Search results for: flame height
1637 Faithful Extension of Constant Height and Constant Width between Finite Posets
Authors: Walied Hazim Sharif
Abstract:
The problem of faithful extension with the condition of keeping constant height h and constant width w, i.e. for hw-inextensibility, seems more interesting than the brute extension of finite poset (partially ordered set). We shall investigate some theorems of hw-inextensive and hw-extensive posets that can be used to formulate the faithful extension problem. A theorem in its general form of hw-inextensive posets are given to implement the presented theorems.Keywords: faithful extension, poset, extension, inextension, height, width, hw-extensive, hw-inextensive
Procedia PDF Downloads 2611636 Valorization of Plastic and Cork Wastes in Design of Composite Materials
Authors: Svetlana Petlitckaia, Toussaint Barboni, Paul-Antoine Santoni
Abstract:
Plastic is a revolutionary material. However, the pollution caused by plastics damages the environment, human health and the economy of different countries. It is important to find new ways to recycle and reuse plastic material. The use of waste materials as filler and as a matrix for composite materials is receiving increasing attention as an approach to increasing the economic value of streams. In this study, a new composite material based on high-density polyethylene (HDPE) and polypropylene (PP) wastes from bottle caps and cork powder from unused cork (virgin cork), which has a high capacity for thermal insulation, was developed. The composites were prepared with virgin and modified cork. The composite materials were obtained through twin-screw extrusion and injection molding. The composites were produced with proportions of 0 %, 5 %, 10 %, 15 %, and 20 % of cork powder in a polymer matrix with and without coupling agent and flame retardant. These composites were investigated in terms of mechanical, structural and thermal properties. The effect of cork fraction, particle size and the use of flame retardant on the properties of composites were investigated. The properties of samples elaborated with the polymer and the cork were compared to them with the coupling agent and commercial flame retardant. It was observed that the morphology of HDPE/cork and PP/cork composites revealed good distribution and dispersion of cork particles without agglomeration. The results showed that the addition of cork powder in the polymer matrix reduced the density of the composites. However, the incorporation of natural additives doesn’t have a significant effect on water adsorption. Regarding the mechanical properties, the value of tensile strength decreases with the addition of cork powder, ranging from 30 MPa to 19 MPa for PP composites and from 19 MPa to 17 MPa for HDPE composites. The value of thermal conductivity of composites HDPE/cork and PP/ cork is about 0.230 W/mK and 0.170 W/mK, respectively. Evaluation of the flammability of the composites was performed using a cone calorimeter. The results of thermal analysis and fire tests show that it is important to add flame retardants to improve fire resistance. The samples elaborated with the coupling agent and flame retardant have better mechanical properties and fire resistance. The feasibility of the composites based on cork and PP and HDPE wastes opens new ways of valorizing plastic waste and virgin cork. The formulation of composite materials must be optimized.Keywords: composite materials, cork and polymer wastes, flammability, modificated cork
Procedia PDF Downloads 891635 Multifunctional Coating of Nylon Using Nano-Si, Nano-Ti and SiO2-TiO2 Nancomposite :Properties of Colorimetric and Flammability
Authors: E. Fereydouni, Laleh Maleknia , M. E. Olya
Abstract:
The present research, nylon fabric dyed by pressure method with nano-Si, nano-Ti particles and SiO2-TiO2 nancomposite. The influence of the amount of Si, Ti and SiO2-TiO2 on the performance of nylon fabric was investigated by the use of Fourier transform infrared spectrophotometer (FTIR), horizontal flammability apparatus (HFA), scanning electron microscope (SEM), electron dispersive X-ray spectroscope (EDX), water contact angle tester (WCA) and CIE LAB colorimetric system. The possible interactions between particles and nylon fiber were elucidated by the FTIR spectroscopy. Results indicated that the stabilized nanoparticles and nanocomposite enhances flame retardancy of nylon fabrics. Also, the prominet features of nanoparticles and nanocomposite treatment can note increase of adsorption and fixation of dye.Keywords: nano-Si, nano- Ti, SiO2-TiO2 nancomposite, nylon fabric, flame retardant nylon
Procedia PDF Downloads 3621634 Optimum Design of Tall Tube-Type Building: An Approach to Structural Height Premium
Authors: Ali Kheyroddin, Niloufar Mashhadiali, Frazaneh Kheyroddin
Abstract:
In last decades, tubular systems employed for tall buildings were efficient structural systems. However, increasing the height of a building leads to an increase in structural material corresponding to the loads imposed by lateral loads. Based on this approach, new structural systems are emerging to provide strength and stiffness with the minimum premium for height. In this research, selected tube-type structural systems such as framed tubes, braced tubes, diagrids and hexagrid systems were applied as a single tube, tubular structures combined with braced core and outrigger trusses on a set of 48, 72, and 96-story, respectively, to improve integrated structural systems. This paper investigated structural material consumption by model structures focusing on the premium for height. Compared analytical results indicated that as the height of the building increased, combination of the structural systems caused the framed tube, hexagrid and braced tube system to pay fewer premiums to material tonnage while in diagrid system, combining the structural system reduced insignificantly the steel material consumption.Keywords: braced tube, diagrid, framed tube, hexagrid
Procedia PDF Downloads 2891633 Experimental Study on Floating Breakwater Anchored by Piles
Authors: Yessi Nirwana Kurniadi, Nira Yunita Permata
Abstract:
Coastline is vulnerable to coastal erosion which damage infrastructure and buildings. Floating breakwaters are applied in order to minimize material cost but still can reduce wave height. In this paper, we investigated floating breakwater anchored by piles based on experimental study in the laboratory with model scale 1:8. Two type of floating model were tested with several combination wave height, wave period and surface water elevation to determined transmission coefficient. This experimental study proved that floating breakwater with piles can prevent wave height up to 27 cm. The physical model shows that ratio of depth to wave length is less than 0.6 and ratio of model width to wave length is less than 0.3. It is confirmed that if those ratio are less than those value, the transmission coefficient is 0.5. The result also showed that the first type model of floating breakwater can reduce wave height by 60.4 % while the second one can reduce up to 55.56 %.Keywords: floating breakwater, experimental study, pile, transimission coefficient
Procedia PDF Downloads 5321632 Combustion Characteristics of Ionized Fuels for Battery System Safety
Authors: Hyeuk Ju Ko, Eui Ju Lee
Abstract:
Many electronic devices are powered by various rechargeable batteries such as lithium-ion today, but occasionally the batteries undergo thermal runaway and cause fire, explosion, and other hazards. If a battery fire should occur in an electronic device of vehicle and aircraft cabin, it is important to quickly extinguish the fire and cool the batteries to minimize safety risks. Attempts to minimize these risks have been carried out by many researchers but the number of study on the successful extinguishment is limited. Because most rechargeable batteries are operated on the ion state with electron during charge and discharge of electricity, and the reaction of this electrolyte has a big difference with normal combustion. Here, we focused on the effect of ions on reaction stability and pollutant emissions during combustion process. The other importance for understanding ionized fuel combustion could be found in high efficient and environment-friendly combustion technologies, which are used to be operated an extreme condition and hence results in unintended flame instability such as extinction and oscillation. The use of electromagnetic energy and non-equilibrium plasma is one of the way to solve the problems, but the application has been still limited because of lack of excited ion effects in the combustion process. Therefore, the understanding of ion role during combustion might be promised to the energy safety society including the battery safety. In this study, the effects of an ionized fuel on the flame stability and pollutant emissions were experimentally investigated in the hydrocarbon jet diffusion flames. The burner used in this experiment consisted of 7.5 mm diameter tube for fuel and the gaseous fuels were ionized with the ionizer (SUNJE, SPN-11). Methane (99.9% purity) and propane (commercial grade) were used as a fuel and open ambient air was used as an oxidizer. As the performance of ionizer used in the experiment was evaluated at first, ion densities of both propane and methane increased linearly with volume flow rate but the ion density of propane is slightly higher than that of methane. The results show that the overall flame stability and shape such as flame length has no significant difference even in the higher ion concentration. However, the fuel ionization affects to the pollutant emissions such as NOx and soot. NOx and CO emissions measured in post flame region decreased with increasing fuel ionization, especially at high fuel velocity, i.e. high ion density. TGA analysis and morphology of soot by TEM indicates that the fuel ionization makes soot to be matured.Keywords: battery fires, ionization, jet flames, stability, NOx and soot
Procedia PDF Downloads 1861631 The Effect of Brassica rapa Leaf Extracts on the Growth of Upland Ipomoea aquatica
Authors: Keziah Bazar
Abstract:
The effect of Brassica rapa leaf extracts on the growth of upland Ipomoea aquatica was investigated. One hundred grams Brassica rapa leaf were blended using a heavy duty blender. These were diluted with water to have final concentrations of 75% (T1), 50% (T2) and 25% (T3) that served as treatments of the study. Pure water (T0) that served as control was also included Upland Ipomoea aquatic were grown in pots. A 3-4 in water level was maintained during the whole duration of the study. Plant height, leaf area, fruit size and shoot height, were taken after 6 months. Results showed that plant height and shoot height was highest in T1 while T0 was the lowest. On the other hand, T2 had the highest leaf area and fruit size. The study suggests that T1 and T2 can be a good fertilizer for Ipomoea aquatica.Keywords: Ipomoea aquatica, leaf extracts, growth, Brassica rapa
Procedia PDF Downloads 2261630 Monitoring Large-Coverage Forest Canopy Height by Integrating LiDAR and Sentinel-2 Images
Authors: Xiaobo Liu, Rakesh Mishra, Yun Zhang
Abstract:
Continuous monitoring of forest canopy height with large coverage is essential for obtaining forest carbon stocks and emissions, quantifying biomass estimation, analyzing vegetation coverage, and determining biodiversity. LiDAR can be used to collect accurate woody vegetation structure such as canopy height. However, LiDAR’s coverage is usually limited because of its high cost and limited maneuverability, which constrains its use for dynamic and large area forest canopy monitoring. On the other hand, optical satellite images, like Sentinel-2, have the ability to cover large forest areas with a high repeat rate, but they do not have height information. Hence, exploring the solution of integrating LiDAR data and Sentinel-2 images to enlarge the coverage of forest canopy height prediction and increase the prediction repeat rate has been an active research topic in the environmental remote sensing community. In this study, we explore the potential of training a Random Forest Regression (RFR) model and a Convolutional Neural Network (CNN) model, respectively, to develop two predictive models for predicting and validating the forest canopy height of the Acadia Forest in New Brunswick, Canada, with a 10m ground sampling distance (GSD), for the year 2018 and 2021. Two 10m airborne LiDAR-derived canopy height models, one for 2018 and one for 2021, are used as ground truth to train and validate the RFR and CNN predictive models. To evaluate the prediction performance of the trained RFR and CNN models, two new predicted canopy height maps (CHMs), one for 2018 and one for 2021, are generated using the trained RFR and CNN models and 10m Sentinel-2 images of 2018 and 2021, respectively. The two 10m predicted CHMs from Sentinel-2 images are then compared with the two 10m airborne LiDAR-derived canopy height models for accuracy assessment. The validation results show that the mean absolute error (MAE) for year 2018 of the RFR model is 2.93m, CNN model is 1.71m; while the MAE for year 2021 of the RFR model is 3.35m, and the CNN model is 3.78m. These demonstrate the feasibility of using the RFR and CNN models developed in this research for predicting large-coverage forest canopy height at 10m spatial resolution and a high revisit rate.Keywords: remote sensing, forest canopy height, LiDAR, Sentinel-2, artificial intelligence, random forest regression, convolutional neural network
Procedia PDF Downloads 951629 Effect of Different Factors on Temperature Profile and Performance of an Air Bubbling Fluidized Bed Gasifier for Rice Husk Gasification
Authors: Dharminder Singh, Sanjeev Yadav, Pravakar Mohanty
Abstract:
In this work, study of temperature profile in a pilot scale air bubbling fluidized bed (ABFB) gasifier for rice husk gasification was carried out. Effects of different factors such as multiple cyclones, gas cooling system, ventilate gas pipe length, and catalyst on temperature profile was examined. ABFB gasifier used in this study had two sections, one is bed section and the other is freeboard section. River sand was used as bed material with air as gasification agent, and conventional charcoal as start-up heating medium in this gasifier. Temperature of different point in both sections of ABFB gasifier was recorded at different ER value and ER value was changed by changing the feed rate of biomass (rice husk) and by keeping the air flow rate constant for long durational of gasifier operation. ABFB with double cyclone with gas coolant system and with short length ventilate gas pipe was found out to be optimal gasifier design to give temperature profile required for high gasification performance in long duration operation. This optimal design was tested with different ER values and it was found that ER of 0.33 was most favourable for long duration operation (8 hr continuous operation), giving highest carbon conversion efficiency. At optimal ER of 0.33, bed temperature was found to be stable at 700 °C, above bed temperature was found to be at 628.63 °C, bottom of freeboard temperature was found to be at 600 °C, top of freeboard temperature was found to be at 517.5 °C, gas temperature was found to be at 195 °C, and flame temperature was found to be 676 °C. Temperature at all the points showed fluctuations of 10 – 20 °C. Effect of catalyst i.e. dolomite (20% with sand bed) was also examined on temperature profile, and it was found that at optimal ER of 0.33, the bed temperature got increased to 795 °C, above bed temperature got decreased to 523 °C, bottom of freeboard temperature got decreased to 548 °C, top of freeboard got decreased to 475 °C, gas temperature got decreased to 220 °C, and flame temperature got increased to 703 °C. Increase in bed temperature leads to higher flame temperature due to presence of more hydrocarbons generated from more tar cracking at higher temperature. It was also found that the use of dolomite with sand bed eliminated the agglomeration in the reactor at such high bed temperature (795 °C).Keywords: air bubbling fluidized bed gasifier, bed temperature, charcoal heating, dolomite, flame temperature, rice husk
Procedia PDF Downloads 2791628 A Mathematical Model Approach Regarding the Children’s Height Development with Fractional Calculus
Authors: Nisa Özge Önal, Kamil Karaçuha, Göksu Hazar Erdinç, Banu Bahar Karaçuha, Ertuğrul Karaçuha
Abstract:
The study aims to use a mathematical approach with the fractional calculus which is developed to have the ability to continuously analyze the factors related to the children’s height development. Until now, tracking the development of the child is getting more important and meaningful. Knowing and determining the factors related to the physical development of the child any desired time would provide better, reliable and accurate results for childcare. In this frame, 7 groups for height percentile curve (3th, 10th, 25th, 50th, 75th, 90th, and 97th) of Turkey are used. By using discrete height data of 0-18 years old children and the least squares method, a continuous curve is developed valid for any time interval. By doing so, in any desired instant, it is possible to find the percentage and location of the child in Percentage Chart. Here, with the help of the fractional calculus theory, a mathematical model is developed. The outcomes of the proposed approach are quite promising compared to the linear and the polynomial method. The approach also yields to predict the expected values of children in the sense of height.Keywords: children growth percentile, children physical development, fractional calculus, linear and polynomial model
Procedia PDF Downloads 1491627 A Proposal for a Combustion Model Considering the Lewis Number and Its Evaluation
Authors: Fujio Akagi, Hiroaki Ito, Shin-Ichi Inage
Abstract:
The aim of this study is to develop a combustion model that can be applied uniformly to laminar and turbulent premixed flames while considering the effect of the Lewis number (Le). The model considers the effect of Le on the transport equations of the reaction progress, which varies with the chemical species and temperature. The distribution of the reaction progress variable is approximated by a hyperbolic tangent function, while the other distribution of the reaction progress variable is estimated using the approximated distribution and transport equation of the reaction progress variable considering the Le. The validity of the model was evaluated under the conditions of propane with Le > 1 and methane with Le = 1 (equivalence ratios of 0.5 and 1). The estimated results were found to be in good agreement with those of previous studies under all conditions. A method of introducing a turbulence model into this model is also described. It was confirmed that conventional turbulence models can be expressed as an approximate theory of this model in a unified manner.Keywords: combustion model, laminar flame, Lewis number, turbulent flame
Procedia PDF Downloads 1241626 Effect of Change in Angle of Slope and Height of an Embankment on Safety Factor during Rapid Drawdown
Authors: Seyed Abolhassan Naeini, Azam Kouhpeyma
Abstract:
Reduction of water level at which a slope is submerged with it is called drawdown. Draw down can took place rapidly or slowly and in both situations, it can affect slope stability. Using coupled analysis (seepage and stability analysis) causes more accurate results. In this study, the stability of homogeneous embankment is investigated numerically. Slope safety factor changes due to changes in three factors of height, slope and drawdown rate have been investigated and compared. It was found that with increasing height and slope, the safety factor decreases, and with increasing the discharge rate, the safety factor increases.Keywords: drawdown, slope stability, coupled seepage and stability analysis
Procedia PDF Downloads 1231625 Historical Tree Height Growth Associated with Climate Change in Western North America
Authors: Yassine Messaoud, Gordon Nigh, Faouzi Messaoud, Han Chen
Abstract:
The effect of climate change on tree growth in boreal and temperate forests has received increased interest in the context of global warming. However, most studies were conducted in small areas and with a limited number of tree species. Here, we examined the height growth responses of seventeen tree species to climate change in Western North America. 37009 stands from forest inventory databases in Canada and USA with varying establishment date were selected. Dominant and co-dominant trees from each stand were sampled to determine top tree height at 50 years breast height age. Height was related to historical mean annual and summer temperatures, annual and summer Palmer Drought Severity Index, tree establishment date, slope, aspect, soil fertility as determined by the rate of carbon organic matter decomposition (carbon/nitrogen), geographic locations (latitude, longitude, and elevation), species range (coastal, interior, and both ranges), shade tolerance and leaf form (needle leaves, deciduous needle leaves, and broadleaves). Climate change had mostly a positive effect on tree height growth. The results explained 62.4% of the height growth variance. Since 1880, height growth increase was greater for coastal, high shade tolerant, and broadleaf species. Height growth increased more on steep slopes and high soil fertility soils. Greater height growth was mostly observed at the leading range and upward. Conversely, some species showed the opposite pattern probably due to the increase of drought (coastal Mediterranean area), precipitation and cloudiness (Alaska and British Columbia) and peculiarity (higher latitudes-lower elevations and vice versa) of western North America topography. This study highlights the role of the species ecological amplitude and traits, and geographic locations as the main factors determining the growth response and its magnitude to the recent global climate change.Keywords: Height growth, global climate change, species range, species characteristics, species ecological amplitude, geographic locations, western North America
Procedia PDF Downloads 1871624 Breakfast Eating Pattern Associated with Nutritional Status of Urban Primary Schoolchildren in Iran and India
Authors: Sahar Hooshmand, Mohammad Reza Bagherzadeh Anasari
Abstract:
The aim of this study was to examine the effect of breakfast eating pattern (between frequencies of breakfast consumers and non-consumers) on nutritional status (weight for age, height for age and weight for height). A total 4570 primary school children aged 6-9 years old constituted the sample. From these, 2234 Iranian school children (1218 girls and 1016 boys) and 2336 Indian school children (1096 girls and 1240 boys) were included in a cross sectional study. Breakfast frequency consumption was recorded through an interview with mothers of children. Height and wight of children were taken and body mass index were calculated. The World Health Organization’s (WHO) AnthroPlus software used to assess the nutritional status of the children. Weight for age z-scores were slightly associated with frequency of consuming breakfast in both India (χ2 = 60.083, p=0.000) and Iran (χ2 = 18.267, p=0.032). A significant association was seen between frequency of child‘s breakfast intake and the height z-scores in both India (χ2 = 31.334, p=0.000) and Iran (χ2 = 19.443, p=0.022). Most of children with normal height had breakfast daily in both countries. A significant association was seen with children‘s BMI z-scores of Indian children (χ2 = 31.247, p=0.000) but it was not significant in Iran (χ2 = 10.791, p=0.095). The present study confirms the observations of other studies that showed more frequency in having breakfast is associated with better nutritional status.Keywords: breakfast, schoolchildren, nutritional status, global food security
Procedia PDF Downloads 5181623 Zinc Borate Synthesis Using Hydrozincite and Boric Acid with Ultrasonic Method
Authors: D. S. Vardar, A. S. Kipcak, F. T. Senberber, E. M. Derun, S. Piskin, N. Tugrul
Abstract:
Zinc borate is an important inorganic hydrate borate material, which can be use as a flame retardant agent and corrosion resistance material. This compound can loss its structural water content at higher than 290°C. Due to thermal stability; Zinc Borate can be used as flame reterdant at high temperature process of plastic and gum. In this study, the ultrasonic reaction of zinc borates were studied using hydrozincite (Zn5(CO3)2•(OH)6) and boric acid (H3BO3) raw materials. Before the synthesis raw materials were characterized by X-Ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FT-IR). Ultrasonic method is a new application on the zinc borate synthesis. The synthesis parameters were set to 90°C reaction temperature and 55 minutes of reaction time, with 1:1, 1:2, 1:3, 1:4 and 1:5 molar ratio of starting materials (Zn5(CO3)2•(OH)6 : H3BO3). After the zinc borate synthesis, the products analyzed by XRD and FT-IR. As a result, optimum molar ratio of 1:5 (Zn5(CO3)2•(OH)6:H3BO3) is determined for the synthesis of zinc borates with ultrasonic method.Keywords: borate, ultrasonic method, zinc borate, zinc borate synthesis
Procedia PDF Downloads 4081622 Vertical Distribution of the Monthly Average Values of the Air Temperature above the Territory of Kakheti in 2012-2017
Authors: Khatia Tavidashvili, Nino Jamrishvili, Valerian Omsarashvili
Abstract:
Studies of the vertical distribution of the air temperature in the atmosphere have great value for the solution of different problems of meteorology and climatology (meteorological forecast of showers, thunderstorms, and hail, weather modification, estimation of climate change, etc.). From the end of May 2015 in Kakheti after 25-year interruption, the work of anti-hail service was restored. Therefore, in connection with climate change, the need for the detailed study of the contemporary regime of the vertical distribution of the air temperature above this territory arose. In particular, the indicated information is necessary for the optimum selection of rocket means with the works on the weather modification (fight with the hail, the regulation of atmospheric precipitations, etc.). Construction of the detailed maps of the potential damage distribution of agricultural crops from the hail, etc. taking into account the dimensions of hailstones in the clouds according to the data of radar measurements and height of locality are the most important factors. For now, in Georgia, there is no aerological probing of atmosphere. To solve given problem we processed information about air temperature profiles above Telavi, at 27 km above earth's surface. Information was gathered during four observation time (4, 10, 16, 22 hours with local time. After research, we found vertical distribution of the average monthly values of the air temperature above Kakheti in 2012-2017 from January to December. Research was conducted from 0.543 to 27 km above sea level during four periods of research. In particular, it is obtained: -during January the monthly average air temperature linearly diminishes with 2.6 °C on the earth's surface to -57.1 °C at the height of 10 km, then little it changes up to the height of 26 km; the gradient of the air temperature in the layer of the atmosphere from 0.543 to 8 km - 6.3 °C/km; height of zero isotherm - is 1.33 km. -during July the air temperature linearly diminishes with 23.5 °C to -64.7 °C at the height of 17 km, then it grows to -47.5 °C at the height of 27 km; the gradient of the air temperature of - 6.1 °C/km; height of zero isotherm - is 4.39 km, which on 0.16 km is higher than in the sixties of past century.Keywords: hail, Kakheti, meteorology, vertical distribution of the air temperature
Procedia PDF Downloads 1721621 Atmospheric Pressure Microwave Plasma System and Its Applications
Authors: Waqas A. Toor, Anis U. Baig, Nuaman Shafqat, Raafia Irfan, Muhammad Ashraf
Abstract:
A 2.45GHz microwave plasma system and its few applications have been developed. Argon and helium plasma is produced by metallic nozzle and also in a quartz tube at atmospheric pressure, using WR-340 waveguide and its tapered version. The waveguide applicator is also simulated in HFSS and field patterns are analyzed for maximum power absorption in the load. The system is tuned to operate at less than 10% reflected power. Various experimental techniques are used to initiate and sustain the plasma at atmospheric pressure. Plasma of atmospheric air is also produced without using any other shielding gas. The plasma flame is also characterized by its spectrum. Spectral analyses of plasma flame can be used for online analysis of combustion gases produced in industry. The applications of the system include glass and quartz processing, vitrification, emission spectroscopy, plasma coating. Low pressure plasma applications of the system include intense UV light for water purification and ozone generation.Keywords: HFSS high frequency structure simulator, Microwave plasma, UV ultraviolet, WR rectangular waveguide
Procedia PDF Downloads 2721620 Localization of Pyrolysis and Burning of Ground Forest Fires
Authors: Pavel A. Strizhak, Geniy V. Kuznetsov, Ivan S. Voytkov, Dmitri V. Antonov
Abstract:
This paper presents the results of experiments carried out at a specialized test site for establishing macroscopic patterns of heat and mass transfer processes at localizing model combustion sources of ground forest fires with the use of barrier lines in the form of a wetted lay of material in front of the zone of flame burning and thermal decomposition. The experiments were performed using needles, leaves, twigs, and mixtures thereof. The dimensions of the model combustion source and the ranges of heat release correspond well to the real conditions of ground forest fires. The main attention is paid to the complex analysis of the effect of dispersion of water aerosol (concentration and size of droplets) used to form the barrier line. It is shown that effective conditions for localization and subsequent suppression of flame combustion and thermal decomposition of forest fuel can be achieved by creating a group of barrier lines with different wetting width and depth of the material. Relative indicators of the effectiveness of one and combined barrier lines were established, taking into account all the main characteristics of the processes of suppressing burning and thermal decomposition of forest combustible materials. We performed the prediction of the necessary and sufficient parameters of barrier lines (water volume, width, and depth of the wetted lay of the material, specific irrigation density) for combustion sources with different dimensions, corresponding to the real fire extinguishing practice.Keywords: forest fire, barrier water lines, pyrolysis front, flame front
Procedia PDF Downloads 1361619 Large-Scale Experimental and Numerical Studies on the Temperature Response of Main Cables and Suspenders in Bridge Fires
Authors: Shaokun Ge, Bart Merci, Fubao Zhou, Gao Liu, Ya Ni
Abstract:
This study investigates the thermal response of main cables and suspenders in suspension bridges subjected to vehicle fires, integrating large-scale gasoline pool fire experiments with numerical simulations. Focusing on a suspension bridge in China, the research examines the impact of wind speed, pool size, and lane position on flame dynamics and temperature distribution along the cables. The results indicate that higher wind speeds and larger pool sizes markedly increase the mass burning rate, causing flame deflection and non-uniform temperature distribution along the cables. Under a wind speed of 1.56 m/s, maximum temperatures reached approximately 960 ℃ near the base in emergency lane fires and 909 ℃ at 1.6 m height for slow lane fires, underscoring the heightened thermal risk from emergency lane fires. The study recommends a zoning strategy for cable fire protection, suggesting a 0-12.8 m protection zone with a target temperature of 1000 ℃ and a 12.8-20.8 m zone with a target temperature of 700 ℃, both with a 90-minute fire resistance. This approach, based on precise temperature distribution data from experimental and simulation results, provides a vital reference for the fire protection design of suspension bridge cables. Understanding cable temperature response during vehicle fires is crucial for developing fire protection systems, as it dictates necessary structural protection, fire resistance duration, and maximum temperatures for mitigation. Challenges of controlling environmental wind in large-scale fire tests are also addressed, along with a call for further research on fire behavior mechanisms and structural temperature response in cable-supported bridges under varying wind conditions. Conclusively, the proposed zoning strategy enhances the theoretical understanding of near-field temperature response in bridge fires, contributing significantly to the field by supporting the design of passive fire protection systems for bridge cables, safeguarding their integrity under extreme fire conditions.Keywords: bridge fire, temperature response, large-scale experiment, numerical simulations, fire protection
Procedia PDF Downloads 181618 Effect of Fuel Lean Reburning Process on NOx Reduction and CO Emission
Authors: Changyeop Lee, Sewon Kim
Abstract:
Reburning is a useful technology in reducing nitric oxide through injection of a secondary hydrocarbon fuel. In this paper, an experimental study has been conducted to evaluate the effect of fuel lean reburning on NOx/CO reduction in LNG flame. Experiments were performed in flames stabilized by a co-flow swirl burner, which was mounted at the bottom of the furnace. Tests were conducted using LNG gas as the reburn fuel as well as the main fuel. The effects of reburn fuel fraction and injection manner of the reburn fuel were studied when the fuel lean reburning system was applied. The paper reports data on flue gas emissions and temperature distribution in the furnace for a wide range of experimental conditions. At steady state, temperature distribution and emission formation in the furnace have been measured and compared. This paper makes clear that in order to decrease both NOx and CO concentrations in the exhaust when the pulsated fuel lean reburning system was adapted, it is important that the control of some factors such as frequency and duty ratio. Also it shows the fuel lean reburning is also effective method to reduce NOx as much as reburning.Keywords: fuel lean reburn, NOx, CO, LNG flame
Procedia PDF Downloads 4261617 Significance of Bike-Frame Geometric Factors for Cycling Efficiency and Muscle Activation
Authors: Luen Chow Chan
Abstract:
With the advocacy of green transportation and green traveling, cycling has become increasingly popular nowadays. Physiology and bike design are key factors for the influence of cycling efficiency. Therefore, this study aimed to investigate the significance of bike-frame geometric factors on cycling efficiency and muscle activation for different body sizes of non-professional Asian male cyclists. Participants who represented various body sizes, as measured by leg and back lengths, carried out cycling tests using a tailor-assembled road bike with different ergonomic design configurations including seat-height adjustments (i.e., 96%, 100%, and 104% of trochanteric height) and bike frame sizes (i.e., small and medium frames) for an assessable distance of 1 km. A specific power meter and self-developed adaptable surface electromyography (sEMG) were used to measure average pedaling power and cadence generated and muscle activation, respectively. The results showed that changing the seat height was far more significant than the body and bike frame sizes. The sEMG data evidently provided a better understanding of muscle activation as a function of different seat heights. Therefore, the interpretation of this study is that the major bike ergonomic design factor dominating the cycling efficiency of Asian participants with different body sizes was the seat height.Keywords: bike frame sizes, cadence rate, pedaling power, seat height
Procedia PDF Downloads 1201616 Seismic Evaluation of Reinforced Concrete Buildings in Myanmar, Based on Microtremor Measurement
Authors: Khaing Su Su Than, Hibino Yo
Abstract:
Seismic evaluation is needed upon the buildings in Myanmar. Microtremor measurement was conducted in the main cities, Mandalay and Yangon. In order to evaluate the seismic properties of buildings currently under construction, seismic information was gathered for six buildings in Yangon city and four buildings in Mandalay city. The investigated buildings vary from 12m-80 m in height, and mostly public residence structures. The predominant period obtained from frequency results of the investigated buildings were given by horizontal to vertical spectral ratio (HVSR) for each building. The fundamental period results have been calculated in the form of Fourier amplitude spectra of translation along with the main structure. Based on that, the height (H)-period(T) relationship was observed as T=0.012H-0.017H in the buildings of Yangon and, observed the relationship as T=0.014H-0.019H in the buildings of Mandalay. The results showed that the relationship between height and natural period was slightly under the relationship T=0.02H that is used for Japanese reinforced concrete buildings, which indicated that the results depend on the properties and characteristics of materials used.Keywords: HVSR, height-period relationship, microtremor, Myanmar earthquake, reinforced concrete structures
Procedia PDF Downloads 1581615 Mathematical Modeling Pressure Losses of Trapezoidal Labyrinth Channel and Bi-Objective Optimization of the Design Parameters
Authors: Nina Philipova
Abstract:
The influence of the geometric parameters of trapezoidal labyrinth channel on the pressure losses along the labyrinth length is investigated in this work. The impact of the dentate height is studied at fixed values of the dentate angle and the dentate spacing. The objective of the work presented in this paper is to derive a mathematical model of the pressure losses along the labyrinth length depending on the dentate height. The numerical simulations of the water flow movement are performed by using Commercial codes ANSYS GAMBIT and FLUENT. Dripper inlet pressure is set up to be 1 bar. As a result, the mathematical model of the pressure losses is determined as a second-order polynomial by means Commercial code STATISTIKA. Bi-objective optimization is performed by using the mean algebraic function of utility. The optimum value of the dentate height is defined at fixed values of the dentate angle and the dentate spacing. The derived model of the pressure losses and the optimum value of the dentate height are used as a basis for a more successful emitter design.Keywords: drip irrigation, labyrinth channel hydrodynamics, numerical simulations, Reynolds stress model
Procedia PDF Downloads 1551614 A Multilayer Perceptron Neural Network Model Optimized by Genetic Algorithm for Significant Wave Height Prediction
Authors: Luis C. Parra
Abstract:
The significant wave height prediction is an issue of great interest in the field of coastal activities because of the non-linear behavior of the wave height and its complexity of prediction. This study aims to present a machine learning model to forecast the significant wave height of the oceanographic wave measuring buoys anchored at Mooloolaba of the Queensland Government Data. Modeling was performed by a multilayer perceptron neural network-genetic algorithm (GA-MLP), considering Relu(x) as the activation function of the MLPNN. The GA is in charge of optimized the MLPNN hyperparameters (learning rate, hidden layers, neurons, and activation functions) and wrapper feature selection for the window width size. Results are assessed using Mean Square Error (MSE), Root Mean Square Error (RMSE), and Mean Absolute Error (MAE). The GAMLPNN algorithm was performed with a population size of thirty individuals for eight generations for the prediction optimization of 5 steps forward, obtaining a performance evaluation of 0.00104 MSE, 0.03222 RMSE, 0.02338 MAE, and 0.71163% of MAPE. The results of the analysis suggest that the MLPNNGA model is effective in predicting significant wave height in a one-step forecast with distant time windows, presenting 0.00014 MSE, 0.01180 RMSE, 0.00912 MAE, and 0.52500% of MAPE with 0.99940 of correlation factor. The GA-MLP algorithm was compared with the ARIMA forecasting model, presenting better performance criteria in all performance criteria, validating the potential of this algorithm.Keywords: significant wave height, machine learning optimization, multilayer perceptron neural networks, evolutionary algorithms
Procedia PDF Downloads 1081613 Hydrodynamic Characteristics of Single and Twin Offshore Rubble Mound Breakwaters under Regular and Random Waves
Authors: M. Alkhalidi, S. Neelamani, Z. Al-Zaqah
Abstract:
This paper investigates the interaction of single and twin offshore rubble mound breakwaters with regular and random water waves through physical modeling to assess their reflection, transmission and energy dissipation characteristics. Various combinations of wave heights and wave periods were utilized in a series of experiments, along with three different water depths. The single and twin permeable breakwater models were both constructed with one layer of rubbles. Both models had the same total volume; however, the single breakwater was of trapezoidal type while the twin breakwaters were of triangular type. Physical modeling experiments were carried out in the wave flume of the coastal engineering laboratory of Kuwait Institute for Scientific Research (KISR). Measurements of the six wave probes which were fixed in the two-dimensional wave flume were collected and used to determine the generated incident wave heights, as well as the reflected and transmitted wave heights resulting from the wave-breakwater interaction. The possible factors affecting the wave attenuation efficiency of the breakwater models are the relative water depth (d/L), wave steepness (H/L), relative wave height ((h-d)/Hi), relative height of the breakwater (h/d), and relative clear spacing between the twin breakwaters (S/h). The results indicated that the single and double breakwaters show different responds to the change in their relative height as well as the relative wave height which demonstrates that the effect of the relative water depth on wave reflection, transmission, and energy dissipation is highly influenced by the change in the relative breakwater height, the relative wave height and the relative breakwater spacing. In general, within the range of the relative water depth tested in this study, and under both regular and random waves, it is found that the single breakwater allows for lower wave transmission and shows higher energy dissipation effect than both of the tested twin breakwaters, and hence has the best overall performance.Keywords: random waves, regular waves, relative water depth, relative wave height, single breakwater, twin breakwater, wave steepness
Procedia PDF Downloads 3281612 Some Agricultural Characteristics of Cephalaria syriaca Lines Selected from a Population and Developed as Winter Type
Authors: Rahim Ada, Ahmet Tamkoç
Abstract:
The research was conducted in the “Randomized Complete Block Design” with three replications in research field of Agricultural Faculty, Selcuk University, Konya, Turkey. In study, a total of 9 Cephalaria syriaca promised lines (9, 37, 38, 42, Beyaz 4, 5 Beyaz, 13 Beyaz, 27 Beyaz, Başaklar 2), which were taken from Sivas population, and 1 population were evaluated in two growing seasons (2012-13 and 2013-14). According to the results, the highest plant height, first branch height, first head height, number of branches per plant, number of head per plant, head diameter,1000 seed weight, seed yield, oil content and oil yield were obtained respectively from Başaklar 2 (68.37 cm), Başaklar 2 (37.80 cm), Başaklar 2 (54.83 cm), 37 (7.73 number/plant), 42 (18.03 number/plant), 9 (10.30 mm), Başaklar 2 (19.33 g), 27 Beyaz (1254.2 kg ha-1), Başaklar 2 (28.77%), and 27 Beyaz (357.9 kg ha-1).Keywords: Cephalaria syriaca, yield, oil, population
Procedia PDF Downloads 4741611 Studying the Evolution of Soot and Precursors in Turbulent Flames Using Laser Diagnostics
Authors: Muhammad A. Ashraf, Scott Steinmetz, Matthew J. Dunn, Assaad R. Masri
Abstract:
This study focuses on the evolution of soot and soot precursors in three different piloted diffusion turbulent flames. The fuel composition is as follow flame A (ethylene/nitrogen, 2:3 by volume), flame B (ethylene/air, 2:3 by volume), and flame C (pure methane). These flames are stabilized using a 4mm diameter jet surrounded by a pilot annulus with an outer diameter of 15 mm. The pilot issues combustion products from stoichiometric premixed flames of hydrogen, acetylene, and air. In all cases, the jet Reynolds number is 10,000, and air flows in the coflow stream at a velocity of 5 m/s. Time-resolved laser-induced fluorescence (LIF) is collected at two wavelength bands in the visible (445 nm) and UV regions (266 nm) along with laser-induced incandescence (LII). The combined results are employed to study concentration, size, and growth of soot and precursors. A set of four fast photo-multiplier tubes are used to record emission data in temporal domain. A 266nm laser pulse preferentially excites smaller nanoparticles which emit a fluorescence spectrum which is analysed to track the presence, evolution, and destruction of nanoparticles. A 1064nm laser pulse excites sufficiently large soot particles, and the resulting incandescence is collected at 1064nm. At downstream and outer radial locations, intermittency becomes a relevant factor. Therefore, data collected in turbulent flames is conditioned to account for intermittency so that the resulting mean profiles for scattering, fluorescence, and incandescence are shown for the events that contain traces of soot. It is found that in the upstream regions of the ethylene-air and ethylene-nitrogen flames, the presence of soot precursors is rather similar. However, further downstream, soot concentration grows larger in the ethylene-air flames.Keywords: laser induced incandescence, laser induced fluorescence, soot, nanoparticles
Procedia PDF Downloads 1481610 Effects of Flame Retardant Nano Bio-Filler on the Fire Behaviour of Thin Film Intumescent Coatings
Authors: Ming Chian Yew, Ming Kun Yew, Lip Huat Saw, Tan Ching Ng, Rajkumar Durairaj, Jing Han Beh
Abstract:
This paper analyzes the fire protection performance, char formation and heat release characteristics of the thin film intumescent coatings that incorporate waste eggshell (ES) as a nano bio-filler. In this study, the Bunsen burner and the fire propagation (BS 476: Part 6) tests of coatings were measured. Experiments on the samples were also tested to evaluate their fire behavior using a cone calorimeter according to ISO 5660-1 specifications. On exposure, the samples B, C and D had been certified to be Class 0 due to the fire propagation indexes of the samples were less than 12. Samples B and D showed a significant reduction in total heat rate (B=11.6 MJ/m² and D=12.0 MJ/m²) and uniform char structures with the addition of 3.30 wt.% and 2.75 wt.% ES nano bio-filler, respectively. As a result, ES nano bio-filler composition good to slow down the fire expanding and demonstrate better fire protection due to its positive synergistic effect with flame retardant ingredients on physical and chemical reactions in fire protection.Keywords: cone calorimeter, eggshell, fire protection, heat release rate, intumescent coating
Procedia PDF Downloads 2721609 Changes in Some Morphological Characters of Dill Under Cadmium Stress
Authors: A. M. Daneshian Moghaddam, A. H. Hosseinzadeh, A. Bandehagh
Abstract:
To investigate the effect of cadmium heavy metal stress on five ecotype of dill, this experiment was conducted in the greenhouse of Tabriz University and Shabestar Islamic Azad University’s laboratories with tree replications. After growing the plants, cadmium treatments (concentration 0,300, 600 µmol) were applied. The essential oil of the samples was measured by hydro distillation and using a Clevenger apparatus. Variables used in this study include: wet and dry roots and aerial part of plant, plant height, stem diameter, and root length. The results showed that different concentrations of heavy metal has statistical difference (p < 0.01) on the fresh weight, dry weight, plant height and root length but hadn’t significant difference on essential oil percentage and root length. Dill ecotypes have statistical significant difference on essential oil percent, fresh plant weight, plant height, root length, except plant dry weight. The interactions between Cd concentration and dill ecotypes have not significant effect on all traits, except root length. Maximum fresh weight (4.98 gr) and minimum amount (3.13 gr) were obtained in control trait and 600 ppm of cd concentration, respectively. Highest amount of fresh weight (4.78 gr) was obtained in Birjand ecotype. Maximum plant dry weight (1.2 gr) was obtained at control. The highest plant height (32.54 cm) was obtained in control and with applies cadmium concentrations from zero to 300 and 600 ppm was found significantly reduced in plant height.Keywords: pollution, essential oil, ecotype, dill, heavy metals, cadmium
Procedia PDF Downloads 4281608 FlameCens: Visualization of Expressive Deviations in Music Performance
Authors: Y. Trantafyllou, C. Alexandraki
Abstract:
Music interpretation accounts to the way musicians shape their performance by deliberately deviating from composers’ intentions, which are commonly communicated via some form of music transcription, such as a music score. For transcribed and non-improvised music, music expression is manifested by introducing subtle deviations in tempo, dynamics and articulation during the evolution of performance. This paper presents an application, named FlameCens, which, given two recordings of the same piece of music, presumably performed by different musicians, allow visualising deviations in tempo and dynamics during playback. The application may also compare a certain performance to the music score of that piece (i.e. MIDI file), which may be thought of as an expression-neutral representation of that piece, hence depicting the expressive queues employed by certain performers. FlameCens uses the Dynamic Time Warping algorithm to compare two audio sequences, based on CENS (Chroma Energy distribution Normalized Statistics) audio features. Expressive deviations are illustrated in a moving flame, which is generated by an animation of particles. The length of the flame is mapped to deviations in dynamics, while the slope of the flame is mapped to tempo deviations so that faster tempo changes the slope to the right and slower tempo changes the slope to the left. Constant slope signifies no tempo deviation. The detected deviations in tempo and dynamics can be additionally recorded in a text file, which allows for offline investigation. Moreover, in the case of monophonic music, the color of particles is used to convey the pitch of the notes during performance. FlameCens has been implemented in Python and it is openly available via GitHub. The application has been experimentally validated for different music genres including classical, contemporary, jazz and popular music. These experiments revealed that FlameCens can be a valuable tool for music specialists (i.e. musicians or musicologists) to investigate the expressive performance strategies employed by different musicians, as well as for music audience to enhance their listening experience.Keywords: audio synchronization, computational music analysis, expressive music performance, information visualization
Procedia PDF Downloads 131