Search results for: measurement accuracy
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6128

Search results for: measurement accuracy

4958 Identification of Flooding Attack (Zero Day Attack) at Application Layer Using Mathematical Model and Detection Using Correlations

Authors: Hamsini Pulugurtha, V.S. Lakshmi Jagadmaba Paluri

Abstract:

Distributed denial of service attack (DDoS) is one altogether the top-rated cyber threats presently. It runs down the victim server resources like a system of measurement and buffer size by obstructing the server to supply resources to legitimate shoppers. Throughout this text, we tend to tend to propose a mathematical model of DDoS attack; we discuss its relevancy to the choices like inter-arrival time or rate of arrival of the assault customers accessing the server. We tend to tend to further analyze the attack model in context to the exhausting system of measurement and buffer size of the victim server. The projected technique uses an associate in nursing unattended learning technique, self-organizing map, to make the clusters of identical choices. Lastly, the abstract applies mathematical correlation and so the standard likelihood distribution on the clusters and analyses their behaviors to look at a DDoS attack. These systems not exclusively interconnect very little devices exchanging personal data, but to boot essential infrastructures news standing of nuclear facilities. Although this interconnection brings many edges and blessings, it to boot creates new vulnerabilities and threats which might be conversant in mount attacks. In such sophisticated interconnected systems, the power to look at attacks as early as accomplishable is of paramount importance.

Keywords: application attack, bandwidth, buffer correlation, DDoS distribution flooding intrusion layer, normal prevention probability size

Procedia PDF Downloads 226
4957 Stability Indicating Method Development and Validation for Estimation of Antiasthmatic Drug in Combined Dosages Formed by RP-HPLC

Authors: Laxman H. Surwase, Lalit V. Sonawane, Bhagwat N. Poul

Abstract:

A simple stability indicating high performance liquid chromatographic method has been developed for the simultaneous determination of Levosalbutamol Sulphate and Ipratropium Bromide in bulk and pharmaceutical dosage form using reverse phase Zorbax Eclipse Plus C8 column (250mm×4.6mm), with mobile phase phosphate buffer (0.05M KH2PO4): acetonitrile (55:45v/v) pH 3.5 adjusted with ortho-phosphoric acid, the flow rate was 1.0 mL/min and the detection was carried at 212 nm. The retention times of Levosalbutamol Sulphate and Ipratropium Bromide were 2.2007 and 2.6611 min respectively. The correlation coefficient of Levosalbutamol Sulphate and Ipratropium Bromide was found to be 0.997 and 0.998.Calibration plots were linear over the concentration ranges 10-100µg/mL for both Levosalbutamol Sulphate and Ipratropium Bromide. The LOD and LOQ of Levosalbutamol Sulphate were 2.520µg/mL and 7.638µg/mL while for Ipratropium Bromide was 1.201µg/mL and 3.640 µg/mL. The accuracy of the proposed method was determined by recovery studies and found to be 100.15% for Levosalbutamol Sulphate and 100.19% for Ipratropium Bromide respectively. The method was validated for accuracy, linearity, sensitivity, precision, robustness, system suitability. The proposed method could be utilized for routine analysis of Levosalbutamol Sulphate and Ipratropium Bromide in bulk and pharmaceutical capsule dosage form.

Keywords: levosalbutamol sulphate, ipratropium bromide, RP-HPLC, phosphate buffer, acetonitrile

Procedia PDF Downloads 351
4956 Prediction of Live Birth in a Matched Cohort of Elective Single Embryo Transfers

Authors: Mohsen Bahrami, Banafsheh Nikmehr, Yueqiang Song, Anuradha Koduru, Ayse K. Vuruskan, Hongkun Lu, Tamer M. Yalcinkaya

Abstract:

In recent years, we have witnessed an explosion of studies aimed at using a combination of artificial intelligence (AI) and time-lapse imaging data on embryos to improve IVF outcomes. However, despite promising results, no study has used a matched cohort of transferred embryos which only differ in pregnancy outcome, i.e., embryos from a single clinic which are similar in parameters, such as: morphokinetic condition, patient age, and overall clinic and lab performance. Here, we used time-lapse data on embryos with known pregnancy outcomes to see if the rich spatiotemporal information embedded in this data would allow the prediction of the pregnancy outcome regardless of such critical parameters. Methodology—We did a retrospective analysis of time-lapse data from our IVF clinic utilizing Embryoscope 100% of the time for embryo culture to blastocyst stage with known clinical outcomes, including live birth vs nonpregnant (embryos with spontaneous abortion outcomes were excluded). We used time-lapse data from 200 elective single transfer embryos randomly selected from January 2019 to June 2021. Our sample included 100 embryos in each group with no significant difference in patient age (P=0.9550) and morphokinetic scores (P=0.4032). Data from all patients were combined to make a 4th order tensor, and feature extraction were subsequently carried out by a tensor decomposition methodology. The features were then used in a machine learning classifier to classify the two groups. Major Findings—The performance of the model was evaluated using 100 random subsampling cross validation (train (80%) - test (20%)). The prediction accuracy, averaged across 100 permutations, exceeded 80%. We also did a random grouping analysis, in which labels (live birth, nonpregnant) were randomly assigned to embryos, which yielded 50% accuracy. Conclusion—The high accuracy in the main analysis and the low accuracy in random grouping analysis suggest a consistent spatiotemporal pattern which is associated with pregnancy outcomes, regardless of patient age and embryo morphokinetic condition, and beyond already known parameters, such as: early cleavage or early blastulation. Despite small samples size, this ongoing analysis is the first to show the potential of AI methods in capturing the complex morphokinetic changes embedded in embryo time-lapse data, which contribute to successful pregnancy outcomes, regardless of already known parameters. The results on a larger sample size with complementary analysis on prediction of other key outcomes, such as: euploidy and aneuploidy of embryos will be presented at the meeting.

Keywords: IVF, embryo, machine learning, time-lapse imaging data

Procedia PDF Downloads 93
4955 Compartmental Model Approach for Dosimetric Calculations of ¹⁷⁷Lu-DOTATOC in Adenocarcinoma Breast Cancer Based on Animal Data

Authors: M. S. Mousavi-Daramoroudi, H. Yousefnia, S. Zolghadri, F. Abbasi-Davani

Abstract:

Dosimetry is an indispensable and precious factor in patient treatment planning; to minimize the absorbed dose in vital tissues. In this study, In accordance with the proper characteristics of DOTATOC and ¹⁷⁷Lu, after preparing ¹⁷⁷Lu-DOTATOC at the optimal conditions for the first time in Iran, radionuclidic and radiochemical purity of the solution was investigated using an HPGe spectrometer and ITLC method, respectively. The biodistribution of the compound was assayed for treatment of adenocarcinoma breast cancer in bearing BALB/c mice. The results have demonstrated that ¹⁷⁷Lu-DOTATOC is a profitable selection for therapy of the tumors. Because of the vital role of internal dosimetry before and during therapy, the effort to improve the accuracy and rapidity of dosimetric calculations is necessary. For this reason, a new method was accomplished to calculate the absorbed dose through mixing between compartmental model, animal dosimetry and extrapolated data from animal to human and using MIRD method. Despite utilization of compartmental model based on the experimental data, it seems this approach may increase the accuracy of dosimetric data, confidently.

Keywords: ¹⁷⁷Lu-DOTATOC, biodistribution modeling, compartmental model, internal dosimetry

Procedia PDF Downloads 221
4954 Autism Spectrum Disorder Classification Algorithm Using Multimodal Data Based on Graph Convolutional Network

Authors: Yuntao Liu, Lei Wang, Haoran Xia

Abstract:

Machine learning has shown extensive applications in the development of classification models for autism spectrum disorder (ASD) using neural image data. This paper proposes a fusion multi-modal classification network based on a graph neural network. First, the brain is segmented into 116 regions of interest using a medical segmentation template (AAL, Anatomical Automatic Labeling). The image features of sMRI and the signal features of fMRI are extracted, which build the node and edge embedding representations of the brain map. Then, we construct a dynamically updated brain map neural network and propose a method based on a dynamic brain map adjacency matrix update mechanism and learnable graph to further improve the accuracy of autism diagnosis and recognition results. Based on the Autism Brain Imaging Data Exchange I dataset(ABIDE I), we reached a prediction accuracy of 74% between ASD and TD subjects. Besides, to study the biomarkers that can help doctors analyze diseases and interpretability, we used the features by extracting the top five maximum and minimum ROI weights. This work provides a meaningful way for brain disorder identification.

Keywords: autism spectrum disorder, brain map, supervised machine learning, graph network, multimodal data, model interpretability

Procedia PDF Downloads 71
4953 Radar Fault Diagnosis Strategy Based on Deep Learning

Authors: Bin Feng, Zhulin Zong

Abstract:

Radar systems are critical in the modern military, aviation, and maritime operations, and their proper functioning is essential for the success of these operations. However, due to the complexity and sensitivity of radar systems, they are susceptible to various faults that can significantly affect their performance. Traditional radar fault diagnosis strategies rely on expert knowledge and rule-based approaches, which are often limited in effectiveness and require a lot of time and resources. Deep learning has recently emerged as a promising approach for fault diagnosis due to its ability to learn features and patterns from large amounts of data automatically. In this paper, we propose a radar fault diagnosis strategy based on deep learning that can accurately identify and classify faults in radar systems. Our approach uses convolutional neural networks (CNN) to extract features from radar signals and fault classify the features. The proposed strategy is trained and validated on a dataset of measured radar signals with various types of faults. The results show that it achieves high accuracy in fault diagnosis. To further evaluate the effectiveness of the proposed strategy, we compare it with traditional rule-based approaches and other machine learning-based methods, including decision trees, support vector machines (SVMs), and random forests. The results demonstrate that our deep learning-based approach outperforms the traditional approaches in terms of accuracy and efficiency. Finally, we discuss the potential applications and limitations of the proposed strategy, as well as future research directions. Our study highlights the importance and potential of deep learning for radar fault diagnosis. It suggests that it can be a valuable tool for improving the performance and reliability of radar systems. In summary, this paper presents a radar fault diagnosis strategy based on deep learning that achieves high accuracy and efficiency in identifying and classifying faults in radar systems. The proposed strategy has significant potential for practical applications and can pave the way for further research.

Keywords: radar system, fault diagnosis, deep learning, radar fault

Procedia PDF Downloads 92
4952 Periodic Change in the Earth’s Rotation Velocity

Authors: Sung Duk Kim, Kwan U. Kim, Jin Sim, Ryong Jin Jang

Abstract:

The phenomenon of seasonal variations in the Earth’s rotation velocity was discovered in the 1930s when a crystal clock was developed and analyzed in a quantitative way for the first time between 1955 and 1968 when observation data of the seasonal variations was analyzed by an atomic clock. According to the previous investigation, atmospheric circulation is supposed to be a factor affecting the seasonal variations in the Earth’s rotation velocity in many cases, but the problem has not been solved yet. In order to solve the problem, it is necessary to apply dynamics to consider the Earth’s spatial motion, rotation, and change of shape of the Earth (movement of materials in and out of the Earth and change of the Earth’s figure) at the same time and in interrelation to the accuracy of post-Newtonian approximation regarding the Earth body as a system of mass points because the stability of the Earth’s rotation angular velocity is in the range of 10⁻⁸~10⁻⁹. For it, the equation was derived, which can consider the 3 kinds of motion above mentioned at the same time by taking the effect of the resultant external force on the Earth’s rotation into account in a relativistic way to the accuracy of post-Newtonian approximation. Therefore, the equation has been solved to obtain the theoretical values of periodic change in the Earth’s rotation velocity, and they have been compared with the astronomical observation data so to reveal the cause for the periodic change in the Earth’s rotation velocity.

Keywords: Earth rotation, moment function, periodic change, seasonal variation, relativistic change

Procedia PDF Downloads 77
4951 Analysis and Detection of Facial Expressions in Autism Spectrum Disorder People Using Machine Learning

Authors: Muhammad Maisam Abbas, Salman Tariq, Usama Riaz, Muhammad Tanveer, Humaira Abdul Ghafoor

Abstract:

Autism Spectrum Disorder (ASD) refers to a developmental disorder that impairs an individual's communication and interaction ability. Individuals feel difficult to read facial expressions while communicating or interacting. Facial Expression Recognition (FER) is a unique method of classifying basic human expressions, i.e., happiness, fear, surprise, sadness, disgust, neutral, and anger through static and dynamic sources. This paper conducts a comprehensive comparison and proposed optimal method for a continued research project—a system that can assist people who have Autism Spectrum Disorder (ASD) in recognizing facial expressions. Comparison has been conducted on three supervised learning algorithms EigenFace, FisherFace, and LBPH. The JAFFE, CK+, and TFEID (I&II) datasets have been used to train and test the algorithms. The results were then evaluated based on variance, standard deviation, and accuracy. The experiments showed that FisherFace has the highest accuracy for all datasets and is considered the best algorithm to be implemented in our system.

Keywords: autism spectrum disorder, ASD, EigenFace, facial expression recognition, FisherFace, local binary pattern histogram, LBPH

Procedia PDF Downloads 176
4950 Quality Assurances for an On-Board Imaging System of a Linear Accelerator: Five Months Data Analysis

Authors: Liyun Chang, Cheng-Hsiang Tsai

Abstract:

To ensure the radiation precisely delivering to the target of cancer patients, the linear accelerator equipped with the pretreatment on-board imaging system is introduced and through it the patient setup is verified before the daily treatment. New generation radiotherapy using beam-intensity modulation, usually associated the treatment with steep dose gradients, claimed to have achieved both a higher degree of dose conformation in the targets and a further reduction of toxicity in normal tissues. However, this benefit is counterproductive if the beam is delivered imprecisely. To avoid shooting critical organs or normal tissues rather than the target, it is very important to carry out the quality assurance (QA) of this on-board imaging system. The QA of the On-Board Imager® (OBI) system of one Varian Clinac-iX linear accelerator was performed through our procedures modified from a relevant report and AAPM TG142. Two image modalities, 2D radiography and 3D cone-beam computed tomography (CBCT), of the OBI system were examined. The daily and monthly QA was executed for five months in the categories of safety, geometrical accuracy and image quality. A marker phantom and a blade calibration plate were used for the QA of geometrical accuracy, while the Leeds phantom and Catphan 504 phantom were used in the QA of radiographic and CBCT image quality, respectively. The reference images were generated through a GE LightSpeed CT simulator with an ADAC Pinnacle treatment planning system. Finally, the image quality was analyzed via an OsiriX medical imaging system. For the geometrical accuracy test, the average deviations of the OBI isocenter in each direction are less than 0.6 mm with uncertainties less than 0.2 mm, while all the other items have the displacements less than 1 mm. For radiographic image quality, the spatial resolution is 1.6 lp/cm with contrasts less than 2.2%. The spatial resolution, low contrast, and HU homogenous of CBCT are larger than 6 lp/cm, less than 1% and within 20 HU, respectively. All tests are within the criteria, except the HU value of Teflon measured with the full fan mode exceeding the suggested value that could be due to itself high HU value and needed to be rechecked. The OBI system in our facility was then demonstrated to be reliable with stable image quality. The QA of OBI system is really necessary to achieve the best treatment for a patient.

Keywords: CBCT, image quality, quality assurance, OBI

Procedia PDF Downloads 300
4949 Combination of Artificial Neural Network Model and Geographic Information System for Prediction Water Quality

Authors: Sirilak Areerachakul

Abstract:

Water quality has initiated serious management efforts in many countries. Artificial Neural Network (ANN) models are developed as forecasting tools in predicting water quality trend based on historical data. This study endeavors to automatically classify water quality. The water quality classes are evaluated using 6 factor indices. These factors are pH value (pH), Dissolved Oxygen (DO), Biochemical Oxygen Demand (BOD), Nitrate Nitrogen (NO3N), Ammonia Nitrogen (NH3N) and Total Coliform (T-Coliform). The methodology involves applying data mining techniques using multilayer perceptron (MLP) neural network models. The data consisted of 11 sites of Saen Saep canal in Bangkok, Thailand. The data is obtained from the Department of Drainage and Sewerage Bangkok Metropolitan Administration during 2007-2011. The results of multilayer perceptron neural network exhibit a high accuracy multilayer perception rate at 94.23% in classifying the water quality of Saen Saep canal in Bangkok. Subsequently, this encouraging result could be combined with GIS data improves the classification accuracy significantly.

Keywords: artificial neural network, geographic information system, water quality, computer science

Procedia PDF Downloads 344
4948 One-Shot Text Classification with Multilingual-BERT

Authors: Hsin-Yang Wang, K. M. A. Salam, Ying-Jia Lin, Daniel Tan, Tzu-Hsuan Chou, Hung-Yu Kao

Abstract:

Detecting user intent from natural language expression has a wide variety of use cases in different natural language processing applications. Recently few-shot training has a spike of usage on commercial domains. Due to the lack of significant sample features, the downstream task performance has been limited or leads to an unstable result across different domains. As a state-of-the-art method, the pre-trained BERT model gathering the sentence-level information from a large text corpus shows improvement on several NLP benchmarks. In this research, we are proposing a method to change multi-class classification tasks into binary classification tasks, then use the confidence score to rank the results. As a language model, BERT performs well on sequence data. In our experiment, we change the objective from predicting labels into finding the relations between words in sequence data. Our proposed method achieved 71.0% accuracy in the internal intent detection dataset and 63.9% accuracy in the HuffPost dataset. Acknowledgment: This work was supported by NCKU-B109-K003, which is the collaboration between National Cheng Kung University, Taiwan, and SoftBank Corp., Tokyo.

Keywords: OSML, BERT, text classification, one shot

Procedia PDF Downloads 101
4947 Development of Agricultural Robotic Platform for Inter-Row Plant: An Autonomous Navigation Based on Machine Vision

Authors: Alaa El-Din Rezk

Abstract:

In Egypt, management of crops still away from what is being used today by utilizing the advances of mechanical design capabilities, sensing and electronics technology. These technologies have been introduced in many places and recorm, for Straight Path, Curved Path, Sine Wave ded high accuracy in different field operations. So, an autonomous robotic platform based on machine vision has been developed and constructed to be implemented in Egyptian conditions as self-propelled mobile vehicle for carrying tools for inter/intra-row crop management based on different control modules. The experiments were carried out at plant protection research institute (PPRI) during 2014-2015 to optimize the accuracy of agricultural robotic platform control using machine vision in term of the autonomous navigation and performance of the robot’s guidance system. Results showed that the robotic platform' guidance system with machine vision was able to adequately distinguish the path and resisted image noise and did better than human operators for getting less lateral offset error. The average error of autonomous was 2.75, 19.33, 21.22, 34.18, and 16.69 mm. while the human operator was 32.70, 4.85, 7.85, 38.35 and 14.75 mm Path, Offset Discontinuity and Angle Discontinuity respectively.

Keywords: autonomous robotic, Hough transform, image processing, machine vision

Procedia PDF Downloads 316
4946 A Case Study on the Condition Monitoring of a Critical Machine in a Tyre Manufacturing Plant

Authors: Ramachandra C. G., Amarnath. M., Prashanth Pai M., Nagesh S. N.

Abstract:

The machine's performance level drops down over a period of time due to the wear and tear of its components. The early detection of an emergent fault becomes very vital in order to obtain uninterrupted production in a plant. Maintenance is an activity that helps to keep the machine's performance at an anticipated level, thereby ensuring the availability of the machine to perform its intended function. At present, a number of modern maintenance techniques are available, such as preventive maintenance, predictive maintenance, condition-based maintenance, total productive maintenance, etc. Condition-based maintenance or condition monitoring is one such modern maintenance technique in which the machine's condition or health is checked by the measurement of certain parameters such as sound level, temperature, velocity, displacement, vibration, etc. It can recognize most of the factors restraining the usefulness and efficacy of the total manufacturing unit. This research work is conducted on a Batch Mill in a tire production unit located in the Southern Karnataka region. The health of the mill is assessed using amplitude of vibration as a parameter of measurement. Most commonly, the vibration level is assessed using various points on the machine bearing. The normal or standard level is fixed using reference materials such as manuals or catalogs supplied by the manufacturers and also by referring vibration standards. The Rio-Vibro meter is placed in different locations on the batch-off mill to record the vibration data. The data collected are analyzed to identify the malfunctioning components in the batch off the mill, and corrective measures are suggested.

Keywords: availability, displacement, vibration, rio-vibro, condition monitoring

Procedia PDF Downloads 92
4945 A Novel Breast Cancer Detection Algorithm Using Point Region Growing Segmentation and Pseudo-Zernike Moments

Authors: Aileen F. Wang

Abstract:

Mammography has been one of the most reliable methods for early detection and diagnosis of breast cancer. However, mammography misses about 17% and up to 30% of breast cancers due to the subtle and unstable appearances of breast cancer in their early stages. Recent computer-aided diagnosis (CADx) technology using Zernike moments has improved detection accuracy. However, it has several drawbacks: it uses manual segmentation, Zernike moments are not robust, and it still has a relatively high false negative rate (FNR)–17.6%. This project will focus on the development of a novel breast cancer detection algorithm to automatically segment the breast mass and further reduce FNR. The algorithm consists of automatic segmentation of a single breast mass using Point Region Growing Segmentation, reconstruction of the segmented breast mass using Pseudo-Zernike moments, and classification of the breast mass using the root mean square (RMS). A comparative study among the various algorithms on the segmentation and reconstruction of breast masses was performed on randomly selected mammographic images. The results demonstrated that the newly developed algorithm is the best in terms of accuracy and cost effectiveness. More importantly, the new classifier RMS has the lowest FNR–6%.

Keywords: computer aided diagnosis, mammography, point region growing segmentation, pseudo-zernike moments, root mean square

Procedia PDF Downloads 453
4944 Support Vector Regression Combined with Different Optimization Algorithms to Predict Global Solar Radiation on Horizontal Surfaces in Algeria

Authors: Laidi Maamar, Achwak Madani, Abdellah El Ahdj Abdellah

Abstract:

The aim of this work is to use Support Vector regression (SVR) combined with dragonfly, firefly, Bee Colony and particle swarm Optimization algorithm to predict global solar radiation on horizontal surfaces in some cities in Algeria. Combining these optimization algorithms with SVR aims principally to enhance accuracy by fine-tuning the parameters, speeding up the convergence of the SVR model, and exploring a larger search space efficiently; these parameters are the regularization parameter (C), kernel parameters, and epsilon parameter. By doing so, the aim is to improve the generalization and predictive accuracy of the SVR model. Overall, the aim is to leverage the strengths of both SVR and optimization algorithms to create a more powerful and effective regression model for various cities and under different climate conditions. Results demonstrate close agreement between predicted and measured data in terms of different metrics. In summary, SVM has proven to be a valuable tool in modeling global solar radiation, offering accurate predictions and demonstrating versatility when combined with other algorithms or used in hybrid forecasting models.

Keywords: support vector regression (SVR), optimization algorithms, global solar radiation prediction, hybrid forecasting models

Procedia PDF Downloads 38
4943 Early Diagnosis of Alzheimer's Disease Using a Combination of Images Processing and Brain Signals

Authors: E. Irankhah, M. Zarif, E. Mazrooei Rad, K. Ghandehari

Abstract:

Alzheimer's prevalence is on the rise, and the disease comes with problems like cessation of treatment, high cost of treatment, and the lack of early detection methods. The pathology of this disease causes the formation of protein deposits in the brain of patients called plaque amyloid. Generally, the diagnosis of this disease is done by performing tests such as a cerebrospinal fluid, CT scan, MRI, and spinal cord fluid testing, or mental testing tests and eye tracing tests. In this paper, we tried to use the Medial Temporal Atrophy (MTA) method and the Leave One Out (LOO) cycle to extract the statistical properties of the three Fz, Pz, and Cz channels of ERP signals for early diagnosis of this disease. In the process of CT scan images, the accuracy of the results is 81% for the healthy person and 88% for the severe patient. After the process of ERP signaling, the accuracy of the results for a healthy person in the delta band in the Cz channel is 81% and in the alpha band the Pz channel is 90%. In the results obtained from the signal processing, the results of the severe patient in the delta band of the Cz channel were 89% and in the alpha band Pz channel 92%.

Keywords: Alzheimer's disease, image and signal processing, LOO cycle, medial temporal atrophy

Procedia PDF Downloads 198
4942 A Conv-Long Short-term Memory Deep Learning Model for Traffic Flow Prediction

Authors: Ali Reza Sattarzadeh, Ronny J. Kutadinata, Pubudu N. Pathirana, Van Thanh Huynh

Abstract:

Traffic congestion has become a severe worldwide problem, affecting everyday life, fuel consumption, time, and air pollution. The primary causes of these issues are inadequate transportation infrastructure, poor traffic signal management, and rising population. Traffic flow forecasting is one of the essential and effective methods in urban congestion and traffic management, which has attracted the attention of researchers. With the development of technology, undeniable progress has been achieved in existing methods. However, there is a possibility of improvement in the extraction of temporal and spatial features to determine the importance of traffic flow sequences and extraction features. In the proposed model, we implement the convolutional neural network (CNN) and long short-term memory (LSTM) deep learning models for mining nonlinear correlations and their effectiveness in increasing the accuracy of traffic flow prediction in the real dataset. According to the experiments, the results indicate that implementing Conv-LSTM networks increases the productivity and accuracy of deep learning models for traffic flow prediction.

Keywords: deep learning algorithms, intelligent transportation systems, spatiotemporal features, traffic flow prediction

Procedia PDF Downloads 173
4941 All-In-One Universal Cartridge Based Truly Modular Electrolyte Analyzer

Authors: S. Dalvi, N. Sane, V. Patil, D. Bansode, A. Tharakan, V. Mathur

Abstract:

Measurement of routine clinical electrolyte tests is common in labs worldwide for screening of illness or diseases. All the analyzers for the measurement of electrolyte parameters have sensors, reagents, sampler, pump tubing, valve, other tubing’s separate that are either expensive, require heavy maintenance and have a short shelf-life. Moreover, the costs required to maintain such Lab instrumentation is high and this limits the use of the device to only highly specialized personnel and sophisticated labs. In order to provide Healthcare Diagnostics to ALL at affordable costs, there is a need for an All-in-one Universal Modular Cartridge that contains sensors, reagents, sampler, valve, pump tubing, and other tubing’s in one single integrated module-in-module cartridge that is affordable, reliable, easy-to-use, requires very low sample volume and is truly modular and maintenance-free. DiaSys India has developed a World’s first, Patent Pending, Versatile All-in-one Universal Module-in-Module Cartridge based Electrolyte Analyzer (QDx InstaLyte) that can perform sodium, potassium, chloride, calcium, pH, lithium tests. QDx InstaLyte incorporates High Performance, Inexpensive All-in-one Universal Cartridge for rapid quantitative measurement of electrolytes in body fluids. Our proposed methodology utilizes Advanced & Improved long life ISE sensors to provide a sensitive and accurate result in 120 sec with just 100 µl of sample volume. The All-in-One Universal Cartridge has a very low reagent consumption capable of maximum of 1000 tests with a Use-life of 3-4 months and a long Shelf life of 12-18 months at 4-25°C making it very cost-effective. Methods: QDx InstaLyte analyzers with All-in-one Universal Modular Cartridges were independently evaluated with three R&D lots for Method Performance (Linearity, Precision, Method Comparison, Cartridge Stability) to measure Sodium, Potassium, Chloride. Method Comparison was done against Medica EasyLyte Plus Na/K/Cl Electrolyte Analyzer, a mid-size lab based clinical chemistry analyzer with N = 100 samples run over 10 days. Within-run precision study was done using modified CLSI guidelines with N = 20 samples and day-to-day precision study was done for 7 consecutive days using Trulab N & P Quality Control Samples. Accelerated stability testing was done at 45oC for 4 weeks with Production Lots. Results: Data analysis indicates that the CV for within-run precision for Na is ≤ 1%, for K is ≤2%, and for Cl is ≤2% and with R2 ≥ 0.95 for Method Comparison. Further, the All-in-One Universal Cartridge is stable up to 12-18 months at 4-25oC storage temperature based on preliminary extrapolated data. Conclusion: The Developed Technology Platform of All-in-One Universal Module-in-Module Cartridge based QDx InstaLyte is Reliable and meets all the performance specifications of the lab and is Truly Modular and Maintenance-Free. Hence, it can be easily adapted for low cost, sensitive and rapid measurement of electrolyte tests in low resource settings such as in urban, semi-urban and rural areas in the developing countries and can be used as a Point-of-care testing system for worldwide applications.

Keywords: all-in-one modular catridge, electrolytes, maintenance free, QDx instalyte

Procedia PDF Downloads 35
4940 A Proposal of Advanced Key Performance Indicators for Assessing Six Performances of Construction Projects

Authors: Wi Sung Yoo, Seung Woo Lee, Youn Kyoung Hur, Sung Hwan Kim

Abstract:

Large-scale construction projects are continuously increasing, and the need for tools to monitor and evaluate the project success is emphasized. At the construction industry level, there are limitations in deriving performance evaluation factors that reflect the diversity of construction sites and systems that can objectively evaluate and manage performance. Additionally, there are difficulties in integrating structured and unstructured data generated at construction sites and deriving improvements. In this study, we propose the Key Performance Indicators (KPIs) to enable performance evaluation that reflects the increased diversity of construction sites and the unstructured data generated, and present a model for measuring performance by the derived indicators. The comprehensive performance of a unit construction site is assessed based on 6 areas (Time, Cost, Quality, Safety, Environment, Productivity) and 26 indicators. We collect performance indicator information from 30 construction sites that meet legal standards and have been successfully performed. And We apply data augmentation and optimization techniques into establishing measurement standards for each indicator. In other words, the KPI for construction site performance evaluation presented in this study provides standards for evaluating performance in six areas using institutional requirement data and document data. This can be expanded to establish a performance evaluation system considering the scale and type of construction project. Also, they are expected to be used as a comprehensive indicator of the construction industry and used as basic data for tracking competitiveness at the national level and establishing policies.

Keywords: key performance indicator, performance measurement, structured and unstructured data, data augmentation

Procedia PDF Downloads 45
4939 Improving Axial-Attention Network via Cross-Channel Weight Sharing

Authors: Nazmul Shahadat, Anthony S. Maida

Abstract:

In recent years, hypercomplex inspired neural networks improved deep CNN architectures due to their ability to share weights across input channels and thus improve cohesiveness of representations within the layers. The work described herein studies the effect of replacing existing layers in an Axial Attention ResNet with their quaternion variants that use cross-channel weight sharing to assess the effect on image classification. We expect the quaternion enhancements to produce improved feature maps with more interlinked representations. We experiment with the stem of the network, the bottleneck layer, and the fully connected backend by replacing them with quaternion versions. These modifications lead to novel architectures which yield improved accuracy performance on the ImageNet300k classification dataset. Our baseline networks for comparison were the original real-valued ResNet, the original quaternion-valued ResNet, and the Axial Attention ResNet. Since improvement was observed regardless of which part of the network was modified, there is a promise that this technique may be generally useful in improving classification accuracy for a large class of networks.

Keywords: axial attention, representational networks, weight sharing, cross-channel correlations, quaternion-enhanced axial attention, deep networks

Procedia PDF Downloads 84
4938 Ulnar Nerve Changes Associated with Carpal Tunnel Syndrome Not Affecting Median versus Ulnar Comparative Studies

Authors: Emmanuel Kamal Aziz Saba, Sarah Sayed El-Tawab

Abstract:

The present study was conducted to assess the involvement of ulnar sensory and/or motor nerve fibers in patients with carpal tunnel syndrome (CTS) and whether this affects the accuracy of the median versus ulnar comparative tests. The present study included 145 CTS hands and 71 asymptomatic control hands. Clinical examination was done. The following tests were done: Sensory conduction studies: median, ulnar and dorsal ulnar cutaneous nerves; and median versus ulnar digit (D) four sensory comparative study; and motor conduction studies: median nerve, ulnar nerve and median versus ulnar motor comparative study. It was found that 17 CTS hands (11.7%) had ulnar sensory abnormalities in 17 different patients. The median versus ulnar sensory and motor comparative studies were abnormal among all these 17 CTS hands. There were significant negative correlations between median motor latency and both ulnar sensory amplitudes recording D5 and D4. In conclusion, there is ulnar sensory nerve abnormality among CTS patients. This abnormality affects the amplitude of ulnar sensory nerve action potential. This does not affect the median versus ulnar sensory and motor comparative tests accuracy for use in CTS.

Keywords: median nerve, motor comparative study, sensory comparative study, ulnar nerve

Procedia PDF Downloads 432
4937 W-WING: Aeroelastic Demonstrator for Experimental Investigation into Whirl Flutter

Authors: Jiri Cecrdle

Abstract:

This paper describes the concept of the W-WING whirl flutter aeroelastic demonstrator. Whirl flutter is the specific case of flutter that accounts for the additional dynamic and aerodynamic influences of the engine rotating parts. The instability is driven by motion-induced unsteady aerodynamic propeller forces and moments acting in the propeller plane. Whirl flutter instability is a serious problem that may cause the unstable vibration of a propeller mounting, leading to the failure of an engine installation or an entire wing. The complicated physical principle of whirl flutter required the experimental validation of the analytically gained results. W-WING aeroelastic demonstrator has been designed and developed at Czech Aerospace Research Centre (VZLU) Prague, Czechia. The demonstrator represents the wing and engine of the twin turboprop commuter aircraft. Contrary to the most of past demonstrators, it includes a powered motor and thrusting propeller. It allows the changes of the main structural parameters influencing the whirl flutter stability characteristics. Propeller blades are adjustable at standstill. The demonstrator is instrumented by strain gauges, accelerometers, revolution-counting impulse sensor, sensor of airflow velocity, and the thrust measurement unit. Measurement is supported by the in house program providing the data storage and real-time depiction in the time domain as well as pre-processing into the form of the power spectral densities. The engine is linked with a servo-drive unit, which enables maintaining of the propeller revolutions (constant or controlled rate ramp) and monitoring of immediate revolutions and power. Furthermore, the program manages the aerodynamic excitation of the demonstrator by the aileron flapping (constant, sweep, impulse). Finally, it provides the safety guard to prevent any structural failure of the demonstrator hardware. In addition, LMS TestLab system is used for the measurement of the structure response and for the data assessment by means of the FFT- and OMA-based methods. The demonstrator is intended for the experimental investigations in the VZLU 3m-diameter low-speed wind tunnel. The measurement variant of the model is defined by the structural parameters: pitch and yaw attachment stiffness, pitch and yaw hinge stations, balance weight station, propeller type (duralumin or steel blades), and finally, angle of attack of the propeller blade 75% section (). The excitation is provided either by the airflow turbulence or by means of the aerodynamic excitation by the aileron flapping using a frequency harmonic sweep. The experimental results are planned to be utilized for validation of analytical methods and software tools in the frame of development of the new complex multi-blade twin-rotor propulsion system for the new generation regional aircraft. Experimental campaigns will include measurements of aerodynamic derivatives and measurements of stability boundaries for various configurations of the demonstrator.

Keywords: aeroelasticity, flutter, whirl flutter, W WING demonstrator

Procedia PDF Downloads 96
4936 mKDNAD: A Network Flow Anomaly Detection Method Based On Multi-teacher Knowledge Distillation

Authors: Yang Yang, Dan Liu

Abstract:

Anomaly detection models for network flow based on machine learning have poor detection performance under extremely unbalanced training data conditions and also have slow detection speed and large resource consumption when deploying on network edge devices. Embedding multi-teacher knowledge distillation (mKD) in anomaly detection can transfer knowledge from multiple teacher models to a single model. Inspired by this, we proposed a state-of-the-art model, mKDNAD, to improve detection performance. mKDNAD mine and integrate the knowledge of one-dimensional sequence and two-dimensional image implicit in network flow to improve the detection accuracy of small sample classes. The multi-teacher knowledge distillation method guides the train of the student model, thus speeding up the model's detection speed and reducing the number of model parameters. Experiments in the CICIDS2017 dataset verify the improvements of our method in the detection speed and the detection accuracy in dealing with the small sample classes.

Keywords: network flow anomaly detection (NAD), multi-teacher knowledge distillation, machine learning, deep learning

Procedia PDF Downloads 124
4935 Evaluating and Prioritizing the Effective Management Factors of Human Resources Empowerment and Efficiency in Manufacturing Companies: A Case Study of Fars’ Livestock and Poultry Manufacturing Companies

Authors: Mohsen Yaghmoor, Sima Radmanesh

Abstract:

Rapid environmental changes have been threaten the life of many organizations .Enabling and productivity of human resource should be considered as the most important issue in order to increase performance and ensure survival of the organizations. In this research, the effectiveness of management factory in productivity & inability of human resource have been identified and reviewed at glance. Afterward there were two questions they are “what are the factors effecting productivity and enabling of human resource” . And ”what are the priority order based on effective management of human resource in Fars Poultry Complex". A specified questionnaire has been designed in order to priorities and effectiveness of the identified factors. Six factors specify to consist of: Individual characteristics, teaching, motivation, partnership management, authority or power submission and job development that have most effect on organization. Then specify a questionnaire for priority and effect measurement of specified factor that reach after collect information and using statistical tests of keronchbakh alpha coefficient r=0.792 that we can say the questionnaire has sufficient reliability. After information analysis of specified six factors by Friedman test categorize their effect. Measurement on organization respectively consists of individual characteristics, job development or enrichment, authority submission, partnership management, teaching and motivation. At last it has been indicated to approaches to increase making power full and productivity of manpower.

Keywords: productivity, empowerment, enrichment, authority submission, partnership management, teaching, motivation

Procedia PDF Downloads 253
4934 Multi-Modal Feature Fusion Network for Speaker Recognition Task

Authors: Xiang Shijie, Zhou Dong, Tian Dan

Abstract:

Speaker recognition is a crucial task in the field of speech processing, aimed at identifying individuals based on their vocal characteristics. However, existing speaker recognition methods face numerous challenges. Traditional methods primarily rely on audio signals, which often suffer from limitations in noisy environments, variations in speaking style, and insufficient sample sizes. Additionally, relying solely on audio features can sometimes fail to capture the unique identity of the speaker comprehensively, impacting recognition accuracy. To address these issues, we propose a multi-modal network architecture that simultaneously processes both audio and text signals. By gradually integrating audio and text features, we leverage the strengths of both modalities to enhance the robustness and accuracy of speaker recognition. Our experiments demonstrate significant improvements with this multi-modal approach, particularly in complex environments, where recognition performance has been notably enhanced. Our research not only highlights the limitations of current speaker recognition methods but also showcases the effectiveness of multi-modal fusion techniques in overcoming these limitations, providing valuable insights for future research.

Keywords: feature fusion, memory network, multimodal input, speaker recognition

Procedia PDF Downloads 39
4933 Comparison of 18F-FDG and 11C-Methionine PET-CT for Assessment of Response to Neoadjuvant Chemotherapy in Locally Advanced Breast Carcinoma

Authors: Sonia Mahajan Dinesh, Anant Dinesh, Madhavi Tripathi, Vinod Kumar Ramteke, Rajnish Sharma, Anupam Mondal

Abstract:

Background: Neo-adjuvant chemotherapy plays an important role in treatment of breast cancer by decreasing the tumour load and it offers an opportunity to evaluate response of primary tumour to chemotherapy. Standard anatomical imaging modalities are unable to accurately reflect the response to chemotherapy until several cycles of drug treatment have been completed. Metabolic imaging using tracers like 18F-fluorodeoxyglucose (FDG) as a marker of glucose metabolism or amino acid tracers like L-methyl-11C methionine (MET) have potential role for the measurement of treatment response. In this study, our objective was to compare these two PET tracers for assessment of response to neoadjuvant chemotherapy, in locally advanced breast carcinoma. Methods: In our prospective study, 20 female patients with histology proven locally advanced breast carcinoma underwent PET-CT imaging using FDG and MET before and after three cycles of neoadjuvant chemotherapy (CAF regimen). Thereafter, all patients were taken for MRM and the resected specimen was sent for histo-pathological analysis. Tumour response to the neoadjuvant chemotherapy was evaluated by PET-CT imaging using PERCIST criteria and correlated with histological results. Responses calculated were compared for statistical significance using paired t- test. Results: Mean SUVmax for primary lesion in FDG PET and MET PET was 15.88±11.12 and 5.01±2.14 respectively (p<0.001) and for axillary lymph nodes was 7.61±7.31 and 2.75±2.27 respectively (p=0.001). Statistically significant response in primary tumour and axilla was noted on both FDG and MET PET after three cycles of NAC. Complete response in primary tumour was seen in only 1 patient in FDG and 7 patients in MET PET (p=0.001) whereas there was no histological complete resolution of tumor in any patient. Response to therapy in axillary nodes noted on both PET scans were similar (p=0.45) and correlated well with histological findings. Conclusions: For the primary breast tumour, FDG PET has a higher sensitivity and accuracy than MET PET and for axilla both have comparable sensitivity and specificity. FDG PET shows higher target to background ratios so response is better predicted for primary breast tumour and axilla. Also, FDG-PET is widely available and has the advantage of a whole body evaluation in one study.

Keywords: 11C-methionine, 18F-FDG, breast carcinoma, neoadjuvant chemotherapy

Procedia PDF Downloads 510
4932 An Empirical Study on Switching Activation Functions in Shallow and Deep Neural Networks

Authors: Apoorva Vinod, Archana Mathur, Snehanshu Saha

Abstract:

Though there exists a plethora of Activation Functions (AFs) used in single and multiple hidden layer Neural Networks (NN), their behavior always raised curiosity, whether used in combination or singly. The popular AFs –Sigmoid, ReLU, and Tanh–have performed prominently well for shallow and deep architectures. Most of the time, AFs are used singly in multi-layered NN, and, to the best of our knowledge, their performance is never studied and analyzed deeply when used in combination. In this manuscript, we experiment with multi-layered NN architecture (both on shallow and deep architectures; Convolutional NN and VGG16) and investigate how well the network responds to using two different AFs (Sigmoid-Tanh, Tanh-ReLU, ReLU-Sigmoid) used alternately against a traditional, single (Sigmoid-Sigmoid, Tanh-Tanh, ReLUReLU) combination. Our results show that using two different AFs, the network achieves better accuracy, substantially lower loss, and faster convergence on 4 computer vision (CV) and 15 Non-CV (NCV) datasets. When using different AFs, not only was the accuracy greater by 6-7%, but we also accomplished convergence twice as fast. We present a case study to investigate the probability of networks suffering vanishing and exploding gradients when using two different AFs. Additionally, we theoretically showed that a composition of two or more AFs satisfies Universal Approximation Theorem (UAT).

Keywords: activation function, universal approximation function, neural networks, convergence

Procedia PDF Downloads 160
4931 An Analysis of the Temporal Aspects of Visual Attention Processing Using Rapid Series Visual Processing (RSVP) Data

Authors: Shreya Borthakur, Aastha Vartak

Abstract:

This Electroencephalogram (EEG) project on Rapid Visual Serial Processing (RSVP) paradigm explores the temporal dynamics of visual attention processing in response to rapidly presented visual stimuli. The study builds upon previous research that used real-world images in RSVP tasks to understand the emergence of object representations in the human brain. The objectives of the research include investigating the differences in accuracy and reaction times between 5 Hz and 20 Hz presentation rates, as well as examining the prominent brain waves, particularly alpha and beta waves, associated with the attention task. The pre-processing and data analysis involves filtering EEG data, creating epochs for target stimuli, and conducting statistical tests using MATLAB, EEGLAB, Chronux toolboxes, and R. The results support the hypotheses, revealing higher accuracy at a slower presentation rate, faster reaction times for less complex targets, and the involvement of alpha and beta waves in attention and cognitive processing. This research sheds light on how short-term memory and cognitive control affect visual processing and could have practical implications in fields like education.

Keywords: RSVP, attention, visual processing, attentional blink, EEG

Procedia PDF Downloads 71
4930 Efficiency of Google Translate and Bing Translator in Translating Persian-to-English Texts

Authors: Samad Sajjadi

Abstract:

Machine translation is a new subject increasingly being used by academic writers, especially students and researchers whose native language is not English. There are numerous studies conducted on machine translation, but few investigations have assessed the accuracy of machine translation from Persian to English at lexical, semantic, and syntactic levels. Using Groves and Mundt’s (2015) Model of error taxonomy, the current study evaluated Persian-to-English translations produced by two famous online translators, Google Translate and Bing Translator. A total of 240 texts were randomly selected from different academic fields (law, literature, medicine, and mass media), and 60 texts were considered for each domain. All texts were rendered by the two translation systems and then by four human translators. All statistical analyses were applied using SPSS. The results indicated that Google translations were more accurate than the translations produced by the Bing Translator, especially in the domains of medicine (lexis: 186 vs. 225; semantic: 44 vs. 48; syntactic: 148 vs. 264 errors) and mass media (lexis: 118 vs. 149; semantic: 25 vs. 32; syntactic: 110 vs. 220 errors), respectively. Nonetheless, both machines are reasonably accurate in Persian-to-English translation of lexicons and syntactic structures, particularly from mass media and medical texts.

Keywords: machine translations, accuracy, human translation, efficiency

Procedia PDF Downloads 78
4929 A Development of Portable Intrinsically Safe Explosion-Proof Type of Dual Gas Detector

Authors: Sangguk Ahn, Youngyu Kim, Jaheon Gu, Gyoutae Park

Abstract:

In this paper, we developed a dual gas leak instrument to detect Hydrocarbon (HC) and Monoxide (CO) gases. To two kinds of gases, it is necessary to design compact structure for sensors. And then it is important to draw sensing circuits such as measuring, amplifying and filtering. After that, it should be well programmed with robust, systematic and module coding methods. In center of them, improvement of accuracy and initial response time are a matter of vital importance. To manufacture distinguished gas leak detector, we applied intrinsically safe explosion-proof structure to lithium ion battery, main circuits, a pump with motor, color LCD interfaces and sensing circuits. On software, to enhance measuring accuracy we used numerical analysis such as Lagrange and Neville interpolation. Performance test result is conducted by using standard Methane with seven different concentrations with three other products. We want raise risk prevention and efficiency of gas safe management through distributing to the field of gas safety. Acknowledgment: This study was supported by Small and Medium Business Administration under the research theme of ‘Commercialized Development of a portable intrinsically safe explosion-proof type dual gas leak detector’, (task number S2456036).

Keywords: gas leak, dual gas detector, intrinsically safe, explosion proof

Procedia PDF Downloads 228