Search results for: low cost rehabilitation robot
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7166

Search results for: low cost rehabilitation robot

7076 Impact of Pediatric Cardiac Rehabilitation on the Physical Condition of Children with Congenital Heart Defects

Authors: Hady Atef Labib

Abstract:

Pediatric cardiac rehabilitation has the potential to benefit many children with congenital heart defects (CHD). Instead of excellent surgical results most of children usually present with a depression of physical condition so early rehabilitation program is recommended to avoid that decline in physical tolerance and prevent any post surgical complications. Unfortunately, the limited experience with and availability of these programs has caused the benefits of cardiac rehabilitation to be unavailable to most children with CHD. Therefore, it is recommended to study that field in more detail and apply it on wider scale.

Keywords: pediatric cardiac rehabilitation, congenital heart disease, quality of life, pediatric

Procedia PDF Downloads 375
7075 A Robotic Rehabilitation Arm Driven by Somatosensory Brain-Computer Interface

Authors: Jiewei Li, Hongyan Cui, Chunqi Chang, Yong Hu

Abstract:

It was expected to benefit patient with hemiparesis after stroke by extensive arm rehabilitation, to partially regain forearm and hand function. This paper propose a robotic rehabilitation arm in assisting the hemiparetic patient to learn new ways of using and moving their weak arms. In this study, the robotic arm was driven by a somatosensory stimulated brain computer interface (BCI), which is a new modality BCI. The use of somatosensory stimulation is not only an input for BCI, but also a electrical stimulation for treatment of hemiparesis to strengthen the arm and improve its range of motion. A trial of this robotic rehabilitation arm was performed in a stroke patient with pure motor hemiparesis. The initial trial showed a promising result from the patient with great motivation and function improvement. It suggests that robotic rehabilitation arm driven by somatosensory BCI can enhance the rehabilitation performance and progress for hemiparetic patients after stroke.

Keywords: robotic rehabilitation arm, brain computer interface (BCI), hemiparesis, stroke, somatosensory stimulation

Procedia PDF Downloads 386
7074 Self-Organizing Map Network for Wheeled Robot Movement Optimization

Authors: Boguslaw Schreyer

Abstract:

The paper investigates the application of the Kohonen’s Self-Organizing Map (SOM) to the wheeled robot starting and braking dynamic states. In securing wheeled robot stability as well as minimum starting and braking time, it is important to ensure correct torque distribution as well as proper slope of braking and driving moments. In this paper, a correct movement distribution has been formulated, securing optimum adhesion coefficient and good transversal stability of a wheeled robot. A neural tuner has been proposed to secure the above properties, although most of the attention is attached to the SOM network application. If the delay of the torque application or torque release is not negligible, it is important to change the rising and falling slopes of the torque. The road/surface condition is also paramount in robot dynamic states control. As the road conditions may randomly change in time, application of the SOM network has been suggested in order to classify the actual road conditions.

Keywords: slip control, SOM network, torque distribution, wheeled Robot

Procedia PDF Downloads 124
7073 Design, Modelling, and Fabrication of Bioinspired Frog Robot for Synchronous and Asynchronous Swimming

Authors: Afaque Manzoor Soomro, Faheem Ahmed, Fida Hussain Memon, Kyung Hyun Choi

Abstract:

This paper proposes the bioinspired soft frog robot. All printing technology was used for the fabrication of the robot. Polyjet printing was used to print the front and back limbs, while ultrathin filament was used to print the body of the robot, which makes it a complete soft swimming robot. The dual thrust generation approach has been proposed by embedding the main muscle and antagonistic muscle in all the limbs, which enables it to attain high speed (18 mm/s), and significant control of swimming in dual modes (synchronous and asynchronous modes). To achieve the swimming motion of the frog, the design, motivated by the rigorous modelling and real frog dynamics analysis, enabled the as-developed frog robot (FROBOT) to swim at a significant level of consistency with the real frog. The FROBOT (weighing 65 g) can swim at different controllable frequencies (0.5–2Hz) and can turn in any direction by following custom-made LabVIEW software’s commands which enables it to swim at speed up to 18 mm/s on the surface of deep water (100 cm) with excellent weight balance.

Keywords: soft robotics, soft actuator, frog robot, 3D printing

Procedia PDF Downloads 97
7072 Design and Fabrication of a Smart Quadruped Robot

Authors: Shivani Verma, Amit Agrawal, Pankaj Kumar Meena, Ashish B. Deoghare

Abstract:

Over the decade robotics has been a major area of interest among the researchers and scientists in reducing human efforts. The need for robots to replace human work in different dangerous fields such as underground mining, nuclear power station and war against terrorist attack has gained huge attention. Most of the robot design is based on human structure popularly known as humanoid robots. However, the problems encountered in humanoid robots includes low speed of movement, misbalancing in structure, poor load carrying capacity, etc. The simplification and adaptation of the fundamental design principles seen in animals have led to the creation of bio-inspired robots. But the major challenges observed in naturally inspired robot include complexity in structure, several degrees of freedom and energy storage problem. The present work focuses on design and fabrication of a bionic quadruped walking robot which is based on different joint of quadruped mammals like a dog, cheetah, etc. The design focuses on the structure of the robot body which consists of four legs having three degrees of freedom per leg and the electronics system involved in it. The robot is built using readily available plastics and metals. The proposed robot is simple in construction and is able to move through uneven terrain, detect and locate obstacles and take images while carrying additional loads which may include hardware and sensors. The robot will find possible application in the artificial intelligence sector.

Keywords: artificial intelligence, bionic, quadruped robot, degree of freedom

Procedia PDF Downloads 212
7071 Multipurpose Agricultural Robot Platform: Conceptual Design of Control System Software for Autonomous Driving and Agricultural Operations Using Programmable Logic Controller

Authors: P. Abhishesh, B. S. Ryuh, Y. S. Oh, H. J. Moon, R. Akanksha

Abstract:

This paper discusses about the conceptual design and development of the control system software using Programmable logic controller (PLC) for autonomous driving and agricultural operations of Multipurpose Agricultural Robot Platform (MARP). Based on given initial conditions by field analysis and desired agricultural operations, the structural design development of MARP is done using modelling and analysis tool. PLC, being robust and easy to use, has been used to design the autonomous control system of robot platform for desired parameters. The robot is capable of performing autonomous driving and three automatic agricultural operations, viz. hilling, mulching, and sowing of seeds in the respective order. The input received from various sensors on the field is later transmitted to the controller via ZigBee network to make the changes in the control program to get desired field output. The research is conducted to provide assistance to farmers by reducing labor hours for agricultural activities by implementing automation. This study will provide an alternative to the existing systems with machineries attached behind tractors and rigorous manual operations on agricultural field at effective cost.

Keywords: agricultural operations, autonomous driving, MARP, PLC

Procedia PDF Downloads 359
7070 Design of Cylindrical Crawler Robot Inspired by Amoeba Locomotion

Authors: Jun-ya Nagase

Abstract:

Recently, the need of colonoscopy is increasing because of the rise of colonic disorder including cancer of the colon. However, current colonoscopy depends on doctor's skill strongly. Therefore, a large intestine endoscope that does not depend on the techniques of a doctor with high safety is required. In this research, we aim at development a novel large intestine endoscope that can realize safe insertion without specific techniques. A wheel movement type robot, a snake-like robot and an earthworm-like robot are all described in the relevant literature as endoscope robots that are currently studied. Among them, the tracked crawler robot can travel by traversing uneven ground flexibly with a crawler belt attached firmly to the ground surface. Although conventional crawler robots have high efficiency and/or high ground-covering ability, they require a comparatively large space to move. In this study, a small cylindrical crawler robot inspired by amoeba locomotion, which does not need large space to move and which has high ground-covering ability, is proposed. In addition, we developed a prototype of the large intestine endoscope using the proposed crawler mechanism. Experiments have demonstrated smooth operation and a forward movement of the robot by application of voltage to the motor. This paper reports the structure, drive mechanism, prototype, and experimental evaluation.

Keywords: tracked-crawler, endoscopic robot, narrow path, amoeba locomotion.

Procedia PDF Downloads 380
7069 Standalone Docking Station with Combined Charging Methods for Agricultural Mobile Robots

Authors: Leonor Varandas, Pedro D. Gaspar, Martim L. Aguiar

Abstract:

One of the biggest concerns in the field of agriculture is around the energy efficiency of robots that will perform agriculture’s activity and their charging methods. In this paper, two different charging methods for agricultural standalone docking stations are shown that will take into account various variants as field size and its irregularities, work’s nature to which the robot will perform, deadlines that have to be respected, among others. Its features also are dependent on the orchard, season, battery type and its technical specifications and cost. First charging base method focuses on wireless charging, presenting more benefits for small field. The second charging base method relies on battery replacement being more suitable for large fields, thus avoiding the robot stop for recharge. Existing many methods to charge a battery, the CC CV was considered the most appropriate for either simplicity or effectiveness. The choice of the battery for agricultural purposes is if most importance. While the most common battery used is Li-ion battery, this study also discusses the use of graphene-based new type of batteries with 45% over capacity to the Li-ion one. A Battery Management Systems (BMS) is applied for battery balancing. All these approaches combined showed to be a promising method to improve a lot of technical agricultural work, not just in terms of plantation and harvesting but also about every technique to prevent harmful events like plagues and weeds or even to reduce crop time and cost.

Keywords: agricultural mobile robot, charging methods, battery replacement method, wireless charging method

Procedia PDF Downloads 145
7068 Cost-Effective Mechatronic Gaming Device for Post-Stroke Hand Rehabilitation

Authors: A. Raj Kumar, S. Bilaloglu

Abstract:

Stroke is a leading cause of adult disability worldwide. We depend on our hands for our activities of daily living(ADL). Although many patients regain the ability to walk, they continue to experience long-term hand motor impairments. As the number of individuals with young stroke is increasing, there is a critical need for effective approaches for rehabilitation of hand function post-stroke. Motor relearning for dexterity requires task-specific kinesthetic, tactile and visual feedback. However, when a stroke results in both sensory and motor impairment, it becomes difficult to ascertain when and what type of sensory substitutions can facilitate motor relearning. In an ideal situation, real-time task-specific data on the ability to learn and data-driven feedback to assist such learning will greatly assist rehabilitation for dexterity. We have found that kinesthetic and tactile information from the unaffected hand can assist patients re-learn the use of optimal fingertip forces during a grasp and lift task. Measurement of fingertip grip force (GF), load forces (LF), their corresponding rates (GFR and LFR), and other metrics can be used to gauge the impairment level and progress during learning. Currently ATI mini force-torque sensors are used in research settings to measure and compute the LF, GF, and their rates while grasping objects of different weights and textures. Use of the ATI sensor is cost prohibitive for deployment in clinical or at-home rehabilitation. A cost effective mechatronic device is developed to quantify GF, LF, and their rates for stroke rehabilitation purposes using off-the-shelf components such as load cells, flexi-force sensors, and an Arduino UNO microcontroller. A salient feature of the device is its integration with an interactive gaming environment to render a highly engaging user experience. This paper elaborates the integration of kinesthetic and tactile sensing through computation of LF, GF and their corresponding rates in real time, information processing, and interactive interfacing through augmented reality for visual feedback.

Keywords: feedback, gaming, kinesthetic, rehabilitation, tactile

Procedia PDF Downloads 239
7067 Automated Testing of Workshop Robot Behavior

Authors: Arne Hitzmann, Philipp Wentscher, Alexander Gabel, Reinhard Gerndt

Abstract:

Autonomous mobile robots can be found in a wide field of applications. Their types range from household robots over workshop robots to autonomous cars and many more. All of them undergo a number of testing steps during development, production and maintenance. This paper describes an approach to improve testing of robot behavior. It was inspired by the RoboCup @work competition that itself reflects a robotics benchmark for industrial robotics. There, scaled down versions of mobile industrial robots have to navigate through a workshop-like environment or operation area and have to perform tasks of manipulating and transporting work pieces. This paper will introduce an approach of automated vision-based testing of the behavior of the so called youBot robot, which is the most widely used robot platform in the RoboCup @work competition. The proposed system allows automated testing of multiple tries of the robot to perform a specific missions and it allows for the flexibility of the robot, e.g. selecting different paths between two tasks within a mission. The approach is based on a multi-camera setup using, off the shelf cameras and optical markers. It has been applied for test-driven development (TDD) and maintenance-like verification of the robot behavior and performance.

Keywords: supervisory control, testing, markers, mono vision, automation

Procedia PDF Downloads 375
7066 Hybrid Control Mode Based on Multi-Sensor Information by Fuzzy Approach for Navigation Task of Autonomous Mobile Robot

Authors: Jonqlan Lin, C. Y. Tasi, K. H. Lin

Abstract:

This paper addresses the issue of the autonomous mobile robot (AMR) navigation task based on the hybrid control modes. The novel hybrid control mode, based on multi-sensors information by using the fuzzy approach, has been presented in this research. The system operates in real time, is robust, enables the robot to operate with imprecise knowledge, and takes into account the physical limitations of the environment in which the robot moves, obtaining satisfactory responses for a large number of different situations. An experiment is simulated and carried out with a pioneer mobile robot. From the experimental results, the effectiveness and usefulness of the proposed AMR obstacle avoidance and navigation scheme are confirmed. The experimental results show the feasibility, and the control system has improved the navigation accuracy. The implementation of the controller is robust, has a low execution time, and allows an easy design and tuning of the fuzzy knowledge base.

Keywords: autonomous mobile robot, obstacle avoidance, MEMS, hybrid control mode, navigation control

Procedia PDF Downloads 462
7065 Lyapunov-Based Tracking Control for Nonholonomic Wheeled Mobile Robot

Authors: Raouf Fareh, Maarouf Saad, Sofiane Khadraoui, Tamer Rabie

Abstract:

This paper presents a tracking control strategy based on Lyapunov approach for nonholonomic wheeled mobile robot. This control strategy consists of two levels. First, a kinematic controller is developed to adjust the right and left wheel velocities. Using this velocity control law, the stability of the tracking error is guaranteed using Lyapunov approach. This kinematic controller cannot be generated directly by the motors. To overcome this problem, the second level of the controllers, dynamic control, is designed. This dynamic control law is developed based on Lyapunov theory in order to track the desired trajectories of the mobile robot. The stability of the tracking error is proved using Lupunov and Barbalat approaches. Simulation results on a nonholonomic wheeled mobile robot are given to demonstrate the feasibility and effectiveness of the presented approach.

Keywords: mobile robot, trajectory tracking, Lyapunov, stability

Procedia PDF Downloads 370
7064 Development of Orbital TIG Welding Robot System for the Pipe

Authors: Dongho Kim, Sung Choi, Kyowoong Pee, Youngsik Cho, Seungwoo Jeong, Soo-Ho Kim

Abstract:

This study is about the orbital TIG welding robot system which travels on the guide rail installed on the pipe, and welds and tracks the pipe seam using the LVS (Laser Vision Sensor) joint profile data. The orbital welding robot system consists of the robot, welder, controller, and LVS. Moreover we can define the relationship between welding travel speed and wire feed speed, and we can make the linear equation using the maximum and minimum amount of weld metal. Using the linear equation we can determine the welding travel speed and the wire feed speed accurately corresponding to the area of weld captured by LVS. We applied this orbital TIG welding robot system to the stainless steel or duplex pipe on DSME (Daewoo Shipbuilding and Marine Engineering Co. Ltd.,) shipyard and the result of radiographic test is almost perfect. (Defect rate: 0.033%).

Keywords: adaptive welding, automatic welding, pipe welding, orbital welding, laser vision sensor, LVS, welding D/B

Procedia PDF Downloads 682
7063 FESA: Fuzzy-Controlled Energy-Efficient Selective Allocation and Reallocation of Tasks Among Mobile Robots

Authors: Anuradha Banerjee

Abstract:

Energy aware operation is one of the visionary goals in the area of robotics because operability of robots is greatly dependent upon their residual energy. Practically, the tasks allocated to robots carry different priority and often an upper limit of time stamp is imposed within which the task needs to be completed. If a robot is unable to complete one particular task given to it the task is reallocated to some other robot. The collection of robots is controlled by a Central Monitoring Unit (CMU). Selection of the new robot is performed by a fuzzy controller called Task Reallocator (TRAC). It accepts the parameters like residual energy of robots, possibility that the task will be successfully completed by the new robot within stipulated time, distance of the new robot (where the task is reallocated) from distance of the old one (where the task was going on) etc. The proposed methodology increases the probability of completing globally assigned tasks and saves huge amount of energy as far as the collection of robots is concerned.

Keywords: energy-efficiency, fuzzy-controller, priority, reallocation, task

Procedia PDF Downloads 309
7062 Design and Optimization of a 6 Degrees of Freedom Co-Manipulated Parallel Robot for Prostate Brachytherapy

Authors: Aziza Ben Halima, Julien Bert, Dimitris Visvikis

Abstract:

In this paper, we propose designing and evaluating a parallel co-manipulated robot dedicated to low-dose-rate prostate brachytherapy. We developed 6 degrees of freedom compact and lightweight robot easy to install in the operating room thanks to its parallel design. This robotic system provides a co-manipulation allowing the surgeon to keep control of the needle’s insertion and consequently to improve the acceptability of the plan for the clinic. The best dimension’s configuration was solved by calculating the geometric model and using an optimization approach. The aim was to ensure the whole coverage of the prostate volume and consider the allowed free space around the patient that includes the ultrasound probe. The final robot dimensions fit in a cube of 300 300 300 mm³. A prototype was 3D printed, and the robot workspace was measured experimentally. The results show that the proposed robotic system satisfies the medical application requirements and permits the needle to reach any point within the prostate.

Keywords: medical robotics, co-manipulation, prostate brachytherapy, optimization

Procedia PDF Downloads 201
7061 Assessment of Rehabilitation Possibilities in Case of Budapest Jewish Quarter Building Stock

Authors: Viktória Sugár, Attila Talamon, András Horkai, Michihiro Kita

Abstract:

The dense urban fabric of the Budapest 7th district is known as the former Jewish Quarter. The majority of the historical building stock contains multi-story tenement houses with courtyards, built around the end of the 19th century. Various rehabilitation and urban planning attempt occurred until today, mostly left unfinished. Present paper collects the past rehabilitation plans, actions and their effect which took place in the former Jewish District of Budapest. The authors aim to assess the boundaries of a complex building stock rehabilitation, by taking into account the monument protection guidelines. As a main focus of the research, structural as well as energetic rehabilitation possibilities are analyzed in case of each building by using Geographic Information System (GIS) methods.

Keywords: geographic information system, Hungary, Jewish Quarter, monument, protection, rehabilitation

Procedia PDF Downloads 261
7060 Designing a Robust Controller for a 6 Linkage Robot

Authors: G. Khamooshian

Abstract:

One of the main points of application of the mechanisms of the series and parallel is the subject of managing them. The control of this mechanism and similar mechanisms is one that has always been the intention of the scholars. On the other hand, modeling the behavior of the system is difficult due to the large number of its parameters, and it leads to complex equations that are difficult to solve and eventually difficult to control. In this paper, a six-linkage robot has been presented that could be used in different areas such as medical robots. Using these robots needs a robust control. In this paper, the system equations are first found, and then the system conversion function is written. A new controller has been designed for this robot which could be used in other parallel robots and could be very useful. Parallel robots are so important in robotics because of their stability, so methods for control of them are important and the robust controller, especially in parallel robots, makes a sense.

Keywords: 3-RRS, 6 linkage, parallel robot, control

Procedia PDF Downloads 153
7059 Effects of Robot-Assisted Hand Training on Upper Extremity Performance in Patients with Stroke: A Randomized Crossover Controlled, Assessor-Blinded Study

Authors: Hsin-Chieh Lee, Fen-Ling Kuo, Jui-Chi Lin

Abstract:

Background: Upper extremity functional impairment that occurs after stroke includes hemiplegia, synergy movement, muscle hypertonicity, and somatosensory impairment, which result in inefficient and inaccurate movement. Robot-assisted rehabilitation is an intensive training approach that is effective in sensorimotor and hand function recovery. However, these systems mostly focused on the proximal part of the upper limb rather than the distal part. The device used in our study was Gloreha Sinfonia, which focuses on the distal part of the upper limb and uses a dynamic support system to facilitate the whole limb function. The objective of this study was to investigate the effects of robot-assisted therapy (RT) with Gloreha device on sensorimotor, and ADLs in patients with stroke. Method: Patients with stroke (N=25) participated AB or BA (A = 12 RT sessions and B = 12 conventional therapy (CT) sessions) for 6 weeks (60 min at each session, twice a week), with 1-month break for washout period. The performance of the patients was assessed by a blinded assessor at 4 time points (pretest 1, posttest 1, pretest 2, posttest 2) which including the Fugl–Meyer Assessment-upper extremity (FMA-UE), box and block test, electromyography of the extensor digitorum communis (EDC) and brachioradialis, a grip dynamometer for motor evaluation; Semmes–Weinstein hand monofilament and Revision of the Nottingham Sensory Assessment for sensory evaluation; and the Modified Barthel Index (MBI) for assessing the ADL ability. Result: RT group significantly improved FMA-UE proximal scores (p = 0.038), FMA-UE total scores (p = 0.046), and MBI (p = 0.030). The EDC exhibited higher efficiency during the small block grasping task in the RT group than in the CT group (p = 0.050). Conclusions: RT with the Gloreha device might lead to beneficial effects on arm motor function, ADL ability, and EDC muscle recruitment efficacy in patients with subacute to chronic stroke.

Keywords: activities of daily living, hand function, robotic rehabilitation, stroke

Procedia PDF Downloads 114
7058 Reductive Control in the Management of Redundant Actuation

Authors: Mkhinini Maher, Knani Jilani

Abstract:

We present in this work the performances of a mobile omnidirectional robot through evaluating its management of the redundancy of actuation. Thus we come to the predictive control implemented. The distribution of the wringer on the robot actions, through the inverse pseudo of Moore-Penrose, corresponds to a -geometric- distribution of efforts. We will show that the load on vehicle wheels would not be equi-distributed in terms of wheels configuration and of robot movement. Thus, the threshold of sliding is not the same for the three wheels of the vehicle. We suggest exploiting the redundancy of actuation to reduce the risk of wheels sliding and to ameliorate, thereby, its accuracy of displacement. This kind of approach was the subject of study for the legged robots.

Keywords: mobile robot, actuation, redundancy, omnidirectional, inverse pseudo moore-penrose, reductive control

Procedia PDF Downloads 505
7057 An Inquiry on 2-Mass and Wheeled Mobile Robot Dynamics

Authors: Boguslaw Schreyer

Abstract:

In this paper, a general dynamical model is derived using the Lagrange formalism. The two masses: sprang and unsprang are included in a six-degree of freedom model for a sprung mass. The unsprung mass is included and shown only in a simplified model, although its equations have also been derived by an author. The simplified equations, more suitable for the computer model of robot’s dynamics are also shown.

Keywords: dynamics, mobile, robot, wheeled mobile robots

Procedia PDF Downloads 329
7056 Application of Fuzzy Logic to Design and Coordinate Parallel Behaviors for a Humanoid Mobile Robot

Authors: Nguyen Chan Hung, Mai Ngoc Anh, Nguyen Xuan Ha, Tran Xuan Duc, Dang Bao Lam, Nguyen Hoang Viet

Abstract:

This paper presents a design and implementation of a navigation controller for a humanoid mobile robot platform to operate in indoor office environments. In order to fulfil the requirement of recognizing and approaching human to provide service while avoiding random obstacles, a behavior-based fuzzy logic controller was designed to simultaneously coordinate multiple behaviors. Experiments in real office environment showed that the fuzzy controller deals well with complex scenarios without colliding with random objects and human.

Keywords: behavior control, fuzzy logic, humanoid robot, mobile robot

Procedia PDF Downloads 417
7055 Prosthetic Rehabilitation of Midfacial: Nasal Defects

Authors: Bilal Ahmed

Abstract:

Rehabilitation of congenital and acquired maxillofacial defects is always a challenging clinical scenario. These defects pose major physiological and psychological threat not only to the patient but to the entire family. There has been an enormous scientific development in maxillofacial rehabilitation with the advent of CAD CAM, 3-D scanning, Osseo-integrated implants and improved restorative materials. There are also specialized centers with latest diagnostic and treatment facilities in the developed countries. However, in certain clinical case scenarios, conventional prosthodontic principles are still the gold standards. Similarly in a less developed world, financial and technical constraints are factors affecting treatment planning and final outcomes. However, we can do a lot of benefits to the affected human beings, even with use of simple and cost-effective conventional prosthodontic techniques and materials. These treatment strategies may sometimes be considered as intermediate or temporary options, but with regular follow-up maintenance these can be used on a definitive basis.

Keywords: maxillofacial defects, obturators, prosthodontics, medical and health sciences

Procedia PDF Downloads 344
7054 Human Gesture Recognition for Real-Time Control of Humanoid Robot

Authors: S. Aswath, Chinmaya Krishna Tilak, Amal Suresh, Ganesh Udupa

Abstract:

There are technologies to control a humanoid robot in many ways. But the use of Electromyogram (EMG) electrodes has its own importance in setting up the control system. The EMG based control system helps to control robotic devices with more fidelity and precision. In this paper, development of an electromyogram based interface for human gesture recognition for the control of a humanoid robot is presented. To recognize control signs in the gestures, a single channel EMG sensor is positioned on the muscles of the human body. Instead of using a remote control unit, the humanoid robot is controlled by various gestures performed by the human. The EMG electrodes attached to the muscles generates an analog signal due to the effect of nerve impulses generated on moving muscles of the human being. The analog signals taken up from the muscles are supplied to a differential muscle sensor that processes the given signal to generate a signal suitable for the microcontroller to get the control over a humanoid robot. The signal from the differential muscle sensor is converted to a digital form using the ADC of the microcontroller and outputs its decision to the CM-530 humanoid robot controller through a Zigbee wireless interface. The output decision of the CM-530 processor is sent to a motor driver in order to control the servo motors in required direction for human like actions. This method for gaining control of a humanoid robot could be used for performing actions with more accuracy and ease. In addition, a study has been conducted to investigate the controllability and ease of use of the interface and the employed gestures.

Keywords: electromyogram, gesture, muscle sensor, humanoid robot, microcontroller, Zigbee

Procedia PDF Downloads 403
7053 2D-Modeling with Lego Mindstorms

Authors: Miroslav Popelka, Jakub Nozicka

Abstract:

The whole work is based on possibility to use Lego Mindstorms robotics systems to reduce costs. Lego Mindstorms consists of a wide variety of hardware components necessary to simulate, programme and test of robotics systems in practice. To programme algorithm, which simulates space using the ultrasonic sensor, was used development environment supplied with kit. Software Matlab was used to render values afterwards they were measured by ultrasonic sensor. The algorithm created for this paper uses theoretical knowledge from area of signal processing. Data being processed by algorithm are collected by ultrasonic sensor that scans 2D space in front of it. Ultrasonic sensor is placed on moving arm of robot which provides horizontal moving of sensor. Vertical movement of sensor is provided by wheel drive. The robot follows map in order to get correct positioning of measured data. Based on discovered facts it is possible to consider Lego Mindstorm for low-cost and capable kit for real-time modelling.

Keywords: LEGO Mindstorms, ultrasonic sensor, real-time modeling, 2D object, low-cost robotics systems, sensors, Matlab, EV3 Home Edition Software

Procedia PDF Downloads 467
7052 Robot Control by ERPs of Brain Waves

Authors: K. T. Sun, Y. H. Tai, H. W. Yang, H. T. Lin

Abstract:

This paper presented the technique of robot control by event-related potentials (ERPs) of brain waves. Based on the proposed technique, severe physical disabilities can free browse outside world. A specific component of ERPs, N2P3, was found and used to control the movement of robot and the view of camera on the designed brain-computer interface (BCI). Users only required watching the stimuli of attended button on the BCI, the evoked potentials of brain waves of the target button, N2P3, had the greatest amplitude among all control buttons. An experimental scene had been constructed that the robot required walking to a specific position and move the view of camera to see the instruction of the mission, and then completed the task. Twelve volunteers participated in this experiment, and experimental results showed that the correct rate of BCI control achieved 80% and the average of execution time was 353 seconds for completing the mission. Four main contributions included in this research: (1) find an efficient component of ERPs, N2P3, for BCI control, (2) embed robot's viewpoint image into user interface for robot control, (3) design an experimental scene and conduct the experiment, and (4) evaluate the performance of the proposed system for assessing the practicability.

Keywords: severe physical disabilities, robot control, event-related potentials (ERPs), brain-computer interface (BCI), brain waves

Procedia PDF Downloads 367
7051 Vocational Rehabilitation for People with Disabilities: Employment Rates, Job Persistence and Wages

Authors: Hester Fass, Ofir Pinto

Abstract:

Research indicates gaps in education, employment rates and wages between people with disabilities and those without disabilities. One of the main tools available to reduce these gaps is vocational rehabilitation. In order to examine the effects of vocational rehabilitation, a follow-up study, based on comprehensive administrative data, was conducted. The study included 88,286 people with disabilities who participated in vocational rehabilitation of the National Insurance Institute of Israel (NII), and completed the process between 1999 and 2012. Research variables included: employment rates, job persistence and wage levels. This research, the first of its kind in Israel, has several unique aspects: a)a long-range follow-up study on people who completed vocational rehabilitation; b) examination of a broad population spectrum, including also people that are not eligible to disability pensions ; c) a comparison among those with work-related injuries, those injured in hostile acts and those injured in other circumstances; and finally d) the identification of the characteristics of those who are entitled to vocational rehabilitation but who do not participate in any vocational rehabilitation plan. The most notable results include: 1. Vocational rehabilitation contributed to employment, job persistence and wage levels. Participation in vocational rehabilitation resulted in an employment rate of 65% within two years after completing the program, and 73% eventually. Participation in a vocational rehabilitation plan also contributed to job persistence and wage levels. 2. Vocational rehabilitation plans aimed at integration in universal frameworks increased the chances of being employed, persisting at the job and receiving a higher wage than did the vocational rehabilitation aimed at selective frameworks (such as sheltered workshops). 3. The type of disability affected the chances of integration in a vocational rehabilitation plan and in the labor market. People with a disability from birth had greater chances of integration in a vocational rehabilitation plan, while the type of disability and its severity affected the chances of the person with disabilities to find employment.

Keywords: vocational rehabilitation, employment, job persistence, wages

Procedia PDF Downloads 448
7050 Motion Planning and Simulation Design of a Redundant Robot for Sheet Metal Bending Processes

Authors: Chih-Jer Lin, Jian-Hong Hou

Abstract:

Industry 4.0 is a vision of integrated industry implemented by artificial intelligent computing, software, and Internet technologies. The main goal of industry 4.0 is to deal with the difficulty owing to competitive pressures in the marketplace. For today’s manufacturing factories, the type of production is changed from mass production (high quantity production with low product variety) to medium quantity-high variety production. To offer flexibility, better quality control, and improved productivity, robot manipulators are used to combine material processing, material handling, and part positioning systems into an integrated manufacturing system. To implement the automated system for sheet metal bending operations, motion planning of a 7-degrees of freedom (DOF) robot is studied in this paper. A virtual reality (VR) environment of a bending cell, which consists of the robot and a bending machine, is established using the virtual robot experimentation platform (V-REP) simulator. For sheet metal bending operations, the robot only needs six DOFs for the pick-and-place or tracking tasks. Therefore, this 7 DOF robot has more DOFs than the required to execute a specified task; it can be called a redundant robot. Therefore, this robot has kinematic redundancies to deal with the task-priority problems. For redundant robots, Pseudo-inverse of the Jacobian is the most popular motion planning method, but the pseudo-inverse methods usually lead to a kind of chaotic motion with unpredictable arm configurations as the Jacobian matrix lose ranks. To overcome the above problem, we proposed a method to formulate the motion planning problems as optimization problem. Moreover, a genetic algorithm (GA) based method is proposed to deal with motion planning of the redundant robot. Simulation results validate the proposed method feasible for motion planning of the redundant robot in an automated sheet-metal bending operations.

Keywords: redundant robot, motion planning, genetic algorithm, obstacle avoidance

Procedia PDF Downloads 143
7049 Evaluation of Robot Application in Hospitality

Authors: Lina Zhong, Sunny Sun, Rob Law

Abstract:

Artificial intelligence has been developing rapidly. Previous studies have evaluated hotel technology either from an employee or consumer perspective. However, impacts, which mainly include the social and economic impacts of hotel robots, are unknown as they are newly introduced. To bridge the aforementioned research gap, this study evaluates hotel robots from contextual, diagnostic, evaluative, and strategic aspects using framework analysis as a basis to assist hotel managers in real-time hotel marketing strategy management, adjustment and revenue achievement. Findings show that, from a consumer perspective, the overall acceptance of hotel robots is low. The main implication is that the cost of hotel robots should be carefully estimated, and the investment should be made based on phases.

Keywords: application, evaluation, framework analysis, hotel robot

Procedia PDF Downloads 168
7048 The Important of Nutritional Status in Rehabilitation of Children with CP: Saudi Perspective

Authors: Reem Al-Garni

Abstract:

Malnutrition is a global epidemic, but the under-weight or Failure-To-Thrive risk is increasing in rehabilitation setting and considered one of the contribution factor for developmental delay. Beside the consequences of malnutrition on children growth and development, there are other side-effects that might delay or hold the progress of rehabilitation. The awareness for malnutrition must be raised and discussed by the rehabilitation team, to promote the treatment and to optimize the client care. The solution can start from food supplements intake and / or Enteral Nutrition plan, depending on the malnutrition level and to reach the goal, the medical team should to work together in order to provide comprehensive treatment and to help the family to be able to manage their child condition. We have explore the outcomes of rehabilitation between the children with CP whose diagnosed with malnutrition and children with normal body Wight Over a period of 4 months who received 4-6 weeks of rehabilitation two hours daily by using WeeFIM score to measure rehabilitation outcomes. WeeFIM measures and covers various domains, such as: self-care, mobility, locomotion, communication and other psycho-social aspects. Our findings reported that children with normal body Wight has better outcomes and improvement comparing with children with malnutrition for the entire study sample.

Keywords: Cerebral Palsy (CP), pediatric Functional Independent Measure (WeeFIM), rehabilitation, malnutrition

Procedia PDF Downloads 314
7047 Effect of Rehabilitation on Outcomes for Persons with Traumatic Brain Injury: Results from a Single Center

Authors: Savaş Karpuz, Sami Küçükşen

Abstract:

The aim of this study is to investigate the effectiveness of neurological rehabilitation in patients with traumatic brain injury. Participants were 45 consecutive adults with traumatic brain injury who were received the neurologic rehabilitation. Sociodemographic characteristics of the patients, the cause of the injury, the duration of the coma and posttraumatic amnesia, the length of stay in the other inpatient clinics before rehabilitation, the time between injury and admission to the rehabilitation clinic, and the length of stay in the rehabilitation clinic were recorded. The differences in functional status between admission and discharge were determined with Disability Rating Scale (DRS), Functional Independence Measure (FIM), and Functional Ambulation Scale (FAS) and levels of cognitive functioning determined with Ranchos Los Amigos Scale (RLAS). According to admission time, there was a significant improvement identified in functional status of patients who had been given the intensive in-hospital cognitive rehabilitation program. At discharge time, the statistically significant differences were obtained in DRS, FIM, FAS and RLAS scores according to admission time. Better improvement in functional status was detected in patients with lower scores in DRS, and higher scores FIM and RLAS scores at the entry time. The neurologic rehabilitation significantly affects the recovery of functional status after traumatic brain injury.

Keywords: traumatic brain injury, rehabilitation, functional status, neurological

Procedia PDF Downloads 228