their writing ways in each quality level. The proposed method enables us to automatically classify test specifications. It also prevents test item omissions, because it reveals writing features that test specifications of high quality should satisfy.Keywords: blink, eye tracking, gaze information, pupil diameter, quality improvement, specification document, user-awareness
Procedia PDF Downloads 642161 Training a Neural Network to Segment, Detect and Recognize Numbers
Authors: Abhisek Dash
Abstract:
This study had three neural networks, one for number segmentation, one for number detection and one for number recognition all of which are coupled to one another. All networks were trained on the MNIST dataset and were convolutional. It was assumed that the images had lighter background and darker foreground. The segmentation network took 28x28 images as input and had sixteen outputs. Segmentation training starts when a dark pixel is encountered. Taking a window(7x7) over that pixel as focus, the eight neighborhood of the focus was checked for further dark pixels. The segmentation network was then trained to move in those directions which had dark pixels. To this end the segmentation network had 16 outputs. They were arranged as “go east”, ”don’t go east ”, “go south east”, “don’t go south east”, “go south”, “don’t go south” and so on w.r.t focus window. The focus window was resized into a 28x28 image and the network was trained to consider those neighborhoods which had dark pixels. The neighborhoods which had dark pixels were pushed into a queue in a particular order. The neighborhoods were then popped one at a time stitched to the existing partial image of the number one at a time and trained on which neighborhoods to consider when the new partial image was presented. The above process was repeated until the image was fully covered by the 7x7 neighborhoods and there were no more uncovered black pixels. During testing the network scans and looks for the first dark pixel. From here on the network predicts which neighborhoods to consider and segments the image. After this step the group of neighborhoods are passed into the detection network. The detection network took 28x28 images as input and had two outputs denoting whether a number was detected or not. Since the ground truth of the bounds of a number was known during training the detection network outputted in favor of number not found until the bounds were not met and vice versa. The recognition network was a standard CNN that also took 28x28 images and had 10 outputs for recognition of numbers from 0 to 9. This network was activated only when the detection network votes in favor of number detected. The above methodology could segment connected and overlapping numbers. Additionally the recognition unit was only invoked when a number was detected which minimized false positives. It also eliminated the need for rules of thumb as segmentation is learned. The strategy can also be extended to other characters as well.Keywords: convolutional neural networks, OCR, text detection, text segmentation
Procedia PDF Downloads 1612160 Statistical Feature Extraction Method for Wood Species Recognition System
Authors: Mohd Iz'aan Paiz Bin Zamri, Anis Salwa Mohd Khairuddin, Norrima Mokhtar, Rubiyah Yusof
Abstract:
Effective statistical feature extraction and classification are important in image-based automatic inspection and analysis. An automatic wood species recognition system is designed to perform wood inspection at custom checkpoints to avoid mislabeling of timber which will results to loss of income to the timber industry. The system focuses on analyzing the statistical pores properties of the wood images. This paper proposed a fuzzy-based feature extractor which mimics the experts’ knowledge on wood texture to extract the properties of pores distribution from the wood surface texture. The proposed feature extractor consists of two steps namely pores extraction and fuzzy pores management. The total number of statistical features extracted from each wood image is 38 features. Then, a backpropagation neural network is used to classify the wood species based on the statistical features. A comprehensive set of experiments on a database composed of 5200 macroscopic images from 52 tropical wood species was used to evaluate the performance of the proposed feature extractor. The advantage of the proposed feature extraction technique is that it mimics the experts’ interpretation on wood texture which allows human involvement when analyzing the wood texture. Experimental results show the efficiency of the proposed method.Keywords: classification, feature extraction, fuzzy, inspection system, image analysis, macroscopic images
Procedia PDF Downloads 4262159 Cultural Dynamics in Online Consumer Behavior: Exploring Cross-Country Variances in Review Influence
Authors: Eunjung Lee
Abstract:
This research investigates the intricate connection between cultural differences and online consumer behaviors by integrating Hofstede's Cultural Dimensions theory with analysis methodologies such as text mining, data mining, and topic analysis. Our aim is to provide a comprehensive understanding of how national cultural differences influence individuals' behaviors when engaging with online reviews. To ensure the relevance of our investigation, we systematically analyze and interpret the cultural nuances influencing online consumer behaviors, especially in the context of online reviews. By anchoring our research in Hofstede's Cultural Dimensions theory, we seek to offer valuable insights for marketers to tailor their strategies based on the cultural preferences of diverse global consumer bases. In our methodology, we employ advanced text mining techniques to extract insights from a diverse range of online reviews gathered globally for a specific product or service like Netflix. This approach allows us to reveal hidden cultural cues in the language used by consumers from various backgrounds. Complementing text mining, data mining techniques are applied to extract meaningful patterns from online review datasets collected from different countries, aiming to unveil underlying structures and gain a deeper understanding of the impact of cultural differences on online consumer behaviors. The study also integrates topic analysis to identify recurring subjects, sentiments, and opinions within online reviews. Marketers can leverage these insights to inform the development of culturally sensitive strategies, enhance target audience segmentation, and refine messaging approaches aligned with cultural preferences. Anchored in Hofstede's Cultural Dimensions theory, our research employs sophisticated methodologies to delve into the intricate relationship between cultural differences and online consumer behaviors. Applied to specific cultural dimensions, such as individualism vs. collectivism, masculinity vs. femininity, uncertainty avoidance, and long-term vs. short-term orientation, the study uncovers nuanced insights. For example, in exploring individualism vs. collectivism, we examine how reviewers from individualistic cultures prioritize personal experiences while those from collectivistic cultures emphasize communal opinions. Similarly, within masculinity vs. femininity, we investigate whether distinct topics align with cultural notions, such as robust features in masculine cultures and user-friendliness in feminine cultures. Examining information-seeking behaviors under uncertainty avoidance reveals how cultures differ in seeking detailed information or providing succinct reviews based on their comfort with ambiguity. Additionally, in assessing long-term vs. short-term orientation, the research explores how cultural focus on enduring benefits or immediate gratification influences reviews. These concrete examples contribute to the theoretical enhancement of Hofstede's Cultural Dimensions theory, providing a detailed understanding of cultural impacts on online consumer behaviors. As online reviews become increasingly crucial in decision-making, this research not only contributes to the academic understanding of cultural influences but also proposes practical recommendations for enhancing online review systems. Marketers can leverage these findings to design targeted and culturally relevant strategies, ultimately enhancing their global marketing effectiveness and optimizing online review systems for maximum impact.Keywords: comparative analysis, cultural dimensions, marketing intelligence, national culture, online consumer behavior, text mining
Procedia PDF Downloads 472158 Classification for Obstructive Sleep Apnea Syndrome Based on Random Forest
Authors: Cheng-Yu Tsai, Wen-Te Liu, Shin-Mei Hsu, Yin-Tzu Lin, Chi Wu
Abstract:
Background: Obstructive Sleep apnea syndrome (OSAS) is a common respiratory disorder during sleep. In addition, Body parameters were identified high predictive importance for OSAS severity. However, the effects of body parameters on OSAS severity remain unclear. Objective: In this study, the objective is to establish a prediction model for OSAS by using body parameters and investigate the effects of body parameters in OSAS. Methodologies: Severity was quantified as the polysomnography and the mean hourly number of greater than 3% dips in oxygen saturation during examination in a hospital in New Taipei City (Taiwan). Four levels of OSAS severity were classified by the apnea and hypopnea index (AHI) with American Academy of Sleep Medicine (AASM) guideline. Body parameters, including neck circumference, waist size, and body mass index (BMI) were obtained from questionnaire. Next, dividing the collecting subjects into two groups: training and testing groups. The training group was used to establish the random forest (RF) to predicting, and test group was used to evaluated the accuracy of classification. Results: There were 3330 subjects recruited in this study, whom had been done polysomnography for evaluating severity for OSAS. A RF of 1000 trees achieved correctly classified 79.94 % of test cases. When further evaluated on the test cohort, RF showed the waist and BMI as the high import factors in OSAS. Conclusion It is possible to provide patient with prescreening by body parameters which can pre-evaluate the health risks.Keywords: apnea and hypopnea index, Body parameters, obstructive sleep apnea syndrome, Random Forest
Procedia PDF Downloads 1532157 Machine Learning Classification of Fused Sentinel-1 and Sentinel-2 Image Data Towards Mapping Fruit Plantations in Highly Heterogenous Landscapes
Authors: Yingisani Chabalala, Elhadi Adam, Khalid Adem Ali
Abstract:
Mapping smallholder fruit plantations using optical data is challenging due to morphological landscape heterogeneity and crop types having overlapped spectral signatures. Furthermore, cloud covers limit the use of optical sensing, especially in subtropical climates where they are persistent. This research assessed the effectiveness of Sentinel-1 (S1) and Sentinel-2 (S2) data for mapping fruit trees and co-existing land-use types by using support vector machine (SVM) and random forest (RF) classifiers independently. These classifiers were also applied to fused data from the two sensors. Feature ranks were extracted using the RF mean decrease accuracy (MDA) and forward variable selection (FVS) to identify optimal spectral windows to classify fruit trees. Based on RF MDA and FVS, the SVM classifier resulted in relatively high classification accuracy with overall accuracy (OA) = 0.91.6% and kappa coefficient = 0.91% when applied to the fused satellite data. Application of SVM to S1, S2, S2 selected variables and S1S2 fusion independently produced OA = 27.64, Kappa coefficient = 0.13%; OA= 87%, Kappa coefficient = 86.89%; OA = 69.33, Kappa coefficient = 69. %; OA = 87.01%, Kappa coefficient = 87%, respectively. Results also indicated that the optimal spectral bands for fruit tree mapping are green (B3) and SWIR_2 (B10) for S2, whereas for S1, the vertical-horizontal (VH) polarization band. Including the textural metrics from the VV channel improved crop discrimination and co-existing land use cover types. The fusion approach proved robust and well-suited for accurate smallholder fruit plantation mapping.Keywords: smallholder agriculture, fruit trees, data fusion, precision agriculture
Procedia PDF Downloads 542156 Floristic Diversity, Composition and Environmental Correlates on the Arid, Coralline Islands of the Farasan Archipelago, Red SEA, Saudi Arabia
Authors: Khalid Al Mutairi, Mashhor Mansor, Magdy El-Bana, Asyraf Mansor, Saud AL-Rowaily
Abstract:
Urban expansion and the associated increase in anthropogenic pressures have led to a great loss of the Red Sea’s biodiversity. Floristic composition, diversity, and environmental controls were investigated for 210 relive's on twenty coral islands of Farasan in the Red Sea, Saudi Arabia. Multivariate statistical analyses for classification (Cluster Analysis), ordination (Detrended Correspondence Analysis (DCA), and Redundancy Analysis (RDA) were employed to identify vegetation types and their relevance to the underlying environmental gradients. A total of 191 flowering plants belonging to 53 families and 129 genera were recorded. Geophytes and chamaephytes were the main life forms in the saline habitats, whereas therophytes and hemicryptophytes dominated the sandy formations and coral rocks. The cluster analysis and DCA ordination identified twelve vegetation groups that linked to five main habitats with definite floristic composition and environmental characteristics. The constrained RDA with Monte Carlo permutation tests revealed that elevation and soil salinity were the main environmental factors explaining the vegetation distributions. These results indicate that the flora of the study archipelago represents a phytogeographical linkage between Africa and Saharo-Arabian landscape functional elements. These findings should guide conservation and management efforts to maintain species diversity, which is threatened by anthropogenic activities and invasion by the exotic invasive tree Prosopis juliflora (Sw.) DC.Keywords: biodiversity, classification, conservation, ordination, Red Sea
Procedia PDF Downloads 3432155 The Impact of Smart Educational Aids in Learning Listening Among Pupils with Attention and Listening Problems
Authors: Sadeq Al Yaari, Muhammad Alkhunayn, Aayah Al Yaari, Ayman Al Yaari, Montaha Al Yaari, Sajedah Al Yaari, Fatehi Eissa
Abstract:
The recent rise of smart educational aids and the move away from traditional listening aids are leading to a fundamental shift in the way in which individuals with attention and listening problems (ALP) manipulate listening inputs and/or act appropriately to the spoken information presented to them. A total sample of twenty-six ALP pupils (m=20 and f=6) between 7-12 years old was selected from different strata based on gender, region and school. In the sample size, thirteen (10 males and 3 females) received the treatment in terms of smart classes provided with smart educational aids in a listening course that lasted for four month-semester while others did not (they studied the same course by the same instructor but in ordinary class). A pretest was administered to assess participants’ levels, and a posttest was given to evaluate their attention and listening comprehension performance, namely in phonetic and phonological tests with sociolinguistic themes that have been designed for this purpose. Test results were analyzed both psychoneurolinguistically and statistically. Results reveal a remarkable change in pupils’ behavioral listening where scores witnessed a significant difference in the performance of the experimental ALP group in the pretest compared to the posttest (Pupils performed better at the pretest-posttest on phonetics than at the two tests on phonology). It is concluded that smart educational aids designed for listening skills help not only increase the listening command of pupils with ALP to understand what they listen to but also develop their interactive listening capability and, at the same rate, are responsible for increasing concentrated and in-depth listening capacity. Plus, ALP pupils become able to grasp the audio content of text recordings, including educational audio recordings, news, oral stories and tales, views, spiritual/religious text and general knowledge. However, the pupils have not experienced individual smart audio-visual aids that connect listening to other language receptive and productive skills, which could be the future area of research.Keywords: language skills, implementing, listening skill, attention, smart aids
Procedia PDF Downloads 44