Search results for: rolling schedules of tandem cold rolling mill
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1574

Search results for: rolling schedules of tandem cold rolling mill

1484 Modeling the Moment of Resistance Generated by an Ore-Grinding Mill

Authors: Marinka Baghdasaryan, Tigran Mnoyan

Abstract:

The pertinence of modeling the moment of resistance generated by the ore-grinding mill is substantiated. Based on the ranking of technological indices obtained in the result of the survey among the specialists of several beneficiating plants, the factors determining the level of the moment of resistance generated by the mill are revealed. A priori diagram of the ranks is obtained in which the factors are arranged in the descending order of the impact degree on the level of the moment. The obtained model of the moment of resistance shows the technological character of the operation modes of the ore-grinding mill and can be used for improving the operation modes of the system motor-mill and preventing the abnormal mode of the drive synchronous motor.

Keywords: model, abnormal mode, mill, correlation, moment of resistance, rotational speed

Procedia PDF Downloads 451
1483 Enhancing the Rollability of Cu-Ge-Ni Alloy through Heat Treatment Methods

Authors: Morteza Hadi

Abstract:

This research investigates the potential enhancement of the rollability of Cu-Ge-Ni alloy through the mitigation of microstructural and compositional inhomogeneities via two distinct heat treatment methods: homogenization and solution treatment. To achieve this objective, the alloy with the desired composition was fabricated using a vacuum arc remelting furnace (VAR), followed by sample preparation for microstructural, compositional, and heat treatment analyses at varying temperatures and durations. Characterization was conducted employing optical and scanning electron microscopy (SEM), X-ray diffraction (XRD), and Vickers hardness testing. The results obtained indicate that a minimum duration of 10 hours is necessary for adequate homogenization of the alloy at 750°C. This heat treatment effectively removes coarse dendrites from the casting microstructure and significantly reduces elemental separations. However, despite these improvements, the presence of a second phase with markedly different hardness from the matrix results in poor rolling ability for the alloy. The optimal time for solution treatment at various temperatures was determined, with the most effective cycle identified as 750°C for 2 hours, followed by rapid quenching in water. This process induces the formation of a single-phase microstructure and complete elimination of the second  phase, as confirmed by X-ray diffraction analysis. Results demonstrate a reduction in hardness by 30 Vickers, and the elimination of microstructural unevenness enables successful thickness reduction by up to 50% through rolling without encountering cracking.

Keywords: Cu-Ge-Ni alloy, homogenization. solution treatment, rollability

Procedia PDF Downloads 52
1482 Analysis of Electromechanical Torsional Vibration in Large-Power AC Drive System Based on Virtual Inertia Control

Authors: Jin Wang, Chunyi Zhu, Chongjian Li, Dapeng Zheng

Abstract:

A method based on virtual inertia for suppressing electromechanical torsional vibration of a large-power AC drive system is presented in this paper. The main drive system of the rolling mill is the research object, and a two-inertia elastic model is established to study the mechanism of electromechanical torsional vibration. The improvement is made based on the control of the load observer. The virtual inertia control ratio K is added to the speed forward channel, and the feedback loop adds 1-K to design virtual inertia control. The control method combines the advantages of the positive and negative feedback control of the load observer, can achieve the purpose of controlling the moment of inertia of the motor from the perspective of electrical control, and effectively suppress oscillation.

Keywords: electromechanical torsional vibration, large-power AC drive system, load observer, simulation design

Procedia PDF Downloads 125
1481 Approach for Demonstrating Reliability Targets for Rail Transport during Low Mileage Accumulation in the Field: Methodology and Case Study

Authors: Nipun Manirajan, Heeralal Gargama, Sushil Guhe, Manoj Prabhakaran

Abstract:

In railway industry, train sets are designed based on contractual requirements (mission profile), where reliability targets are measured in terms of mean distance between failures (MDBF). However, during the beginning of revenue services, trains do not achieve the designed mission profile distance (mileage) within the timeframe due to infrastructure constraints, scarcity of commuters or other operational challenges thereby not respecting the original design inputs. Since trains do not run sufficiently and do not achieve the designed mileage within the specified time, car builder has a risk of not achieving the contractual MDBF target. This paper proposes a constant failure rate based model to deal with the situations where mileage accumulation is not a part of the design mission profile. The model provides appropriate MDBF target to be demonstrated based on actual accumulated mileage. A case study of rolling stock running in the field is undertaken to analyze the failure data and MDBF target demonstration during low mileage accumulation. The results of case study prove that with the proposed method, reliability targets are achieved under low mileage accumulation.

Keywords: mean distance between failures, mileage-based reliability, reliability target appropriations, rolling stock reliability

Procedia PDF Downloads 266
1480 Investigation on a Wave-Powered Electrical Generator Consisted of a Geared Motor-Generator Housed by a Double-Cone Rolling on Concentric Circular Rails

Authors: Barenten Suciu

Abstract:

An electrical generator able to harness energy from the water waves and designed as a double-cone geared motor-generator (DCGMG), is proposed and theoretically investigated. Similar to a differential gear mechanism, used in the transmission system of the auto vehicle wheels, an angular speed differential is created between the cones rolling on two concentric circular rails. Water wave acting on the floating DCGMG produces and a gear-box amplifies the speed differential to gain sufficient torque for power generation. A model that allows computation of the speed differential, torque, and power of the DCGMG is suggested. Influence of various parameters, regarding the construction of the DCGMG, as well as the contact between the double-cone and rails, on the electro-mechanical output, is emphasized. Results obtained indicate that the generated electrical power can be increased by augmenting the mass of the double-cone, the span of the rails, the apex angle of the cones, the friction between cones and rails, the amplification factor of the gear-box, and the efficiency of the motor-generator. Such findings are useful to formulate a design methodology for the proposed wave-powered generator.

Keywords: amplification of angular speed differential, circular concentric rails, double-cone, wave-powered electrical generator

Procedia PDF Downloads 156
1479 Modelling and Optimization Analysis of Silicon/MgZnO-CBTSSe Tandem Solar Cells

Authors: Vallisree Sivathanu, Kumaraswamidhas Lakshmi Annamalai, Trupti Ranjan Lenka

Abstract:

We report a tandem solar cell model with Silicon as the bottom cell absorber material and Cu₂BaSn(S, Se)₄(CBTSSe) as absorber material for the top cell. As a first step, the top and bottom cells were modelled and validated by comparison with the experiment. Once the individual cells are validated, then the tandem structure is modelled with Indium Tin Oxide(ITO) as conducting layer between the top and bottom cells. The tandem structure yielded better open circuit voltage and fill factor; however, the efficiency obtained is 7.01%. The top cell and the bottom cells are investigated with the help of electron-hole current density, photogeneration rate, and external quantum efficiency profiles. In order to minimize the various loss mechanisms in the tandem solar cell, the material parameters are optimized within experimentally achievable limits. Initially, the top cell optimization was carried out; then, the bottom cell is optimized for maximizing the light absorption, and upon minimizing the current and photon losses in the tandem structure, the maximum achievable efficiency is predicted to be 19.52%.

Keywords: CBTSSe, silicon, tandem, solar cell, device modeling, current losses, photon losses

Procedia PDF Downloads 117
1478 Mixing Enhancement with 3D Acoustic Streaming Flow Patterns Induced by Trapezoidal Triangular Structure Micromixer Using Different Mixing Fluids

Authors: Ayalew Yimam Ali

Abstract:

The T-shaped microchannel is used to mix both miscible or immiscible fluids with different viscosities. However, mixing at the entrance of the T-junction microchannel can be difficult mixing phenomena due to micro-scale laminar flow aspects with the two miscible high-viscosity water-glycerol fluids. One of the most promising methods to improve mixing performance and diffusion mass transfer in laminar flow phenomena is acoustic streaming (AS), which is a time-averaged, second-order steady streaming that can produce rolling motion in the microchannel by oscillating a low-frequency range acoustic transducer and inducing an acoustic wave in the flow field. The newly developed 3D trapezoidal, triangular structure spine used in this study was created using sophisticated CNC machine cutting tools used to create microchannel mold with a 3D trapezoidal triangular structure spine alone the T-junction longitudinal mixing region. In order to create the molds for the 3D trapezoidal structure with the 3D sharp edge tip angles of 30° and 0.3mm trapezoidal, triangular sharp edge tip depth from PMMA glass (Polymethylmethacrylate) with advanced CNC machine and the channel manufactured using PDMS (Polydimethylsiloxane) which is grown up longitudinally on the top surface of the Y-junction microchannel using soft lithography nanofabrication strategies. Flow visualization of 3D rolling steady acoustic streaming and mixing enhancement with high-viscosity miscible fluids with different trapezoidal, triangular structure longitudinal length, channel width, high volume flow rate, oscillation frequency, and amplitude using micro-particle image velocimetry (μPIV) techniques were used to study the 3D acoustic streaming flow patterns and mixing enhancement. The streaming velocity fields and vorticity flow fields show 16 times more high vorticity maps than in the absence of acoustic streaming, and mixing performance has been evaluated at various amplitudes, flow rates, and frequencies using the grayscale value of pixel intensity with MATLAB software. Mixing experiments were performed using fluorescent green dye solution with de-ionized water in one inlet side of the channel, and the de-ionized water-glycerol mixture on the other inlet side of the T-channel and degree of mixing was found to have greatly improved from 67.42% without acoustic streaming to 0.96.83% with acoustic streaming. The results show that the creation of a new 3D steady streaming rolling motion with a high volume flowrate around the entrance was enhanced by the formation of a new, three-dimensional, intense streaming rolling motion with a high-volume flowrate around the entrance junction mixing zone with the two miscible high-viscous fluids which are influenced by laminar flow fluid transport phenomena.

Keywords: micro fabrication, 3d acoustic streaming flow visualization, micro-particle image velocimetry, mixing enhancement.

Procedia PDF Downloads 20
1477 Flow Visualization and Mixing Enhancement in Y-Junction Microchannel with 3D Acoustic Streaming Flow Patterns Induced by Trapezoidal Triangular Structure using High-Viscous Liquids

Authors: Ayalew Yimam Ali

Abstract:

The Y-shaped microchannel is used to mix both miscible or immiscible fluids with different viscosities. However, mixing at the entrance of the Y-junction microchannel can be a difficult mixing phenomena due to micro-scale laminar flow aspects with the two miscible high-viscosity water-glycerol fluids. One of the most promising methods to improve mixing performance and diffusion mass transfer in laminar flow phenomena is acoustic streaming (AS), which is a time-averaged, second-order steady streaming that can produce rolling motion in the microchannel by oscillating a low-frequency range acoustic transducer and inducing an acoustic wave in the flow field. The developed 3D trapezoidal, triangular structure spine used in this study was created using sophisticated CNC machine cutting tools used to create microchannel mold with a 3D trapezoidal triangular structure spine alone the Y-junction longitudinal mixing region. In order to create the molds for the 3D trapezoidal structure with the 3D sharp edge tip angles of 30° and 0.3mm trapezoidal triangular sharp edge tip depth from PMMA glass (Polymethylmethacrylate) with advanced CNC machine and the channel manufactured using PDMS (Polydimethylsiloxane) which is grown up longitudinally on top surface of the Y-junction microchannel using soft lithography nanofabrication strategies. Flow visualization of 3D rolling steady acoustic streaming and mixing enhancement with high-viscosity miscible fluids with different trapezoidal, triangular structure longitudinal length, channel width, high volume flow rate, oscillation frequency, and amplitude using micro-particle image velocimetry (μPIV) techniques were used to study the 3D acoustic streaming flow patterns and mixing enhancement. The streaming velocity fields and vorticity flow fields show 16 times more high vorticity maps than in the absence of acoustic streaming, and mixing performance has been evaluated at various amplitudes, flow rates, and frequencies using the grayscale value of pixel intensity with MATLAB software. Mixing experiments were performed using fluorescent green dye solution with de-ionized water in one inlet side of the channel, and the de-ionized water-glycerol mixture on the other inlet side of the Y-channel and degree of mixing was found to have greatly improved from 67.42% without acoustic streaming to 0.96.83% with acoustic streaming. The results show that the creation of a new 3D steady streaming rolling motion with a high volume flowrate around the entrance was enhanced by the formation of a new, three-dimensional, intense streaming rolling motion with a high-volume flowrate around the entrance junction mixing zone with the two miscible high-viscous fluids which are influenced by laminar flow fluid transport phenomena.

Keywords: micro fabrication, 3d acoustic streaming flow visualization, micro-particle image velocimetry, mixing enhancement

Procedia PDF Downloads 21
1476 Reduction Conditions of Briquetted Solid Wastes Generated by the Integrated Iron and Steel Plant

Authors: Gökhan Polat, Dicle Kocaoğlu Yılmazer, Muhlis Nezihi Sarıdede

Abstract:

Iron oxides are the main input to produce iron in integrated iron and steel plants. During production of iron from iron oxides, some wastes with high iron content occur. These main wastes can be classified as basic oxygen furnace (BOF) sludge, flue dust and rolling scale. Recycling of these wastes has a great importance for both environmental effects and reduction of production costs. In this study, recycling experiments were performed on basic oxygen furnace sludge, flue dust and rolling scale which contain 53.8%, 54.3% and 70.2% iron respectively. These wastes were mixed together with coke as reducer and these mixtures are pressed to obtain cylindrical briquettes. These briquettes were pressed under various compacting forces from 1 ton to 6 tons. Also, both stoichiometric and twice the stoichiometric cokes were added to investigate effect of coke amount on reduction properties of the waste mixtures. Then, these briquettes were reduced at 1000°C and 1100°C during 30, 60, 90, 120 and 150 min in a muffle furnace. According to the results of reduction experiments, the effect of compacting force, temperature and time on reduction ratio of the wastes were determined. It is found that 1 ton compacting force, 150 min reduction time and 1100°C are the optimum conditions to obtain reduction ratio higher than 75%.

Keywords: Coke, iron oxide wastes, recycling, reduction

Procedia PDF Downloads 340
1475 Prediction of Product Size Distribution of a Vertical Stirred Mill Based on Breakage Kinetics

Authors: C. R. Danielle, S. Erik, T. Patrick, M. Hugh

Abstract:

In the last decade there has been an increase in demand for fine grinding due to the depletion of coarse-grained orebodies and an increase of processing fine disseminated minerals and complex orebodies. These ores have provided new challenges in concentrator design because fine and ultra-fine grinding is required to achieve acceptable recovery rates. Therefore, the correct design of a grinding circuit is important for minimizing unit costs and increasing product quality. The use of ball mills for grinding in fine size ranges is inefficient and, therefore, vertical stirred grinding mills are becoming increasingly popular in the mineral processing industry due to its already known high energy efficiency. This work presents a hypothesis of a methodology to predict the product size distribution of a vertical stirred mill using a Bond ball mill. The Population Balance Model (PBM) was used to empirically analyze the performance of a vertical mill and a Bond ball mill. The breakage parameters obtained for both grinding mills are compared to determine the possibility of predicting the product size distribution of a vertical mill based on the results obtained from the Bond ball mill. The biggest advantage of this methodology is that most of the minerals processing laboratories already have a Bond ball mill to perform the tests suggested in this study. Preliminary results show the possibility of predicting the performance of a laboratory vertical stirred mill using a Bond ball mill.

Keywords: bond ball mill, population balance model, product size distribution, vertical stirred mill

Procedia PDF Downloads 292
1474 Effect of Sugar Mill Effluent on Growth, Yield and Soil Properties of Ratoon Cane in Cauvery Command Area

Authors: G. K. Madhu, S. Bhaskar, M. S. Dinesh, R. Manii, C. A. Srinivasamurthy

Abstract:

A field experiment was conducted in the premises of M/s Sri Chamundeshwari Sugars Ltd., Bharathinagar, Mandya District Pvt. Ltd., during 2014 to study the effect of sugar mill effluent (SME) on growth, yield and soil properties of ratoon cane with eight treatments replicated thrice using RCBD design. Significantly higher growth parameters like cane height (249.77 cm) and number of tillers per clump (12.22) were recorded in treatment which received cycle of 3 irrigations with freshwater + 1 irrigation with sugar mill effluent + RDF as compared to other treatments. Significantly lower growth attributes were recorded in treatment which received irrigation with sugar mill effluent alone. Significantly higher cane yield (104. 93 t -1) was recorded in treatment which received cycle of 3 irrigations with freshwater + 1 irrigation with sugar mill effluent + RDF as compared to other treatments. Significantly lower cane yield (87.40 t ha-1) was observed in treatment which received irrigation with sugar mill effluent alone. Soil properties like pH (7.84) was higher in treatment receiving Alternate irrigation with freshwater and sugar mill effluent + RDF. But EC was significantly higher in treatment which received Cycle of1 irrigation with freshwater + 2 irrigations with sugar mill effluent + RDF as compared to other treatments.

Keywords: sugar mill effluent, sugarcane, irrigation, cane yield

Procedia PDF Downloads 335
1473 Technical and Economic Potential of Partial Electrification of Railway Lines

Authors: Rafael Martins Manzano Silva, Jean-Francois Tremong

Abstract:

Electrification of railway lines allows to increase speed, power, capacity and energetic efficiency of rolling stocks. However, this process of electrification is complex and costly. An electrification project is not just about design of catenary. It also includes installation of structures around electrification, as substation installation, electrical isolation, signalling, telecommunication and civil engineering structures. France has more than 30,000 km of railways, whose only 53% are electrified. The others 47% of railways use diesel locomotive and represent only 10% of the circulation (tons.km). For this reason, a new type of electrification, less expensive than the usual, is requested to enable the modernization of these railways. One solution could be the use of hybrids trains. This technology opens up new opportunities for less expensive infrastructure development such as the partial electrification of railway lines. In a partially electrified railway, the power supply of theses hybrid trains could be made either by the catenary or by the on-board energy storage system (ESS). Thus, the on-board ESS would feed the energetic needs of the train along the non-electrified zones while in electrified zones, the catenary would feed the train and recharge the on-board ESS. This paper’s objective deals with the technical and economic potential identification of partial electrification of railway lines. This study provides different scenarios of electrification by replacing the most expensive places to electrify using on-board ESS. The target is to reduce the cost of new electrification projects, i.e. reduce the cost of electrification infrastructures while not increasing the cost of rolling stocks. In this study, scenarios are constructed in function of the electrification’s cost of each structure. The electrification’s cost varies considerably because of the installation of catenary support in tunnels, bridges and viaducts is much more expensive than in others zones of the railway. These scenarios will be used to describe the power supply system and to choose between the catenary and the on-board energy storage depending on the position of the train on the railway. To identify the influence of each partial electrification scenario in the sizing of the on-board ESS, a model of the railway line and of the rolling stock is developed for a real case. This real case concerns a railway line located in the south of France. The energy consumption and the power demanded at each point of the line for each power supply (catenary or on-board ESS) are provided at the end of the simulation. Finally, the cost of a partial electrification is obtained by adding the civil engineering costs of the zones to be electrified plus the cost of the on-board ESS. The study of the technical and economic potential ends with the identification of the most economically interesting scenario of electrification.

Keywords: electrification, hybrid, railway, storage

Procedia PDF Downloads 429
1472 Recycling, Reuse and Reintegration of Steel Plant Fines

Authors: R. K. Agrawal, Shiv Agrawal

Abstract:

Fines and micro create fundamental problems of respiration. From mines to mills steel plants generate lot of pollutants. Legislation & Government laws are stricter day by day & each plant has to think of recycling, reuse &reintegration of pollutants generated during the process of steel making. This paper deals with experiments conducted in Bhilai Steel Plant and Real Ispat and Power Limited for reuse, recycle & reintegrate some of the steel making process fines. Iron ore fines with binders have been agglomerated to be used as a part of the charge for small furnaces. This will improve yield at nominal cost. Rolling mill fines have been recycled to increase the yield of sinter making. This will solve the problems of fine disposal. Huge saving on account of recycling will be achieved. Lime fines after briquetting is used along with prime lime. Lime fines have also been used as a binding material during production of fly ash bricks. These fines serve as low-cost binder. Experiments have been conducted along with coke breeze & gas cleaning plant sludge. As a result, the anti-sloping compound has been developed for converter vessels. Dolo char and Char during Sponge Iron production have been successfully used in power generation and brick making. Pellets have been made with ventilation dust & flue dust. These samples have been tried as a coolant in the converter. Pellets have been made with Sinter Plant electrostatic precipitator micro fines with liquid binder. Trials have been conducted to reuse these pellets in sinter making. Coke breeze from coke-ovens fines and mill scale along with binders were agglomerated. This was used in furnace after attaining required screening and reactivity index. These actions will definitely bring social, economic and environment-friendly universe.

Keywords: briquette, dolo char, electrostatic precipitator, pellet, sinter

Procedia PDF Downloads 391
1471 Timetabling for Interconnected LRT Lines: A Package Solution Based on a Real-world Case

Authors: Huazhen Lin, Ruihua Xu, Zhibin Jiang

Abstract:

In this real-world case, timetabling the LRT network as a whole is rather challenging for the operator: they are supposed to create a timetable to avoid various route conflicts manually while satisfying a given interval and the number of rolling stocks, but the outcome is not satisfying. Therefore, the operator adopts a computerised timetabling tool, the Train Plan Maker (TPM), to cope with this problem. However, with various constraints in the dual-line network, it is still difficult to find an adequate pairing of turnback time, interval and rolling stocks’ number, which requires extra manual intervention. Aiming at current problems, a one-off model for timetabling is presented in this paper to simplify the procedure of timetabling. Before the timetabling procedure starts, this paper presents how the dual-line system with a ring and several branches is turned into a simpler structure. Then, a non-linear programming model is presented in two stages. In the first stage, the model sets a series of constraints aiming to calculate a proper timing for coordinating two lines by adjusting the turnback time at termini. Then, based on the result of the first stage, the model introduces a series of inequality constraints to avoid various route conflicts. With this model, an analysis is conducted to reveal the relation between the ratio of trains in different directions and the possible minimum interval, observing that the more imbalance the ratio is, the less possible to provide frequent service under such strict constraints.

Keywords: light rail transit (LRT), non-linear programming, railway timetabling, timetable coordination

Procedia PDF Downloads 87
1470 Calibration of Contact Model Parameters and Analysis of Microscopic Behaviors of Cuxhaven Sand Using The Discrete Element Method

Authors: Anjali Uday, Yuting Wang, Andres Alfonso Pena Olare

Abstract:

The Discrete Element Method is a promising approach to modeling microscopic behaviors of granular materials. The quality of the simulations however depends on the model parameters utilized. The present study focuses on calibration and validation of the discrete element parameters for Cuxhaven sand based on the experimental data from triaxial and oedometer tests. A sensitivity analysis was conducted during the sample preparation stage and the shear stage of the triaxial tests. The influence of parameters like rolling resistance, inter-particle friction coefficient, confining pressure and effective modulus were investigated on the void ratio of the sample generated. During the shear stage, the effect of parameters like inter-particle friction coefficient, effective modulus, rolling resistance friction coefficient and normal-to-shear stiffness ratio are examined. The calibration of the parameters is carried out such that the simulations reproduce the macro mechanical characteristics like dilation angle, peak stress, and stiffness. The above-mentioned calibrated parameters are then validated by simulating an oedometer test on the sand. The oedometer test results are in good agreement with experiments, which proves the suitability of the calibrated parameters. In the next step, the calibrated and validated model parameters are applied to forecast the micromechanical behavior including the evolution of contact force chains, buckling of columns of particles, observation of non-coaxiality, and sample inhomogeneity during a simple shear test. The evolution of contact force chains vividly shows the distribution, and alignment of strong contact forces. The changes in coordination number are in good agreement with the volumetric strain exhibited during the simple shear test. The vertical inhomogeneity of void ratios is documented throughout the shearing phase, which shows looser structures in the top and bottom layers. Buckling of columns is not observed due to the small rolling resistance coefficient adopted for simulations. The non-coaxiality of principal stress and strain rate is also well captured. Thus the micromechanical behaviors are well described using the calibrated and validated material parameters.

Keywords: discrete element model, parameter calibration, triaxial test, oedometer test, simple shear test

Procedia PDF Downloads 120
1469 Investigating the Viability of Small-Scale Rapid Alloy Prototyping of Interstitial Free Steels

Authors: Talal S. Abdullah, Shahin Mehraban, Geraint Lodwig, Nicholas P. Lavery

Abstract:

The defining property of Interstitial Free (IF) steels is formability, comprehensively measured using the Lankford coefficient (r-value) on uniaxial tensile test data. The contributing factors supporting this feature are grain size, orientation, and elemental additions. The processes that effectively modulate these factors are the casting procedure, hot rolling, and heat treatment. An existing methodology is well-practised in the steel Industry; however, large-scale production and experimentation consume significant proportions of time, money, and material. Introducing small-scale rapid alloy prototyping (RAP) as an alternative process would considerably reduce the drawbacks relative to standard practices. The aim is to finetune the existing fundamental procedures implemented in the industrial plant to adapt to the RAP route. IF material is remelted in the 80-gram coil induction melting (CIM) glovebox. To birth small grains, maximum deformation must be induced onto the cast material during the hot rolling process. The rolled strip must then satisfy the polycrystalline behaviour of the bulk material by displaying a resemblance in microstructure, hardness, and formability to that of the literature and actual plant steel. A successful outcome of this work is that small-scale RAP can achieve target compositions with similar microstructures and statistically consistent mechanical properties which complements and accelerates the development of novel steel grades.

Keywords: rapid alloy prototyping, plastic anisotropy, interstitial free, miniaturised tensile testing, formability

Procedia PDF Downloads 113
1468 Long-Term Foam Roll Intervention Study of the Effects on Muscle Performance and Flexibility

Authors: T. Poppendieker

Abstract:

A new innovative tool for self-myofascial release is widely and increasingly used among athletes of various sports. The application of the foam roll is suggested to improve muscle performance and flexibility. Attempts to examine acute and somewhat long term effects of either have been conducted over the past ten years. However, the results of muscle performance have been inconsistent. It is suggested that regular use over a long period of time results in a different, muscle performance improving outcome. This study examines long-term effects of regular foam rolling combined with a short plyometric routine vs. solely the same plyometric routine on muscle performance and flexibility over a period of six weeks. Results of counter movement jump (CMJ), squat jump (SJ), and isometric maximal force (IMF) of a 90° horizontal squat in a leg-press will serve as parameters for muscle performance. Data on the range of motion (ROM) of the sit and reach test will be used as a parameter for the flexibility assessment. Muscle activation will be measured throughout all tests. Twenty male and twenty female members of a Frankfurt area fitness center chain (7.11) with an average age of 25 years will be recruited. Women and men will be randomly assigned to a foam roll (FR) and a control group. All participants will practice their assigned routine three times a week over the period of six weeks. Tests on CMJ, SJ, IMF, and ROM will be taken before and after the intervention period. The statistic software program SPSS 22 will be used to analyze the data of CMJ, SJ, IMF, and ROM under consideration of muscle activation by a 2 x 2 x 2 (time of measurement x gender x group) analysis of variance with repeated measures and dependent t-test analysis of pre- and post-test. The alpha level for statistic significance will be set at p ≤ 0.05. It is hypothesized that a significant difference in outcome based on gender differences in all four tests will be observed. It is further hypothesized that both groups may show significant improvements in their performance in the CMJ and SJ after the six-week period. However, the FR group is hypothesized to achieve a higher improvement in the two jump tests. Moreover, the FR group may increase IMF as well as flexibility, whereas the control group may not show likewise progress. The results of this study are crucial for the understanding of long-term effects of regular foam roll application. The collected information on the matter may help to motivate the incorporation of foam rolling into training routines, in order to improve athletic performances.

Keywords: counter movement jump, foam rolling, isometric maximal force, long term effects, self-myofascial release, squat jump

Procedia PDF Downloads 286
1467 An Algorithm for Estimating the Stable Operation Conditions of the Synchronous Motor of the Ore Mill Electric Drive

Authors: M. Baghdasaryan, A. Sukiasyan

Abstract:

An algorithm for estimating the stable operation conditions of the synchronous motor of the ore mill electric drive is proposed. The stable operation conditions of the synchronous motor are revealed, taking into account the estimation of the q angle change and the technological factors. The stability condition obtained allows to ensure the stable operation of the motor in the synchronous mode, taking into account the nonlinear character of the mill loading. The developed algorithm gives an opportunity to present the undesirable phenomena, arising in the electric drive system. The obtained stability condition can be successfully applied for the optimal control of the electromechanical system of the mill.

Keywords: electric drive, synchronous motor, ore mill, stability, technological factors

Procedia PDF Downloads 425
1466 Using Game Engines in Lightning Shielding: The Application of the Rolling Spheres Method on Virtual As-Built Power Substations

Authors: Yuri A. Gruber, Matheus Rosendo, Ulisses G. A. Casemiro, Klaus de Geus, Rafael T. Bee

Abstract:

Lightning strikes can cause severe negative impacts to the electrical sector causing direct damage to equipment as well as shutdowns, especially when occurring in power substations. In order to mitigate this problem, a meticulous planning of the power substation protection system is of vital importance. A critical part of this is the distribution of shielding wires through the substation, which creates a 3D imaginary protection mesh similar to a circus tarpaulin. Equipment enclosed in the volume defined by that 3D mesh is considered protected against lightning strikes. The use of traditional methods of longitudinal cutting analysis based on 2D CAD tools makes the process laborious and the results obtained may not guarantee satisfactory protection of electrical equipment. This work describes the application of a Game Engine to the problem of lightning protection of power substations providing the visualization of the 3D protection mesh, the amount of protected components and the highlight of equipment which remain unprotected. In addition, aspects regarding the implementation and the advantages of approaching the problem using Unreal® Engine 4 are described. In order to validate results, a comparison with traditional 2D methods is applied to the same case study to which the proposed technique has been applied. Finally, a comparative study involving different levels of protection using the technique developed in this work is presented, showing that modern game engines can be a powerful accessory for simulations in several areas of engineering.

Keywords: game engine, rolling spheres method, substation protection, UE4, Unreal Engine 4

Procedia PDF Downloads 527
1465 Comparison Physicochemical Properties of Hexane Extracted Aniseed Oil from Cold Press Extraction Residue and Cold Press Aniseed Oil

Authors: Derya Ören, Şeyma Akalın

Abstract:

Cold pres technique is a traditional method to obtain oil. The cold-pressing procedure, involves neither heat nor chemical treatments, so cold press technique has low oil yield and cold pressed herbal material residue still contains some oil. In this study, the oil that is remained in the cold pressed aniseed extracted with hegzan and analysed to determine physicochemical properties and quality parameters. It is found that the aniseed after cold press process contains % 10 oil. Other analysis parametres free fatty acid (FFA) is 2,1 mgKOH/g, peroxide value is 7,6 meq02/kg. Cold pressed aniseed oil values are determined for fatty acid (FFA) value as 2,1 mgKOH/g, peroxide value 4,5 meq02/kg respectively. Also fatty acid composition is analysed, it is found that both of these oil have same fatty acid composition. The main fatty acids are; oleic, linoleic, and palmitic acids.

Keywords: aniseed oil, cold press, extraction, residue

Procedia PDF Downloads 405
1464 Practical Evaluation of High-Efficiency Si-based Tandem Solar Cells

Authors: Sue-Yi Chen, Wei-Chun Hsu, Jon-Yiew Gan

Abstract:

Si-based double-junction tandem solar cells have become a popular research topic because of the advantages of low manufacturing cost and high energy conversion efficiency. However, there is no set of calculations to select the appropriate top cell materials. Therefore, this paper will propose a simple but practical selection method. First of all, we calculate the S-Q limit and explain the reasons for developing tandem solar cells. Secondly, we calculate the theoretical energy conversion efficiency of the double-junction tandem solar cells while combining the commercial monocrystalline Si and materials' practical efficiency to consider the actual situation. Finally, we conservatively conclude that if considering 75% performance of the theoretical energy conversion efficiency of the top cell, the suitable bandgap energy range will fall between 1.38eV to 2.5eV. Besides, we also briefly describe some improvements of several proper materials, CZTS, CdSe, Cu2O, ZnTe, and CdS, hoping that future research can select and manufacture high-efficiency Si-based tandem solar cells based on this paper successfully. Most importantly, our calculation method is not limited to silicon solely. If other materials’ performances match or surpass silicon's ability in the future, researchers can also apply this set of deduction processes.

Keywords: high-efficiency solar cells, material selection, Si-based double-junction solar cells, Tandem solar cells, photovoltaics.

Procedia PDF Downloads 115
1463 CFD Modeling of Stripper Ash Cooler of Circulating Fluidized Bed

Authors: Ravi Inder Singh

Abstract:

Due to high heat transfer rate, high carbon utilizing efficiency, fuel flexibilities and other advantages numerous circulating fluidized bed boilers have grown up in India in last decade. Many companies like BHEL, ISGEC, Thermax, Cethar Limited, Enmas GB Power Systems Projects Limited are making CFBC and installing the units throughout the India. Due to complexity many problems exists in CFBC units and only few have been reported. Agglomeration i.e clinker formation in riser, loop seal leg and stripper ash coolers is one of problem industry is facing. Proper documentation is rarely found in the literature. Circulating fluidized bed (CFB) boiler bottom ash contains large amounts of physical heat. While the boiler combusts the low-calorie fuel, the ash content is normally more than 40% and the physical heat loss is approximately 3% if the bottom ash is discharged without cooling. In addition, the red-hot bottom ash is bad for mechanized handling and transportation, as the upper limit temperature of the ash handling machinery is 200 °C. Therefore, a bottom ash cooler (BAC) is often used to treat the high temperature bottom ash to reclaim heat, and to have the ash easily handled and transported. As a key auxiliary device of CFB boilers, the BAC has a direct influence on the secure and economic operation of the boiler. There are many kinds of BACs equipped for large-scale CFB boilers with the continuous development and improvement of the CFB boiler. These ash coolers are water cooled ash cooling screw, rolling-cylinder ash cooler (RAC), fluidized bed ash cooler (FBAC).In this study prototype of a novel stripper ash cooler is studied. The Circulating Fluidized bed Ash Coolers (CFBAC) combined the major technical features of spouted bed and bubbling bed, and could achieve the selective discharge on the bottom ash. The novel stripper ash cooler is bubbling bed and it is visible cold test rig. The reason for choosing cold test is that high temperature is difficult to maintain and create in laboratory level. The aim of study to know the flow pattern inside the stripper ash cooler. The cold rig prototype is similar to stripper ash cooler used industry and it was made after scaling down to some parameter. The performance of a fluidized bed ash cooler is studied using a cold experiment bench. The air flow rate, particle size of the solids and air distributor type are considered to be the key parameters of the operation of a fluidized bed ash cooler (FBAC) are studied in this.

Keywords: CFD, Eulerian-Eulerian, Eulerian-Lagraingian model, parallel simulations

Procedia PDF Downloads 510
1462 Hot Deformability of Si-Steel Strips Containing Al

Authors: Mohamed Yousef, Magdy Samuel, Maha El-Meligy, Taher El-Bitar

Abstract:

The present work is dealing with 2% Si-steel alloy. The alloy contains 0.05% C as well as 0.85% Al. The alloy under investigation would be used for electrical transformation purposes. A heating (expansion) - cooling (contraction) dilation investigation was executed to detect the a, a+g, and g transformation temperatures at the inflection points of the dilation curve. On heating, primary a  was detected at a temperature range between room temperature and 687 oC. The domain of a+g was detected in the range between 687 oC and 746 oC. g phase exists in the closed g region at the range between 746 oC and 1043 oC. The domain of a phase appears again at a temperature range between 1043 and 1105 oC, and followed by secondary a at temperature higher than 1105 oC. A physical simulation of thermo-mechanical processing on the as-cast alloy was carried out. The simulation process took into consideration the hot flat rolling pilot plant parameters. The process was executed on the thermo-mechanical simulator (Gleeble 3500). The process was designed to include seven consecutive passes. The 1st pass represents the roughing stage, while the remaining six passes represent finish rolling stage. The whole process was executed at the temperature range from 1100 oC to 900 oC. The amount of strain starts with 23.5% at the roughing pass and decreases continuously to reach 7.5 % at the last finishing pass. The flow curve of the alloy can be abstracted from the stress-strain curves representing simulated passes. It shows alloy hardening from a pass to the other up to pass no. 6, as a result of decreasing the deformation temperature and increasing of cumulative strain. After pass no. 6, the deformation process enhances the dynamic recrystallization phenomena to appear, where the z-parameter would be high.

Keywords: si- steel, hot deformability, critical transformation temperature, physical simulation, thermo-mechanical processing, flow curve, dynamic softening.

Procedia PDF Downloads 245
1461 Cold Spray Coating and Its Application for High Temperature

Authors: T. S. Sidhu

Abstract:

Amongst the existing coatings methods, the cold spray is new upcoming process to deposit coatings. As from the name itself, the cold spray coating takes place at very low temperature as compare to other thermal spray coatings. In all other thermal spray coating process the partial melting of the coating powder particles takes place before deposition, but cold spray process takes place in solid state. In cold spray process, the bonding of coating power with substrate is not metallurgical as in other thermal spray processes. Due to supersonic speed and less temperature of spray particles, solid state, dense, and oxide free coatings are produced. Due to these characteristics, the cold spray coatings have been used to protect the materials against hot corrosion. In the present study, the cold spray process, cold spray fundaments, its types, and its applications for high temperatures are discussed in the light of presently available literature. In addition, the assessment of cold spray with the competitive technologies has been conferred with available literature.

Keywords: cold spray coating, hot corrosion, thermal spray coating, high-temperature materials

Procedia PDF Downloads 243
1460 Ecofriendly Multi-Layer Polymer Treatment for Hydrophobic and Water Repellent Porous Cotton Fabrics

Authors: Muhammad Zahid, Ilker S. Bayer, Athanassia Athanassiou

Abstract:

Fluorinated polymers having C8 chemistry (chemicals with 8 fluorinated carbon atoms) are well renowned for their excellent low surface tension and water repelling properties. However, these polymers degrade into highly toxic heavy perfluoro acids in the environment. When the C8 chemistry is reduced to C6 chemistry, this environmental concern is eliminated at the expense of reduced liquid repellent performance. In order to circumvent this, in this study, we demonstrate pre-treatment of woven cotton fabrics with a fluorinated acrylic copolymer with C6 chemistry and subsequently with a silicone polymer to render them hydrophobic. A commercial fluorinated acrylic copolymer was blended with silica nanoparticles to form hydrophobic nano-roughness on cotton fibers and a second coating layer of polydimethylsiloxane (PDMS) was applied on the fabric. A static water contact angle (for 5µl) and rolling angle (for 12.5µl) of 147°±2° and 31° were observed, respectively. Hydrostatic head measurements were also performed to better understand the performance with 26±1 cm and 2.56kPa column height and static pressure respectively. Fabrication methods (with rod coater etc.) were kept simple, reproducible, and scalable and cost efficient. Moreover, the robustness of applied coatings was also evaluated by sonication cleaning and abrasion methods. Water contact angle (WCA), water shedding angle (WSA), hydrostatic head, droplet bouncing-rolling off and prolonged staining tests were used to characterize hydrophobicity of materials. For chemical and morphological analysis, various characterization methods were used such as attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), atomic force microscopy (AFM) and scanning electron microscopy (SEM).

Keywords: fluorinated polymer, hydrophobic, polydimethylsiloxane, water contact angle

Procedia PDF Downloads 325
1459 The Impact of Dispatching with Rolling Horizon Control in Sizing Thermal Storage for Solar Tower Plant Participating in Wholesale Spot Electricity Market

Authors: Navid Mohammadzadeh, Huy Truong-Ba, Michael Cholette

Abstract:

The solar tower (ST) plant is a promising technology to exploit large-scale solar irradiation. With thermal energy storage, ST plant has the potential to shift generation to high electricity price periods. However, the size of storage limits the dispatchability of the plant, particularly when it should compete with uncertainty in forecasts of solar irradiation and electricity prices. The purpose of this study is to explore the size of storage when Rolling Horizon Control (RHC) is employed for dispatch scheduling. To this end, RHC is benchmarked against perfect knowledge (PK) forecast and two day-ahead dispatching policies. With optimisation of dispatch planning using PK policy, the optimal achievable profit for a specific size of the storage is determined. A sensitivity analysis using Monte-Carlo simulation is conducted, and the size of storage for RHC and day-ahead policies is determined with the objective of reaching the profit obtained from the PK policy. A case study is conducted for a hypothetical ST plant with thermal storage located in South Australia and intends to dispatch under two market scenarios: 1) fixed price and 2) wholesale spot price. The impact of each individual source of uncertainty on storage size is examined for January and August. The exploration of results shows that dispatching with RH controller reaches optimal achievable profit with ~15% smaller storage compared to that in day-ahead policies. The results of this study may be applied to the CSP plant design procedure.

Keywords: solar tower plant, spot market, thermal storage system, optimized dispatch planning, sensitivity analysis, Monte Carlo simulation

Procedia PDF Downloads 125
1458 Language and Culture Exchange: Tandem Language Learning for University Students

Authors: Hebe Wong, Luz Fernandez Calventos

Abstract:

Tandem language learning, a language exchange process based on the principles of autonomy and reciprocity, provides opportunities for interlocutors to learn each other’s language by communicating online or face-to-face. While much attention has been paid to the process and outcomes of tandem learning via email, little has been discussed about the effectiveness of face-to-face tandem learning on language and culture exchange for university students. The LACTS (Language and Culture Tandem Scheme), an 8-week project, was set up to study students’ perceptions of conducting tandem learning to assist their language and culture exchange. Students of both post-graduate and undergraduate programmes (N=103) from a Hong Kong SAR university were put in groups of 4 to 6 according to their availability and language preferences and met for an hour a week. While sample task sheets on a range of topics were provided to assist the language exchange, all groups were encouraged to take charge of their meeting format and choose their own topics. At the end of the project, a 19-item questionnaire, which included both open-and closed-ended questions investigating students’ perceptions of reciprocal teaching and cultural exchange, was administered. Thirty-minute individual interviews were conducted to elicit students’ views and experiences in the LACTS activities. Quantitative and qualitative data analysis showed that most students agreed that the project had enhanced their cultural awareness and helped create an inclusive and participatory learning environment. Significant differences were found in students’ confidence in speaking their targeted language after joining the scheme. The interviews also provided rich data on the variety of formats and leadership patterns in student-led meetings, which could shed light on student autonomy and future tandem language learning projects.

Keywords: autonomy, reciprocity, tandem language learning, university students

Procedia PDF Downloads 58
1457 The Influence of Ni Elements on Mechanical Properties and Microstructure of Twinning Induced Plasticity (TWIP)

Authors: Yuksel Akinay, Fatih Hayat

Abstract:

The influence of Ni elements on mechanical properties and microstructure of twinning induced plasticity (TWIP) steels were investigated in this study. TWIP 1 (0,6C, 24Mn) and TWIP 2 (0,6C, 24Mn, 1Ni) high Mn TWIP (Twinning Induced Plasticity) steels were fabricated, and were annealed at 700°C, 800°C and 900°C for 150 minute and then air-cooled. The microstructures and mechanical properties of specimens were analysed to investigate influence of Ni element on TWIP steel. The carbide precipitations have seen in microstructure of TWIP 1 and TWIP 2 specimen annealed at 700 °C. However, the microstructures of TWIP 1 annealed at 800°C and 900°C are fully austenite and some grains are including annealing twins. However twining did not occur at TWIP 2 specimens annealed at 700 °C, 800 °C and 900 °C. TWIP 2 steel contains also Ni element differently from TWIP 1 steel. It can conclude that, Nickel (Ni) was restrained formation of twinning. The reversion of the tensile strength occurred between 700°C and 800°C because of the carbide precipitation hardening. Beside that, hardness value has decreased between 800 °C and 900 °C, which show a good agreement with the equilibrium dissolution temperature of M3C carbides. However, the results show that, carbide precipitations also are as strong barriers for the formation of twining. For this reason, twinning was not obtained at 700 °C.

Keywords: high manganese, heat treatment, SEM, TWIP steel, cold rolling, nickel

Procedia PDF Downloads 357
1456 Tandem Concentrated Photovoltaic-Thermoelectric Hybrid System: Feasibility Analysis and Performance Enhancement Through Material Assessment Methodology

Authors: Shuwen Hu, Yuancheng Lou, Dongxu Ji

Abstract:

Photovoltaic (PV) power generation, as one of the most commercialized methods to utilize solar power, can only convert a limited range of solar spectrum into electricity, whereas the majority of the solar energy is dissipated as heat. To address this problem, thermoelectric (TE) module is often integrated with the concentrated PV module for waste heat recovery and regeneration. In this research, a feasibility analysis is conducted for the tandem concentrated photovoltaic-thermoelectric (CPV-TE) hybrid system considering various operational parameters as well as TE material properties. Furthermore, the power output density of the CPV-TE hybrid system is maximized by selecting the optimal TE material with application of a systematic assessment methodology. In the feasibility analysis, CPV-TE is found to be more advantageous than sole CPV system except under high optical concentration ratio with low cold side convective coefficient. It is also shown that the effects of the TE material properties, including Seebeck coefficient, thermal conductivity, and electrical resistivity, on the feasibility of CPV-TE are interacted with each other and might have opposite effect on the system performance under different operational conditions. In addition, the optimal TE material selected by the proposed assessment methodology can improve the system power output density by 227 W/m2 under highly concentrated solar irradiance hence broaden the feasible range of CPV-TE considering optical concentration ratio.

Keywords: feasibility analysis, material assessment methodology, photovoltaic waste heat recovery, tandem photovoltaic-thermoelectric

Procedia PDF Downloads 72
1455 Flow Visualization and Mixing Enhancement in Y-Junction Microchannel with 3D Acoustic Streaming Flow Patterns Induced by Trapezoidal Triangular Structure using High-Viscous Liquids

Authors: Ayalew Yimam Ali

Abstract:

The Y-shaped microchannel system is used to mix up low or high viscosities of different fluids, and the laminar flow with high-viscous water-glycerol fluids makes the mixing at the entrance Y-junction region a challenging issue. Acoustic streaming (AS) is time-average, a steady second-order flow phenomenon that could produce rolling motion in the microchannel by oscillating low-frequency range acoustic transducer by inducing acoustic wave in the flow field is the promising strategy to enhance diffusion mass transfer and mixing performance in laminar flow phenomena. In this study, the 3D trapezoidal Structure has been manufactured with advanced CNC machine cutting tools to produce the molds of trapezoidal structure with the 3D sharp edge tip angles of 30° and 0.3mm spine sharp-edge tip depth from PMMA glass (Polymethylmethacrylate) and the microchannel has been fabricated using PDMS (Polydimethylsiloxane) which could be grown-up longitudinally in Y-junction microchannel mixing region top surface to visualized 3D rolling steady acoustic streaming and mixing performance evaluation using high-viscous miscible fluids. The 3D acoustic streaming flow patterns and mixing enhancement were investigated using the micro-particle image velocimetry (μPIV) technique with different spine depth lengths, channel widths, high volume flow rates, oscillation frequencies, and amplitude. The velocity and vorticity flow fields show that a pair of 3D counter-rotating streaming vortices were created around the trapezoidal spine structure and observing high vorticity maps up to 8 times more than the case without acoustic streaming in Y-junction with the high-viscosity water-glycerol mixture fluids. The mixing experiments were performed by using fluorescent green dye solution with de-ionized water on one inlet side, de-ionized water-glycerol with different mass-weight percentage ratios on the other inlet side of the Y-channel and evaluated its performance with the degree of mixing at different amplitudes, flow rates, frequencies, and spine sharp-tip edge angles using the grayscale value of pixel intensity with MATLAB Software. The degree of mixing (M) characterized was found to significantly improved to 0.96.8% with acoustic streaming from 67.42% without acoustic streaming, in the case of 0.0986 μl/min flow rate, 12kHz frequency and 40V oscillation amplitude at y = 2.26 mm. The results suggested the creation of a new 3D steady streaming rolling motion with a high volume flow rate around the entrance junction mixing region, which promotes the mixing of two similar high-viscosity fluids inside the microchannel, which is unable to mix by the laminar flow with low viscous conditions.

Keywords: nano fabrication, 3D acoustic streaming flow visualization, micro-particle image velocimetry, mixing enhancement

Procedia PDF Downloads 32