Search results for: stock markets
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1662

Search results for: stock markets

1572 An Impact of Stock Price Movements on Cross Listed Companies: A Study of Indian ADR and Domestic Stock Prices

Authors: Kanhaiya Singh

Abstract:

Indian corporate sector has been raising resources through various international financial instruments important among them are Global depository receipts (GDRs) and American Depository Receipts (ADRs). The purpose of raising resources through such instruments is multifold such as lower cost of capital, increased visibility of the company, liberal tax environment, increased trading liquidity etc. One of the significant reason is also the value addition of the company in terms of market capitalization. Obviously, the stocks of such companies are cross listed, one in India and other at the International stock exchange. The sensitivity and movements of stock prices on one stock exchange as compared to other may have an impact on the price movement of the particular scrip. If there is any relationship exists is an issue of study. Having this in view this study is an attempt to identify the extent of impact of price movement of the scrip on one stock exchange on account of change in the prices on the counter stock exchange. Also there is an attempt to find out the difference between pre and post cross listed domestic firm. The study also analyses the impact of exchange rate movements on stock prices.

Keywords: ADR, GDR, cross listing, liquidity, exchange rate

Procedia PDF Downloads 381
1571 Stock Market Developments, Income Inequality, Wealth Inequality

Authors: Quang Dong Dang

Abstract:

This paper examines the possible effects of stock market developments by channels on income and wealth inequality. We use the Bayesian Multilevel Model with the explanatory variables of the market’s channels, such as accessibility, efficiency, and market health in six selected countries: the US, UK, Japan, Vietnam, Thailand, and Malaysia. We found that generally, the improvements in the stock market alleviate income inequality. However, stock market expansions in higher-income countries are likely to trigger income inequality. We also found that while enhancing the quality of channels of the stock market has counter-effects on wealth equality distributions, open accessibilities help reduce wealth inequality distributions within the scope of the study. In addition, the inverted U-shaped hypothesis seems not to be valid in six selected countries between the period from 2006 to 2020.

Keywords: Bayesian multilevel model, income inequality, inverted u-shaped hypothesis, stock market development, wealth inequality

Procedia PDF Downloads 106
1570 Risk Management of Natural Disasters on Insurance Stock Market

Authors: Tarah Bouaricha

Abstract:

The impact of worst natural disasters is analysed in terms of insured losses which happened between 2010 and 2014 on S&P insurance index. Event study analysis is used to test whether natural disasters impact insurance index stock market price. There is no negative impact on insurance stock market price around the disasters event. To analyse the reaction of insurance stock market, normal returns (NR), abnormal returns (AR), cumulative abnormal returns (CAR), cumulative average abnormal returns (CAAR) and a parametric test on AR and on CAR are used.

Keywords: study event, natural disasters, insurance, reinsurance, stock market

Procedia PDF Downloads 394
1569 The Probability of Smallholder Broiler Chicken Farmers' Participation in the Mainstream Market within Maseru District in Lesotho

Authors: L. E. Mphahama, A. Mushunje, A. Taruvinga

Abstract:

Although broiler production does not generate any large incomes among the smallholder community, it represents the main source of livelihood and part of nutritional requirement. As a result, market for broiler meat is growing faster than that of any other meat products and is projected to continue growing in the coming decades. However, the implication is that a multitude of factors manipulates transformation of smallholder broiler farmers participating in the mainstream markets. From 217 smallholder broiler farmers, socio-economic and institutional factors in broiler farming were incorporated into Binary model to estimate the probability of broiler farmers’ participation in the mainstream markets within the Maseru district in Lesotho. Of the thirteen (13) predictor variables fitted into the model, six (6) variables (household size, number of years in broiler business, stock size, access to transport, access to extension services and access to market information) had significant coefficients while seven (7) variables (level of education, marital status, price of broilers, poultry association, access to contract, access to credit and access to storage) did not have a significant impact. It is recommended that smallholder broiler farmers organize themselves into cooperatives which will act as a vehicle through which they can access contracts and formal markets. These cooperatives will also enable easy training and workshops for broiler rearing and marketing/markets through extension visits.

Keywords: broiler chicken, mainstream market, Maseru district, participation, smallholder farmers

Procedia PDF Downloads 148
1568 Financial Literacy and Stock Market Participation: Does Gender Matter?

Authors: Irfan Ullah Munir, Shen Yue, Muhammad Shahzad Ijaz, Saad Hussain, Syeda Yumna Zaidi

Abstract:

Financial literacy is fundamental to every decision-making process and has received attention from researchers, regulatory bodies and policy makers in the recent past. This study is an attempt to evaluate financial literacy in an emerging economy, particularly Pakistan, and its influence on people's stock market participation. Data of this study was collected through a structured questionnaire from a sample of 300 respondents. EFA is used to check the convergent and discriminant validity. Data is analyzed using Hayes (2013) approach. A set of demographic control variables that have passed the mean difference test is used. We demonstrate that participants with financial literacy tend to invest more in the stock market. We also find that association among financial literacy and participation in stock market gets moderated by gender.

Keywords: Financial literacy, Stock market participation, Gender, PSX

Procedia PDF Downloads 198
1567 Artificial Intelligence Methods for Returns Expectations in Financial Markets

Authors: Yosra Mefteh Rekik, Younes Boujelbene

Abstract:

We introduce in this paper a new conceptual model representing the stock market dynamics. This model is essentially based on cognitive behavior of the intelligence investors. In order to validate our model, we build an artificial stock market simulation based on agent-oriented methodologies. The proposed simulator is composed of market supervisor agent essentially responsible for executing transactions via an order book and various kinds of investor agents depending to their profile. The purpose of this simulation is to understand the influence of psychological character of an investor and its neighborhood on its decision-making and their impact on the market in terms of price fluctuations. Therefore, the difficulty of the prediction is due to several features: the complexity, the non-linearity and the dynamism of the financial market system, as well as the investor psychology. The Artificial Neural Networks learning mechanism take on the role of traders, who from their futures return expectations and place orders based on their expectations. The results of intensive analysis indicate that the existence of agents having heterogeneous beliefs and preferences has provided a better understanding of price dynamics in the financial market.

Keywords: artificial intelligence methods, artificial stock market, behavioral modeling, multi-agent based simulation

Procedia PDF Downloads 445
1566 Exploring the Factors Affecting the Presence of Farmers’ Markets in Rural British Columbia

Authors: Amirmohsen Behjat, Aleck Ostry, Christina Miewald, Bernie Pauly

Abstract:

Farmers’ Markets have become one of the important healthy food suppliers in both rural communities and urban settings. Farmers’ markets are evolving and their number has rapidly increased in the past decade. Despite this drastic increase, the distribution of the farmers’ markets is not even across different areas. The main goal of this study is to explore the socioeconomic, geographic, and demographic variables which affect the establishment of farmers’ market in rural communities in British Columbia (BC). Thus, the data on available farmers’ markets in rural areas were collected from BC Association of Farmers’ Markets and spatially joined to BC map at Dissemination Area (DA) level using ArcGIS software to link the farmers’ market to the respective communities that they serve. Then, in order to investigate this issue and understand which rural communities farmer’ markets tend to operate, a binary logistic regression analysis was performed with the availability of farmer’ markets at DA-level as dependent variable and Deprivation Index (DI), Metro Influence Zone (MIZ) and population as independent variables. The results indicated that DI and MIZ variables are not statistically significant whereas the population is the only which had a significant contribution in predicting the availability of farmers’ markets in rural BC. Moreover, this study found that farmers’ markets usually do not operate in rural food deserts where other healthy food providers such as supermarkets and grocery stores are non-existent. In conclusion, the presence of farmers markets is not associated with socioeconomic and geographic characteristics of rural communities in BC, but farmers’ markets tend to operate in more populated rural communities in BC.

Keywords: farmers’ markets, socioeconomic and demographic variables, metro influence zone, logistic regression, ArcGIS

Procedia PDF Downloads 187
1565 Executive Stock Options, Business Ethics and Financial Reporting Quality

Authors: Philemon Rakoto

Abstract:

This paper tests the improvement of financial reporting quality when firms award stock options to their executives. The originality of this study is that we introduce the moderating effect of business ethics in the model. The sample is made up of 116 Canadian high-technology firms with available data for the fiscal year ending in 2012. We define the quality of financial reporting as the value relevance of accounting information as developed by Ohlson. Our results show that executive stock option award alone does not improve the quality of financial reporting. Rather, the quality improves when a firm awards stock options to its executives and investors perceive that the level of business ethics in that firm is high.

Keywords: business ethics, Canada, high-tech firms, stock options, value relevance

Procedia PDF Downloads 486
1564 Brexit: Implications on Banking Regulations and Conditions; An Analysis

Authors: Astha Sinha, Anjali Kanagali

Abstract:

The United Kingdom’s withdrawal from the European Union, also termed as “Brexit,” took place on June 23, 2016 and immediately had global repercussions on the stock markets of the world. It is however expected to have a greater impact on the Banking sector in the UK. There is a two-fold effect on the earnings of banks which is being expected. First is of the trading activity and investment banking businesses being hit due to global weakness in financial markets. Second is that the banks having a large presence in the European Union will have to restructure their operations in order to cover other European countries as well increase their operating costs. As per the analysis, banks are expected to face rate cuts, bad loans, and tight liquidity. The directives in the Brexit negotiations on the Markets in Financial Instruments Directive (MiFID) will be a major decision to be taken for the Banking sector. New regulations will be required since most of the regulations governing the financial services industry allowing for the cross-border transactions were at the EU level. This paper aims to analyze the effect of Brexit on the UK Banking sector and changes in regulations that are expected due to the same. It shall also lay down the lessons learnt from the 2008 financial crisis and draw a parallel in terms of potential areas to be focused on for revival of the financial sector of Britain.

Keywords: Brexit, Brexit impact on UK, impact of Brexit on banking, impact of Brexit on financial services

Procedia PDF Downloads 407
1563 Stock Prediction and Portfolio Optimization Thesis

Authors: Deniz Peksen

Abstract:

This thesis aims to predict trend movement of closing price of stock and to maximize portfolio by utilizing the predictions. In this context, the study aims to define a stock portfolio strategy from models created by using Logistic Regression, Gradient Boosting and Random Forest. Recently, predicting the trend of stock price has gained a significance role in making buy and sell decisions and generating returns with investment strategies formed by machine learning basis decisions. There are plenty of studies in the literature on the prediction of stock prices in capital markets using machine learning methods but most of them focus on closing prices instead of the direction of price trend. Our study differs from literature in terms of target definition. Ours is a classification problem which is focusing on the market trend in next 20 trading days. To predict trend direction, fourteen years of data were used for training. Following three years were used for validation. Finally, last three years were used for testing. Training data are between 2002-06-18 and 2016-12-30 Validation data are between 2017-01-02 and 2019-12-31 Testing data are between 2020-01-02 and 2022-03-17 We determine Hold Stock Portfolio, Best Stock Portfolio and USD-TRY Exchange rate as benchmarks which we should outperform. We compared our machine learning basis portfolio return on test data with return of Hold Stock Portfolio, Best Stock Portfolio and USD-TRY Exchange rate. We assessed our model performance with the help of roc-auc score and lift charts. We use logistic regression, Gradient Boosting and Random Forest with grid search approach to fine-tune hyper-parameters. As a result of the empirical study, the existence of uptrend and downtrend of five stocks could not be predicted by the models. When we use these predictions to define buy and sell decisions in order to generate model-based-portfolio, model-based-portfolio fails in test dataset. It was found that Model-based buy and sell decisions generated a stock portfolio strategy whose returns can not outperform non-model portfolio strategies on test dataset. We found that any effort for predicting the trend which is formulated on stock price is a challenge. We found same results as Random Walk Theory claims which says that stock price or price changes are unpredictable. Our model iterations failed on test dataset. Although, we built up several good models on validation dataset, we failed on test dataset. We implemented Random Forest, Gradient Boosting and Logistic Regression. We discovered that complex models did not provide advantage or additional performance while comparing them with Logistic Regression. More complexity did not lead us to reach better performance. Using a complex model is not an answer to figure out the stock-related prediction problem. Our approach was to predict the trend instead of the price. This approach converted our problem into classification. However, this label approach does not lead us to solve the stock prediction problem and deny or refute the accuracy of the Random Walk Theory for the stock price.

Keywords: stock prediction, portfolio optimization, data science, machine learning

Procedia PDF Downloads 80
1562 Recent Developments in the Application of Deep Learning to Stock Market Prediction

Authors: Shraddha Jain Sharma, Ratnalata Gupta

Abstract:

Predicting stock movements in the financial market is both difficult and rewarding. Analysts and academics are increasingly using advanced approaches such as machine learning techniques to anticipate stock price patterns, thanks to the expanding capacity of computing and the recent advent of graphics processing units and tensor processing units. Stock market prediction is a type of time series prediction that is incredibly difficult to do since stock prices are influenced by a variety of financial, socioeconomic, and political factors. Furthermore, even minor mistakes in stock market price forecasts can result in significant losses for companies that employ the findings of stock market price prediction for financial analysis and investment. Soft computing techniques are increasingly being employed for stock market prediction due to their better accuracy than traditional statistical methodologies. The proposed research looks at the need for soft computing techniques in stock market prediction, the numerous soft computing approaches that are important to the field, past work in the area with their prominent features, and the significant problems or issue domain that the area involves. For constructing a predictive model, the major focus is on neural networks and fuzzy logic. The stock market is extremely unpredictable, and it is unquestionably tough to correctly predict based on certain characteristics. This study provides a complete overview of the numerous strategies investigated for high accuracy prediction, with a focus on the most important characteristics.

Keywords: stock market prediction, artificial intelligence, artificial neural networks, fuzzy logic, accuracy, deep learning, machine learning, stock price, trading volume

Procedia PDF Downloads 88
1561 Adaptive Neuro Fuzzy Inference System Model Based on Support Vector Regression for Stock Time Series Forecasting

Authors: Anita Setianingrum, Oki S. Jaya, Zuherman Rustam

Abstract:

Forecasting stock price is a challenging task due to the complex time series of the data. The complexity arises from many variables that affect the stock market. Many time series models have been proposed before, but those previous models still have some problems: 1) put the subjectivity of choosing the technical indicators, and 2) rely upon some assumptions about the variables, so it is limited to be applied to all datasets. Therefore, this paper studied a novel Adaptive Neuro-Fuzzy Inference System (ANFIS) time series model based on Support Vector Regression (SVR) for forecasting the stock market. In order to evaluate the performance of proposed models, stock market transaction data of TAIEX and HIS from January to December 2015 is collected as experimental datasets. As a result, the method has outperformed its counterparts in terms of accuracy.

Keywords: ANFIS, fuzzy time series, stock forecasting, SVR

Procedia PDF Downloads 245
1560 Reverse Innovation in Subsistence and Developed Markets

Authors: Hailu Getnet

Abstract:

This study focus on reverse innovation on performance outcomes across developed and subsistence markets context. The subsistence market consists two third of the world population and the largest international market. To date, it has been neglected because of its issues of perceived challenges and seeming unattractiveness compared to the established markets in the west. However, subsistence markets are becoming source of reverse innovation; an innovation that is likely to be adopted first in developing world and successfully traded globally. In response, there is a growing interest on reverse innovation to power the future. Based on the theories of innovation and growing subsistence market literatures, the study propose drivers and outcomes of reverse innovation, a potential similarities and difference in benefiting and challenging firms and consumers in subsistence and developed markets.

Keywords: reverse innovation, subsistence market, developing world, developed market

Procedia PDF Downloads 323
1559 Synthesis of Biolubricant Base Stock from Palm Methyl Ester

Authors: Nur Sulihatimarsyila Abd Wafti, Harrison Lik Nang Lau, Nabilah Kamaliah Mustaffa, Nur Azreena Idris

Abstract:

The use of biolubricant has gained its popularity over the last decade. Base stock produced using methyl ester and trimethylolethane (TME) can be potentially used for biolubricant production due to its biodegradability, non-toxicity and good thermal stability. The synthesis of biolubricant base stock e.g. triester (TE) via transesterification of palm methyl ester and TME in the presence of sodium methoxide as the catalyst was conducted. Factors influencing the reaction conditions were investigated including reaction time, temperature and pressure. The palm-based biolubricant base stock produced was analysed for its monoester (ME), diester (DE) and TE contents using gas chromatography as well as its lubricating properties such as viscosity, viscosity index, oxidation stability, and density. The resulting base stock containing 90 wt% TE was successfully synthesized.

Keywords: biolubricant, methyl ester, triester transesterification, lubricating properties

Procedia PDF Downloads 443
1558 Empirical and Indian Automotive Equity Portfolio Decision Support

Authors: P. Sankar, P. James Daniel Paul, Siddhant Sahu

Abstract:

A brief review of the empirical studies on the methodology of the stock market decision support would indicate that they are at a threshold of validating the accuracy of the traditional and the fuzzy, artificial neural network and the decision trees. Many researchers have been attempting to compare these models using various data sets worldwide. However, the research community is on the way to the conclusive confidence in the emerged models. This paper attempts to use the automotive sector stock prices from National Stock Exchange (NSE), India and analyze them for the intra-sectorial support for stock market decisions. The study identifies the significant variables and their lags which affect the price of the stocks using OLS analysis and decision tree classifiers.

Keywords: Indian automotive sector, stock market decisions, equity portfolio analysis, decision tree classifiers, statistical data analysis

Procedia PDF Downloads 484
1557 Carbon Credits in Voluntary Carbon Markets: A Proposal for Iran

Authors: Saeed Mohammadirad

Abstract:

During the first commitment period of the Kyoto Protocol, many developed countries were forced to restrict carbon emissions. Although Iran was one of the countries of Kyoto protocol, due to some special conditions, it was not required to restrict its carbon emissions. Flexible mechanisms were developed to assist countries responsible for reducing their carbon emissions, and regulated carbon markets were introduced. Carbon credits which are provided by organizations in countries with no responsibility to restrict their carbon emissions are traded in voluntary markets. This study focuses on how to measure and report the carbon allowances and carbon credits from accounting view point under both regulated and voluntary markets.

Keywords: carbon credits, carbon markets, accounting, flexible mechanisms

Procedia PDF Downloads 407
1556 Combined Effect of Heat Stimulation and Delay Addition of Superplasticizer with Slag on Fresh and Hardened Property of Mortar

Authors: Antoni Wibowo, Harry Pujianto, Dewi Retno Sari Saputro

Abstract:

The stock market can provide huge profits in a relatively short time in financial sector; however, it also has a high risk for investors and traders if they are not careful to look the factors that affect the stock market. Therefore, they should give attention to the dynamic fluctuations and movements of the stock market to optimize profits from their investment. In this paper, we present a nonlinear autoregressive exogenous model (NARX) to predict the movements of stock market; especially, the movements of the closing price index. As case study, we consider to predict the movement of the closing price in Indonesia composite index (IHSG) and choose the best structures of NARX for IHSG’s prediction.

Keywords: NARX (Nonlinear Autoregressive Exogenous Model), prediction, stock market, time series

Procedia PDF Downloads 243
1555 Applying Hybrid Graph Drawing and Clustering Methods on Stock Investment Analysis

Authors: Mouataz Zreika, Maria Estela Varua

Abstract:

Stock investment decisions are often made based on current events of the global economy and the analysis of historical data. Conversely, visual representation could assist investors’ gain deeper understanding and better insight on stock market trends more efficiently. The trend analysis is based on long-term data collection. The study adopts a hybrid method that combines the Clustering algorithm and Force-directed algorithm to overcome the scalability problem when visualizing large data. This method exemplifies the potential relationships between each stock, as well as determining the degree of strength and connectivity, which will provide investors another understanding of the stock relationship for reference. Information derived from visualization will also help them make an informed decision. The results of the experiments show that the proposed method is able to produced visualized data aesthetically by providing clearer views for connectivity and edge weights.

Keywords: clustering, force-directed, graph drawing, stock investment analysis

Procedia PDF Downloads 300
1554 Structural Breaks, Asymmetric Effects and Long Memory in the Volatility of Turkey Stock Market

Authors: Serpil Türkyılmaz, Mesut Balıbey

Abstract:

In this study, long memory properties in volatility of Turkey Stock Market are being examined through the FIGARCH, FIEGARCH and FIAPARCH models under different distribution assumptions as normal and skewed student-t distributions. Furthermore, structural changes in volatility of Turkey Stock Market are investigated. The results display long memory property and the presence of asymmetric effects of shocks in volatility of Turkey Stock Market.

Keywords: FIAPARCH model, FIEGARCH model, FIGARCH model, structural break

Procedia PDF Downloads 291
1553 Heat Waves Effect on Stock Return and Volatility: Evidence from Stock Market and Selected Industries in Pakistan

Authors: Sayed Kifayat Shah, Tang Zhongjun, Arfa Tanveer

Abstract:

This study explores the significant heatwave effect on stock return and volatility. Using an ARCH/GARCH approach, it examines the relationship between the heatwave of Karachi, Islamabad, and Lahore on the KSE-100 index. It also explores the impact of heatwave on returns of the pharmaceutical and electronics industries. The empirical results confirm that that stock return is positively related to the heat waves of Karachi, negatively related to that of Islamabad, and is not affected by the heatwave of Lahore. Similarly, pharmaceutical and electronics indices are also positively related to heatwaves. These differences in results can be ascribed to the change in the behavior of the residents of that city. The outcomes are useful for understanding an investor's behavior reacting to weather and fluxes in stock price related to heatwave severity levels. The results can support investors in fixing biases in behavior.

Keywords: ARCH/GARCH model, heat wave, KSE-100 index, stock market return

Procedia PDF Downloads 155
1552 Outlier Detection in Stock Market Data using Tukey Method and Wavelet Transform

Authors: Sadam Alwadi

Abstract:

Outlier values become a problem that frequently occurs in the data observation or recording process. Thus, the need for data imputation has become an essential matter. In this work, it will make use of the methods described in the prior work to detect the outlier values based on a collection of stock market data. In order to implement the detection and find some solutions that maybe helpful for investors, real closed price data were obtained from the Amman Stock Exchange (ASE). Tukey and Maximum Overlapping Discrete Wavelet Transform (MODWT) methods will be used to impute the detect the outlier values.

Keywords: outlier values, imputation, stock market data, detecting, estimation

Procedia PDF Downloads 81
1551 Management Accounting Techniques of Companies Listed on the Stock Exchange in Thailand

Authors: Prateep Wajeetongratana

Abstract:

The objectives of the research were to examine that how management accounting techniques were perceived and used by companies listed on the stock exchange and to investigate similarities or differences of management accounting practices between companies listed on the stock exchange and Thai SMEs. Descriptive and inferential statistics were employed. The finding found that almost all of the companies used traditional management accounting techniques more than advanced management accounting techniques. Four management accounting techniques having no significant association with business characteristic were standard costing, job order costing, process costing. The barriers that Thai SMEs encountered were a lack of proper accounting system and the insufficient knowledge in management accounting of the accountants. The comparison results revealed that both companies listed on the stock exchange and Thai SMEs used traditional management accounting techniques more than advanced techniques.

Keywords: companies listed on the stock exchange, financial budget, management accounting, operating budget

Procedia PDF Downloads 382
1550 Modelling Structural Breaks in Stock Price Time Series Using Stochastic Differential Equations

Authors: Daniil Karzanov

Abstract:

This paper studies the effect of quarterly earnings reports on the stock price. The profitability of the stock is modeled by geometric Brownian diffusion and the Constant Elasticity of Variance model. We fit several variations of stochastic differential equations to the pre-and after-report period using the Maximum Likelihood Estimation and Grid Search of parameters method. By examining the change in the model parameters after reports’ publication, the study reveals that the reports have enough evidence to be a structural breakpoint, meaning that all the forecast models exploited are not applicable for forecasting and should be refitted shortly.

Keywords: stock market, earnings reports, financial time series, structural breaks, stochastic differential equations

Procedia PDF Downloads 204
1549 Small Traditional Retailers in Emerging Markets

Authors: Y. Boulaksil, J. C. Fransoo, E.E. Blanco, S. Koubida

Abstract:

In this paper, we study the small traditional retailers that are located in the neighborhoods of big cities in emerging markets. Although modern retailing has grown in the last two decades in these markets, the number of small retailers is still increasing and serving a substantial part of the daily demand for many basic products, such as bread, milk, and cooking oil. We conduct an empirical study to understand the business environment of these small traditional retailers in emerging markets by collecting data from 333 small retailers, spread over 8 large cities in Morocco. We analyze the data and describe their business environment with a focus on the informal credits they offer to their customers. We find that smaller small retailers that are funded from personal savings and managed by the owner himself offer relatively the most credits. Our study also provides interesting insights about these small retailers that will help FMCG manufacturers that are (planning to be) active in Morocco and other emerging markets. We also discuss a number opportunities to improve the efficiency of the supply chains that serve them.

Keywords: small retailers, big cities, emerging markets, empirical study, supply chain management, Morocco

Procedia PDF Downloads 579
1548 Prediction of Dubai Financial Market Stocks Movement Using K-Nearest Neighbor and Support Vector Regression

Authors: Abdulla D. Alblooshi

Abstract:

The stock market is a representation of human behavior and psychology, such as fear, greed, and discipline. Those are manifested in the form of price movements during the trading sessions. Therefore, predicting the stock movement and prices is a challenging effort. However, those trading sessions produce a large amount of data that can be utilized to train an AI agent for the purpose of predicting the stock movement. Predicting the stock market price action will be advantageous. In this paper, the stock movement data of three DFM listed stocks are studied using historical price movements and technical indicators value and used to train an agent using KNN and SVM methods to predict the future price movement. MATLAB Toolbox and a simple script is written to process and classify the information and output the prediction. It will also compare the different learning methods and parameters s using metrics like RMSE, MAE, and R².

Keywords: KNN, ANN, style, SVM, stocks, technical indicators, RSI, MACD, moving averages, RMSE, MAE

Procedia PDF Downloads 169
1547 Nutritional Quality of Partially Processed Chicken Meat Products from Egyptian and Saudi Arabia Markets

Authors: Ali Meawad Ahmad, Hosny A. Abdelrahman

Abstract:

Chicken meat is a good source of protein of high biological value which contains most of essential amino-acids with high proportion of unsaturated fatty acids and low cholesterol level. Besides, it contain many vitamins as well as minerals which are important for the human body. Therefore, a total of 150 frozen chicken meat product samples, 800g each within their shelf-life, were randomly collected from commercial markets from Egypt (75 samples) and Saudi Arabian (75 samples) for chemical evaluation. The mean values of fat% in the examined samples of Egyptian and Saudi markets were 16.0% and 4.6% for chicken burger; 15.0% and 11% for nuggets and 11% and 11% for strips respectively. The mean values of moisture % in the examined samples of Egyptian and Saudi markets were 67.0% and 81% for chicken burger; 66.0% and 78% for nuggets and 71.0% and 72% for strips respectively. The mean values of protein % in the examined samples of Egyptian and Saudi markets were 15% and 17% for chicken burger; 16% and 16% for nuggets and 16% and 17% for strips respectively. The obtained results were compared with the Egyptian slandered and suggestions for improving the chemical quality of chicken products were given.

Keywords: chicken meat, nutrition, Egypt, markets

Procedia PDF Downloads 566
1546 An Association between Stock Index and Macro Economic Variables in Bangladesh

Authors: Shamil Mardi Al Islam, Zaima Ahmed

Abstract:

The aim of this article is to explore whether certain macroeconomic variables such as industrial index, inflation, broad money, exchange rate and deposit rate as a proxy for interest rate are interlinked with Dhaka stock price index (DSEX index) precisely after the introduction of new index by Dhaka Stock Exchange (DSE) since January 2013. Bangladesh stock market has experienced rapid growth since its inception. It might not be a very well-developed capital market as compared to its neighboring counterparts but has been a strong avenue for investment and resource mobilization. The data set considered consists of monthly observations, for a period of four years from January 2013 to June 2018. Findings from cointegration analysis suggest that DSEX and macroeconomic variables have a significant long-run relationship. VAR decomposition based on VAR estimated indicates that money supply explains a significant portion of variation of stock index whereas, inflation is found to have the least impact. Impact of industrial index is found to have a low impact compared to the exchange rate and deposit rate. Policies should there aim to increase industrial production in order to enhance stock market performance. Further reasonable money supply should be ensured by authorities to stimulate stock market performance.

Keywords: deposit rate, DSEX, industrial index, VAR

Procedia PDF Downloads 161
1545 Software Vulnerability Markets: Discoverers and Buyers

Authors: Abdullah M. Algarni, Yashwant K. Malaiya

Abstract:

Some of the key aspects of vulnerability-discovery, dissemination, and disclosure-have received some attention recently. However, the role of interaction among the vulnerability discoverers and vulnerability acquirers has not yet been adequately addressed. Our study suggests that a major percentage of discoverers, a majority in some cases, are unaffiliated with the software developers and thus are free to disseminate the vulnerabilities they discover in any way they like. As a result, multiple vulnerability markets have emerged. In some of these markets, the exchange is regulated, but in others, there is little or no regulation. In recent vulnerability discovery literature, the vulnerability discoverers have remained anonymous individuals. Although there has been an attempt to model the level of their efforts, information regarding their identities, modes of operation, and what they are doing with the discovered vulnerabilities has not been explored. Reports of buying and selling of the vulnerabilities are now appearing in the press; however, the existence of such markets requires validation, and the natures of the markets need to be analysed. To address this need, we have attempted to collect detailed information. We have identified the most prolific vulnerability discoverers throughout the past decade and examined their motivation and methods. A large percentage of these discoverers are located in Eastern and Western Europe and in the Far East. We have contacted several of them in order to collect first-hand information regarding their techniques, motivations, and involvement in the vulnerability markets. We examine why many of the discoverers appear to retire after a highly successful vulnerability-finding career. The paper identifies the actual vulnerability markets, rather than the hypothetical ideal markets that are often examined. The emergence of worldwide government agencies as vulnerability buyers has significant implications. We discuss potential factors that can impact the risk to society and the need for detailed exploration.

Keywords: risk management, software security, vulnerability discoverers, vulnerability markets

Procedia PDF Downloads 250
1544 The Impact of Global Financial Crises and Corporate Financial Crisis (Bankruptcy Risk) on Corporate Tax Evasion: Evidence from Emerging Markets

Authors: Seyed Sajjad Habibi

Abstract:

The aim of this study is to investigate the impact of global financial crises and corporate financial crisis on tax evasion of companies listed on the Tehran Stock Exchange. For this purpose, panel data in the periods of financial crisis period (2007 to 2012) and without a financial crisis (2004, 2005, 2006, 2013, 2014, and 2015) was analyzed using multivariate linear regression. The results indicate a significant relationship between the corporate financial crisis (bankruptcy risk) and tax evasion in the global financial crisis period. The results also showed a significant relationship between the corporate bankruptcy risk and tax evasion in the period with no global financial crisis. A significant difference was found between the bankruptcy risk and tax evasion in the period of the global financial crisis and that with no financial crisis so that tax evasion increased in the financial crisis period.

Keywords: global financial crisis, corporate financial crisis, bankruptcy risk, tax evasion risk, emerging markets

Procedia PDF Downloads 279
1543 Carbon Stock of the Moist Afromontane Forest in Gesha and Sayilem Districts in Kaffa Zone: An Implication for Climate Change Mitigation

Authors: Admassu Addi, Sebesebe Demissew, Teshome Soromessa, Zemede Asfaw

Abstract:

This study measures the carbon stock of the Moist Afromontane Gesha-Sayilem forest found in Gesha and Sayilem District in southwest Ethiopia. A stratified sampling method was used to identify the number of sampling point through the Global Positioning System. A total of 90 plots having nested plots to collect tree species and soil data were demarcated. The results revealed that the total carbon stock of the forest was 362.4 t/ha whereas the above ground carbon stock was 174.95t/ha, below ground litter, herbs, soil, and dead woods were 34.3,1.27, 0.68, 128 and 23.2 t/ha (up to 30 cm depth) respectively. The Gesha- Sayilem Forest is a reservoir of high carbon and thus acts as a great sink of the atmospheric carbon. Thus conservation of the forest through introduction REDD+ activities is considered an appropriate action for mitigating climate change.

Keywords: carbon sequestration, carbon stock, climate change, allometric, Ethiopia

Procedia PDF Downloads 159