Search results for: facial analysis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 27977

Search results for: facial analysis

27887 Pre-Operative Tool for Facial-Post-Surgical Estimation and Detection

Authors: Ayat E. Ali, Christeen R. Aziz, Merna A. Helmy, Mohammed M. Malek, Sherif H. El-Gohary

Abstract:

Goal: Purpose of the project was to make a plastic surgery prediction by using pre-operative images for the plastic surgeries’ patients and to show this prediction on a screen to compare between the current case and the appearance after the surgery. Methods: To this aim, we implemented a software which used data from the internet for facial skin diseases, skin burns, pre-and post-images for plastic surgeries then the post- surgical prediction is done by using K-nearest neighbor (KNN). So we designed and fabricated a smart mirror divided into two parts a screen and a reflective mirror so patient's pre- and post-appearance will be showed at the same time. Results: We worked on some skin diseases like vitiligo, skin burns and wrinkles. We classified the three degrees of burns using KNN classifier with accuracy 60%. We also succeeded in segmenting the area of vitiligo. Our future work will include working on more skin diseases, classify them and give a prediction for the look after the surgery. Also we will go deeper into facial deformities and plastic surgeries like nose reshaping and face slim down. Conclusion: Our project will give a prediction relates strongly to the real look after surgery and decrease different diagnoses among doctors. Significance: The mirror may have broad societal appeal as it will make the distance between patient's satisfaction and the medical standards smaller.

Keywords: k-nearest neighbor (knn), face detection, vitiligo, bone deformity

Procedia PDF Downloads 161
27886 Optimized Deep Learning-Based Facial Emotion Recognition System

Authors: Erick C. Valverde, Wansu Lim

Abstract:

Facial emotion recognition (FER) system has been recently developed for more advanced computer vision applications. The ability to identify human emotions would enable smart healthcare facility to diagnose mental health illnesses (e.g., depression and stress) as well as better human social interactions with smart technologies. The FER system involves two steps: 1) face detection task and 2) facial emotion recognition task. It classifies the human expression in various categories such as angry, disgust, fear, happy, sad, surprise, and neutral. This system requires intensive research to address issues with human diversity, various unique human expressions, and variety of human facial features due to age differences. These issues generally affect the ability of the FER system to detect human emotions with high accuracy. Early stage of FER systems used simple supervised classification task algorithms like K-nearest neighbors (KNN) and artificial neural networks (ANN). These conventional FER systems have issues with low accuracy due to its inefficiency to extract significant features of several human emotions. To increase the accuracy of FER systems, deep learning (DL)-based methods, like convolutional neural networks (CNN), are proposed. These methods can find more complex features in the human face by means of the deeper connections within its architectures. However, the inference speed and computational costs of a DL-based FER system is often disregarded in exchange for higher accuracy results. To cope with this drawback, an optimized DL-based FER system is proposed in this study.An extreme version of Inception V3, known as Xception model, is leveraged by applying different network optimization methods. Specifically, network pruning and quantization are used to enable lower computational costs and reduce memory usage, respectively. To support low resource requirements, a 68-landmark face detector from Dlib is used in the early step of the FER system.Furthermore, a DL compiler is utilized to incorporate advanced optimization techniques to the Xception model to improve the inference speed of the FER system. In comparison to VGG-Net and ResNet50, the proposed optimized DL-based FER system experimentally demonstrates the objectives of the network optimization methods used. As a result, the proposed approach can be used to create an efficient and real-time FER system.

Keywords: deep learning, face detection, facial emotion recognition, network optimization methods

Procedia PDF Downloads 118
27885 Algorithmic Approach to Management of Complications of Permanent Facial Filler: A Saudi Experience

Authors: Luay Alsalmi

Abstract:

Background: Facial filler is the most common type of cosmetic surgery next to botox. Permanent filler is preferred nowadays due to the low cost brought about by non-recurring injection appointments. However, such fillers pose a higher risk for complications, with even greater adverse effects when the procedure is done using unknown dermal filler injections. AIM: This study aimed to establish an algorithm to categorize and manage patients that receive permanent fillers. Materials and Methods: Twelve participants were presented to the service through emergency or as outpatient from November 2015 to May 2021. Demographics such as age, sex, date of injection, time of onset, and types of complications were collected. After examination, all cases were managed based on an algorithm established. FACE-Q was used to measure overall satisfaction and psychological well-being. Results: The algorithm to diagnose and manage these patients effectively with a high satisfaction rate was established in this study. All participants were non-smoker females with no known medical comorbidities. The algorithm presented determined the treatment plan when faced with complications. Results revealed high appearance-related psychosocial distress was observed prior to surgery, while it significantly dropped after surgery. FACE-Q was able to establish evidence of satisfactory ratings among patients prior to and after surgery. Conclusion: This treatment algorithm can guide the surgeon in formulating a suitable plan with fewer complications and a high satisfaction rate.

Keywords: facial filler, FACE-Q, psycho-social stress, botox, treatment algorithm

Procedia PDF Downloads 83
27884 Preoperative Anxiety Evaluation: Comparing the Visual Facial Anxiety Scale/Yumul Faces Anxiety Scale, Numerical Verbal Rating Scale, Categorization Scale, and the State-Trait Anxiety Inventory

Authors: Roya Yumul, Chse, Ofelia Loani Elvir Lazo, David Chernobylsky, Omar Durra

Abstract:

Background: Preoperative anxiety has been shown to be caused by the fear associated with surgical and anesthetic complications; however, the current gold standard for assessing patient anxiety, the STAI, is problematic to use in the preoperative setting given the duration and concentration required to complete the 40-item extensive questionnaire. Our primary aim in the study is to investigate the correlation of the Visual Facial Anxiety Scale (VFAS) and Numerical Verbal Rating Scale (NVRS) to State-Trait Anxiety Inventory (STAI) to determine the optimal anxiety scale to use in the perioperative setting. Methods: A clinical study of patients undergoing various surgeries was conducted utilizing each of the preoperative anxiety scales. Inclusion criteria included patients undergoing elective surgeries, while exclusion criteria included patients with anesthesia contraindications, inability to comprehend instructions, impaired judgement, substance abuse history, and those pregnant or lactating. 293 patients were analyzed in terms of demographics, anxiety scale survey results, and anesthesia data via Spearman Coefficients, Chi-Squared Analysis, and Fischer’s exact test utilized for comparison analysis. Results: Statistical analysis showed that VFAS had a higher correlation to STAI than NVRS (rs=0.66, p<0.0001 vs. rs=0.64, p<0.0001). The combined VFAS-Categorization Scores showed the highest correlation with the gold standard (rs=0.72, p<0.0001). Subgroup analysis showed similar results. STAI evaluation time (247.7 ± 54.81 sec) far exceeds VFAS (7.29 ± 1.61 sec), NVRS (7.23 ± 1.60 sec), and Categorization scales (7.29 ± 1.99 sec). Patients preferred VFAS (54.4%), Categorization (11.6%), and NVRS (8.8%). Anesthesiologists preferred VFAS (63.9%), NVRS (22.1%), and Categorization Scales (14.0%). Of note, the top five causes of preoperative anxiety were determined to be waiting (56.5%), pain (42.5%), family concerns (40.5%), no information about surgery (40.1%), or anesthesia (31.6%). Conclusions: Combined VFAS-Categorization Score (VCS) demonstrates the highest correlation to the gold standard, STAI. Both VFAS and Categorization tests also take significantly less time than STAI, which is critical in the preoperative setting. Among both patients and anesthesiologists, VFAS was the most preferred scale. This forms the basis of the Yumul FACES Anxiety Scale, designed for quick quantization and assessment in the preoperative setting while maintaining a high correlation to the golden standard. Additional studies using the formulated Yumul FACES Anxiety Scale are merited.

Keywords: numerical verbal anxiety scale, preoperative anxiety, state-trait anxiety inventory, visual facial anxiety scale

Procedia PDF Downloads 139
27883 Literature Review of the Management of Parry Romberg Syndrome with Fillers

Authors: Sana Ilyas

Abstract:

Parry-Romberg syndrome is a rare condition clinically defined by slowly progressive atrophy of the skin and soft tissues. This usually effects one side of the face, although a few cases have been documented of bilateral presentation. It is more prevalent in females and usually affects the left side of the face. The syndrome can also be accompanied by neurological abnormalities. It usually occurs in the first two decades of life with a variable rate of progression. The aetiology is unknown, and the disease eventually stabilises. The treatment options usually involve surgical management. The least invasive of these options is the management of facial asymmetry, associated with Parry Romberg syndrome, through the use of tissue fillers. This paper will review the existing literature on the management of Parry Romberg syndrome with tissue filler. Aim: The aim of the study is to explore the current published literature for the management of Parry Romberg syndrome with fillers. It is to assess the development that has been made in this method of management, its benefits and limitations, and its effectiveness for the management of Parry Romberg syndrome. Methodology: There was a thorough assessment of the current literature published on this topic. PubMed database was used for search of the published literature on this method of the management. Papers were analysed and compared with one another to assess the success and limitation of the management of Parry Romberg with dermal fillers Results and Conclusion: Case reports of the use of tissue fillers discuss the varying degrees of success with the treatment. However, this procedure has it’s limitation, which are discussed in the paper in detail. However, it is still the least invasive of all the surgical options for the management of Parry Romberg Syndrome, and therefore, it is important to explore this option with patients, as they may be more comfortable with pursuingtreatment that is less invasive and can still improve their facial asymmetry

Keywords: dermal fillers, facial asymmetry, parry romberg syndrome, tissue fillers

Procedia PDF Downloads 85
27882 Enhancing Metaverse Security: A Multi-Factor Authentication Scheme

Authors: R. Chinnaiyaprabhu, S. Bharanidharan, V. Dharsana, Rajalavanya

Abstract:

The concept of the Metaverse represents a potential evolution in the realm of cyberspace. In the early stages of Web 2.0, we observed a proliferation of online pseudonyms or 'nyms,' which increased the prevalence of fake accounts and made it challenging to establish unique online identities for various roles. However, in the era of Web 3.0, particularly in the context of the Metaverse, an individual's digital identity is intrinsically linked to their real-world identity. Consequently, actions taken in the Metaverse can carry significant consequences in the physical world. In light of these considerations, we propose the development of an innovative authentication system known as 'Metasec.' This system is designed to enhance security for digital assets, online identities, avatars, and user accounts within the Metaverse. Notably, Metasec operates as a password less authentication solution, relying on a multifaceted approach to security, encompassing device attestation, facial recognition, and pattern-based security keys.

Keywords: metaverse, multifactor authentication, security, facial recognition, patten password

Procedia PDF Downloads 65
27881 Pilomatrixoma of the Left Infra-Orbital Region in a 9 Year Old

Authors: Zainab Shaikh, Yusuf Miyanji

Abstract:

Pilomatrixoma is a benign neoplasm of the hair follicle matrix that is not commonly diagnosed in general practice. This is a case report of a 9-year-old boy who presented with a one-year history of a 19mm x 11 mm swelling in the left infra-orbital region. This was previously undiagnosed in Spain, where the patient resided at the time of initial presentation, due to the language barrier the patient’s family encountered. An ultrasound and magnetic resonance imaging gave useful information regarding surrounding structures for complete tumor excision and indicated that the risk of facial nerve palsy is low. The lesion was surgically excised and a definitive diagnosis was made after histopathology. Pilomatrixoma, although not rare in its occurrence, is rarely this large at the time of excision due to early presentation. This case highlights the importance of including pilomatrixoma in the differential diagnosis of dermal and subcutaneous lesions in the head and neck region, as it is often misdiagnosed due to the lack of awareness of its clinical presentation.

Keywords: pilomatrixoma, swelling, infra-orbital, facial swelling

Procedia PDF Downloads 142
27880 ANAC-id - Facial Recognition to Detect Fraud

Authors: Giovanna Borges Bottino, Luis Felipe Freitas do Nascimento Alves Teixeira

Abstract:

This article aims to present a case study of the National Civil Aviation Agency (ANAC) in Brazil, ANAC-id. ANAC-id is the artificial intelligence algorithm developed for image analysis that recognizes standard images of unobstructed and uprighted face without sunglasses, allowing to identify potential inconsistencies. It combines YOLO architecture and 3 libraries in python - face recognition, face comparison, and deep face, providing robust analysis with high level of accuracy.

Keywords: artificial intelligence, deepface, face compare, face recognition, YOLO, computer vision

Procedia PDF Downloads 154
27879 A Study of Effectiveness of Topical Grapeseed Oil for Reducing Wrinkles on Periorbital Areas in Asian People in Thailand

Authors: Cherish Romina Prajitno, Sunisa Thaichinda

Abstract:

One indicator of facial aging is wrinkles. Not only that, but wrinkles are a key indicator in our world of facial aesthetics. Wrinkles occur where fault lines develop in aging skin. Nowadays, people are more motivated to keep up their appealing and young appearance. Many individuals are seeking a fast recovery time for their aesthetic procedures and are interested in non-invasive techniques that have a proven track record for successful outcomes. The purpose of this study is to see the efficacy of 100% (pure) grapeseed oil for reducing periorbital wrinkles. This study used the split-face, double-blind method, and this treatment was administered for three months at random to fifteen patients, with the grapeseed oil at one side of the face and the other side with the placebo. The main outcome measure was determined by conducting a comparative analysis of the participants' wrinkle results during each visit using the VIsioscan® VC98. Additionally, we evaluated the skin's elasticity and barrier function using the Cutometer® MP 530 and Tewameter® TM300. Furthermore, we administered a satisfaction score questionnaire to the patients in the 12th week. The findings of the study indicate that grapeseed oil exhibited a noteworthy effect in diminishing the appearance of wrinkles in the periorbital region, enhancing the viscoelastic properties of the periorbital skin, and improving the functionality of the skin barrier in the periorbital area.

Keywords: periorbital wrinkles, pure grapeseed oil, split-face method

Procedia PDF Downloads 69
27878 Facial Biometric Privacy Using Visual Cryptography: A Fundamental Approach to Enhance the Security of Facial Biometric Data

Authors: Devika Tanna

Abstract:

'Biometrics' means 'life measurement' but the term is usually associated with the use of unique physiological characteristics to identify an individual. It is important to secure the privacy of digital face image that is stored in central database. To impart privacy to such biometric face images, first, the digital face image is split into two host face images such that, each of it gives no idea of existence of the original face image and, then each cover image is stored in two different databases geographically apart. When both the cover images are simultaneously available then only we can access that original image. This can be achieved by using the XM2VTS and IMM face database, an adaptive algorithm for spatial greyscale. The algorithm helps to select the appropriate host images which are most likely to be compatible with the secret image stored in the central database based on its geometry and appearance. The encryption is done using GEVCS which results in a reconstructed image identical to the original private image.

Keywords: adaptive algorithm, database, host images, privacy, visual cryptography

Procedia PDF Downloads 129
27877 An Improved Face Recognition Algorithm Using Histogram-Based Features in Spatial and Frequency Domains

Authors: Qiu Chen, Koji Kotani, Feifei Lee, Tadahiro Ohmi

Abstract:

In this paper, we propose an improved face recognition algorithm using histogram-based features in spatial and frequency domains. For adding spatial information of the face to improve recognition performance, a region-division (RD) method is utilized. The facial area is firstly divided into several regions, then feature vectors of each facial part are generated by Binary Vector Quantization (BVQ) histogram using DCT coefficients in low frequency domains, as well as Local Binary Pattern (LBP) histogram in spatial domain. Recognition results with different regions are first obtained separately and then fused by weighted averaging. Publicly available ORL database is used for the evaluation of our proposed algorithm, which is consisted of 40 subjects with 10 images per subject containing variations in lighting, posing, and expressions. It is demonstrated that face recognition using RD method can achieve much higher recognition rate.

Keywords: binary vector quantization (BVQ), DCT coefficients, face recognition, local binary patterns (LBP)

Procedia PDF Downloads 348
27876 Characterising the Processes Underlying Emotion Recognition Deficits in Adolescents with Conduct Disorder

Authors: Nayra Martin-Key, Erich Graf, Wendy Adams, Graeme Fairchild

Abstract:

Children and adolescents with Conduct Disorder (CD) have been shown to demonstrate impairments in emotion recognition, but it is currently unclear whether this deficit is related to specific emotions or whether it represents a global deficit in emotion recognition. An emotion recognition task with concurrent eye-tracking was employed to further explore this relationship in a sample of male and female adolescents with CD. Participants made emotion categorization judgements for presented dynamic and morphed static facial expressions. The results demonstrated that males with CD, and to a lesser extent, females with CD, displayed impaired facial expression recognition in general, whereas callous-unemotional (CU) traits were linked to specific problems in sadness recognition in females with CD. A region-of-interest analysis of the eye-tracking data indicated that males with CD exhibited reduced fixation times for the eye-region of the face compared to typically-developing (TD) females, but not TD males. Females with CD did not show reduced fixation to the eye-region of the face relative to TD females. In addition, CU traits did not influence CD subjects’ attention to the eye-region of the face. These findings suggest that the emotion recognition deficits found in CD males, the worst performing group in the behavioural tasks, are partly driven by reduced attention to the eyes.

Keywords: attention, callous-unemotional traits, conduct disorder, emotion recognition, eye-region, eye-tracking, sex differences

Procedia PDF Downloads 319
27875 Navigating the Complexity of Guillain-Barré Syndrome and Miller Fisher Syndrome Overlap Syndrome: A Pediatric Case Report

Authors: Kamal Chafiq, Youssef Hadzine, Adel Elmekkaoui, Othmane Benlenda, Houssam Rajad, Soukaina Wakrim, Hicham Nassik

Abstract:

Guillain-Barré syndrome/Miller Fishe syndrome (GBS/MFS) overlap syndrome is an extremely rare variant of Guillain-Barré syndrome (GBS) in which Miller Fisher syndrome (MFS) coexists with other characteristics of GBS, such as limb weakness, paresthesia, and facial paralysis. We report the clinical case of a 12-year-old patient, with no pathological history, who acutely presents with ophthalmoplegia, areflexia, facial diplegia, and swallowing and phonation disorders, followed by progressive, descending, and symmetrical paresis affecting first the upper limbs and then the lower limbs. An albuminocytological dissociation was found in the cerebrospinal fluid study. Magnetic resonance imaging of the spinal cord showed enhancement and thickening of the cauda equina roots. The patient was treated with immunoglobulins with a favorable clinical outcome.

Keywords: Guillain-Barré syndrome, Miller Fisher syndrome, overlap syndrome, anti-GQ1b antibodies

Procedia PDF Downloads 75
27874 Multimodal Database of Emotional Speech, Video and Gestures

Authors: Tomasz Sapiński, Dorota Kamińska, Adam Pelikant, Egils Avots, Cagri Ozcinar, Gholamreza Anbarjafari

Abstract:

People express emotions through different modalities. Integration of verbal and non-verbal communication channels creates a system in which the message is easier to understand. Expanding the focus to several expression forms can facilitate research on emotion recognition as well as human-machine interaction. In this article, the authors present a Polish emotional database composed of three modalities: facial expressions, body movement and gestures, and speech. The corpora contains recordings registered in studio conditions, acted out by 16 professional actors (8 male and 8 female). The data is labeled with six basic emotions categories, according to Ekman’s emotion categories. To check the quality of performance, all recordings are evaluated by experts and volunteers. The database is available to academic community and might be useful in the study on audio-visual emotion recognition.

Keywords: body movement, emotion recognition, emotional corpus, facial expressions, gestures, multimodal database, speech

Procedia PDF Downloads 348
27873 Quality of Life after Damage Control Laparotomy for Trauma

Authors: Noman Shahzad, Amyn Pardhan, Hasnain Zafar

Abstract:

Introduction: Though short term survival advantage of damage control laparotomy in management of critically ill trauma patients is established, there is little known about the long-term quality of life of these patients. Facial closure rate after damage control laparotomy is reported to be 20-70 percent. Abdominal wall reconstruction in those who failed to achieve facial closure is challenging and can potentially affect quality of life of these patients. Methodology: We conducted retrospective matched cohort study. Adult patients who underwent damage control laparotomy from Jan 2007 till Jun 2013 were identified through medical record. Patients who had concomitant disabling brain injury or limb injuries requiring amputation were excluded. Age, gender and presentation time matched non exposure group of patients who underwent laparotomy for trauma but no damage control were identified for each damage control laparotomy patient. Quality of life assessment was done via telephonic interview at least one year after the operation, using Urdu version of EuroQol Group Quality of Life (QOL) questionnaire EQ5D after permission. Wilcoxon signed rank test was used to compare QOL scores and McNemar test was used to compare individual parameters of QOL questionnaire. Study was approved by institutional ethical review committee. Results: Out of 32 patients who underwent damage control laparotomy during study period, 20 fulfilled the selection criteria for which 20 matched controls were selected. Median age of patients (IQ Range) was 33 (26-40) years. Facial closure rate in damage control laparotomy group was 40% (8/20). One third of those who did not achieve facial closure (4/12) underwent abdominal wall reconstruction. Self-reported QOL score of damage control laparotomy patients was significantly worse than non-damage control group (p = 0.032). There was no statistically significant difference in two groups regarding individual QOL measures. Significantly, more patients in damage control group were requiring use of abdominal binder, and more patients in damage control group had to either change their job or had limitations in continuing previous job. Our study was not adequately powered to detect factors responsible for worse QOL in damage control group. Conclusion: Quality of life of damage control patients is worse than their age and gender matched patients who underwent trauma laparotomy but not damage control. Adequately powered studies need to be conducted to explore factors responsible for this finding for potential improvement.

Keywords: damage control laparotomy, laparostomy, quality of life

Procedia PDF Downloads 277
27872 3D Dentofacial Surgery Full Planning Procedures

Authors: Oliveira M., Gonçalves L., Francisco I., Caramelo F., Vale F., Sanz D., Domingues M., Lopes M., Moreia D., Lopes T., Santos T., Cardoso H.

Abstract:

The ARTHUR project consists of a platform that allows the virtual performance of maxillofacial surgeries, offering, in a photorealistic concept, the possibility for the patient to have an idea of the surgical changes before they are performed on their face. For this, the system brings together several image formats, dicoms and objs that, after loading, will generate the bone volume, soft tissues and hard tissues. The system also incorporates the patient's stereophotogrammetry, in addition to their data and clinical history. After loading and inserting data, the clinician can virtually perform the surgical operation and present the final result to the patient, generating a new facial surface that contemplates the changes made in the bone and tissues of the maxillary area. This tool acts in different situations that require facial reconstruction, however this project focuses specifically on two types of use cases: bone congenital disfigurement and acquired disfiguration such as oral cancer with bone attainment. Being developed a cloud based solution, with mobile support, the tool aims to reduce the decision time window of patient. Because the current simulations are not realistic or, if realistic, need time due to the need of building plaster models, patient rates on decision, rely on a long time window (1,2 months), because they don’t identify themselves with the presented surgical outcome. On the other hand, this planning was performed time based on average estimated values of the position of the maxilla and mandible. The team was based on averages of the facial measurements of the population, without specifying racial variability, so the proposed solution was not adjusted to the real individual physiognomic needs.

Keywords: 3D computing, image processing, image registry, image reconstruction

Procedia PDF Downloads 205
27871 Holistic Approach for Natural Results in Facial Aesthetics

Authors: R. Denkova

Abstract:

Nowadays, aesthetic and psychological researches in some countries show that the aesthetic ideal for women is built by the same pattern of big volumes – lips, cheek, facial disproportions. They all look like made of a matrix. And they lose their unique and emotional aspects of beauty. How to escape this matrix and find the balance? The secret to being a unique injector is good assessment, creating a treatment plan and flawless injection strategy. The newest concepts in this new injection era which meet the requirements of a modern society and deliver balanced and natural looking results are based on the concept of injecting not the consequence, but the reason. Three case studies are presented with full face assessment, treatment plan and before/after pictures. Using different approaches and techniques of the MD codes concept, lights and shadows concept in order to preserve the emotional beauty and identity of the women. In conclusion, the cases demonstrate that beauty exists even beyond the matrix and it is the injector’s mission and responsibility is to preserve and highlight the natural beauty and unique identity of every different patient.

Keywords: beyond the matrix, emotional beauty, face assessment, injector, treatment plan

Procedia PDF Downloads 119
27870 Application of Infrared Thermal Imaging, Eye Tracking and Behavioral Analysis for Deception Detection

Authors: Petra Hypšová, Martin Seitl

Abstract:

One of the challenges of forensic psychology is to detect deception during a face-to-face interview. In addition to the classical approaches of monitoring the utterance and its components, detection is also sought by observing behavioral and physiological changes that occur as a result of the increased emotional and cognitive load caused by the production of distorted information. Typical are changes in facial temperature, eye movements and their fixation, pupil dilation, emotional micro-expression, heart rate and its variability. Expanding technological capabilities have opened the space to detect these psychophysiological changes and behavioral manifestations through non-contact technologies that do not interfere with face-to-face interaction. Non-contact deception detection methodology is still in development, and there is a lack of studies that combine multiple non-contact technologies to investigate their accuracy, as well as studies that show how different types of lies produced by different interviewers affect physiological and behavioral changes. The main objective of this study is to apply a specific non-contact technology for deception detection. The next objective is to investigate scenarios in which non-contact deception detection is possible. A series of psychophysiological experiments using infrared thermal imaging, eye tracking and behavioral analysis with FaceReader 9.0 software was used to achieve our goals. In the laboratory experiment, 16 adults (12 women, 4 men) between 18 and 35 years of age (SD = 4.42) were instructed to produce alternating prepared and spontaneous truths and lies. The baseline of each proband was also measured, and its results were compared to the experimental conditions. Because the personality of the examiner (particularly gender and facial appearance) to whom the subject is lying can influence physiological and behavioral changes, the experiment included four different interviewers. The interviewer was represented by a photograph of a face that met the required parameters in terms of gender and facial appearance (i.e., interviewer likability/antipathy) to follow standardized procedures. The subject provided all information to the simulated interviewer. During follow-up analyzes, facial temperature (main ROIs: forehead, cheeks, the tip of the nose, chin, and corners of the eyes), heart rate, emotional expression, intensity and fixation of eye movements and pupil dilation were observed. The results showed that the variables studied varied with respect to the production of prepared truths and lies versus the production of spontaneous truths and lies, as well as the variability of the simulated interviewer. The results also supported the assumption of variability in physiological and behavioural values during the subject's resting state, the so-called baseline, and the production of prepared and spontaneous truths and lies. A series of psychophysiological experiments provided evidence of variability in the areas of interest in the production of truths and lies to different interviewers. The combination of technologies used also led to a comprehensive assessment of the physiological and behavioral changes associated with false and true statements. The study presented here opens the space for further research in the field of lie detection with non-contact technologies.

Keywords: emotional expression decoding, eye-tracking, functional infrared thermal imaging, non-contact deception detection, psychophysiological experiment

Procedia PDF Downloads 98
27869 Deep Learning Based Text to Image Synthesis for Accurate Facial Composites in Criminal Investigations

Authors: Zhao Gao, Eran Edirisinghe

Abstract:

The production of an accurate sketch of a suspect based on a verbal description obtained from a witness is an essential task for most criminal investigations. The criminal investigation system employs specifically trained professional artists to manually draw a facial image of the suspect according to the descriptions of an eyewitness for subsequent identification. Within the advancement of Deep Learning, Recurrent Neural Networks (RNN) have shown great promise in Natural Language Processing (NLP) tasks. Additionally, Generative Adversarial Networks (GAN) have also proven to be very effective in image generation. In this study, a trained GAN conditioned on textual features such as keywords automatically encoded from a verbal description of a human face using an RNN is used to generate photo-realistic facial images for criminal investigations. The intention of the proposed system is to map corresponding features into text generated from verbal descriptions. With this, it becomes possible to generate many reasonably accurate alternatives to which the witness can use to hopefully identify a suspect from. This reduces subjectivity in decision making both by the eyewitness and the artist while giving an opportunity for the witness to evaluate and reconsider decisions. Furthermore, the proposed approach benefits law enforcement agencies by reducing the time taken to physically draw each potential sketch, thus increasing response times and mitigating potentially malicious human intervention. With publically available 'CelebFaces Attributes Dataset' (CelebA) and additionally providing verbal description as training data, the proposed architecture is able to effectively produce facial structures from given text. Word Embeddings are learnt by applying the RNN architecture in order to perform semantic parsing, the output of which is fed into the GAN for synthesizing photo-realistic images. Rather than the grid search method, a metaheuristic search based on genetic algorithms is applied to evolve the network with the intent of achieving optimal hyperparameters in a fraction the time of a typical brute force approach. With the exception of the ‘CelebA’ training database, further novel test cases are supplied to the network for evaluation. Witness reports detailing criminals from Interpol or other law enforcement agencies are sampled on the network. Using the descriptions provided, samples are generated and compared with the ground truth images of a criminal in order to calculate the similarities. Two factors are used for performance evaluation: The Structural Similarity Index (SSIM) and the Peak Signal-to-Noise Ratio (PSNR). A high percentile output from this performance matrix should attribute to demonstrating the accuracy, in hope of proving that the proposed approach can be an effective tool for law enforcement agencies. The proposed approach to criminal facial image generation has potential to increase the ratio of criminal cases that can be ultimately resolved using eyewitness information gathering.

Keywords: RNN, GAN, NLP, facial composition, criminal investigation

Procedia PDF Downloads 159
27868 Detection and Classification Strabismus Using Convolutional Neural Network and Spatial Image Processing

Authors: Anoop T. R., Otman Basir, Robert F. Hess, Eileen E. Birch, Brooke A. Koritala, Reed M. Jost, Becky Luu, David Stager, Ben Thompson

Abstract:

Strabismus refers to a misalignment of the eyes. Early detection and treatment of strabismus in childhood can prevent the development of permanent vision loss due to abnormal development of visual brain areas. We developed a two-stage method for strabismus detection and classification based on photographs of the face. The first stage detects the presence or absence of strabismus, and the second stage classifies the type of strabismus. The first stage comprises face detection using Haar cascade, facial landmark estimation, face alignment, aligned face landmark detection, segmentation of the eye region, and detection of strabismus using VGG 16 convolution neural networks. Face alignment transforms the face to a canonical pose to ensure consistency in subsequent analysis. Using facial landmarks, the eye region is segmented from the aligned face and fed into a VGG 16 CNN model, which has been trained to classify strabismus. The CNN determines whether strabismus is present and classifies the type of strabismus (exotropia, esotropia, and vertical deviation). If stage 1 detects strabismus, the eye region image is fed into stage 2, which starts with the estimation of pupil center coordinates using mask R-CNN deep neural networks. Then, the distance between the pupil coordinates and eye landmarks is calculated along with the angle that the pupil coordinates make with the horizontal and vertical axis. The distance and angle information is used to characterize the degree and direction of the strabismic eye misalignment. This model was tested on 100 clinically labeled images of children with (n = 50) and without (n = 50) strabismus. The True Positive Rate (TPR) and False Positive Rate (FPR) of the first stage were 94% and 6% respectively. The classification stage has produced a TPR of 94.73%, 94.44%, and 100% for esotropia, exotropia, and vertical deviations, respectively. This method also had an FPR of 5.26%, 5.55%, and 0% for esotropia, exotropia, and vertical deviation, respectively. The addition of one more feature related to the location of corneal light reflections may reduce the FPR, which was primarily due to children with pseudo-strabismus (the appearance of strabismus due to a wide nasal bridge or skin folds on the nasal side of the eyes).

Keywords: strabismus, deep neural networks, face detection, facial landmarks, face alignment, segmentation, VGG 16, mask R-CNN, pupil coordinates, angle deviation, horizontal and vertical deviation

Procedia PDF Downloads 92
27867 Strabismus Detection Using Eye Alignment Stability

Authors: Anoop T. R., Otman Basir, Robert F. Hess, Ben Thompson

Abstract:

Strabismus refers to a misalignment of the eyes. Early detection and treatment of strabismus in childhood can prevent the development of permanent vision loss due to abnormal development of visual brain areas. Currently, many children with strabismus remain undiagnosed until school entry because current automated screening methods have limited success in the preschool age range. A method for strabismus detection using eye alignment stability (EAS) is proposed. This method starts with face detection, followed by facial landmark detection, eye region segmentation, eye gaze extraction, and eye alignment stability estimation. Binarization and morphological operations are performed for segmenting the pupil region from the eye. After finding the EAS, its absolute value is used to differentiate the strabismic eye from the non-strabismic eye. If the value of the eye alignment stability is greater than a particular threshold, then the eyes are misaligned, and if its value is less than the threshold, the eyes are aligned. The method was tested on 175 strabismic and non-strabismic images obtained from Kaggle and Google Photos. The strabismic eye is taken as a positive class, and the non-strabismic eye is taken as a negative class. The test produced a true positive rate of 100% and a false positive rate of 7.69%.

Keywords: strabismus, face detection, facial landmarks, eye segmentation, eye gaze, binarization

Procedia PDF Downloads 74
27866 Proposed Solutions Based on Affective Computing

Authors: Diego Adrian Cardenas Jorge, Gerardo Mirando Guisado, Alfredo Barrientos Padilla

Abstract:

A system based on Affective Computing can detect and interpret human information like voice, facial expressions and body movement to detect emotions and execute a corresponding response. This data is important due to the fact that a person can communicate more effectively with emotions than can be possible with words. This information can be processed through technological components like Facial Recognition, Gait Recognition or Gesture Recognition. As of now, solutions proposed using this technology only consider one component at a given moment. This research investigation proposes two solutions based on Affective Computing taking into account more than one component for emotion detection. The proposals reflect the levels of dependency between hardware devices and software, as well as the interaction process between the system and the user which implies the development of scenarios where both proposals will be put to the test in a live environment. Both solutions are to be developed in code by software engineers to prove the feasibility. To validate the impact on society and business interest, interviews with stakeholders are conducted with an investment mind set where each solution is labeled on a scale of 1 through 5, being one a minimum possible investment and 5 the maximum.

Keywords: affective computing, emotions, emotion detection, face recognition, gait recognition

Procedia PDF Downloads 366
27865 The Role of Emotional Intelligence in the Manager's Psychophysiological Activity during a Performance-Review Discussion

Authors: Mikko Salminen, Niklas Ravaja

Abstract:

Emotional intelligence (EI) consists of skills for monitoring own emotions and emotions of others, skills for discriminating different emotions, and skills for using this information in thinking and actions. EI enhances, for example, work outcomes and organizational climate. We suggest that the role and manifestations of EI should also be studied in real leadership situations, especially during the emotional, social interaction. Leadership is essentially a process to influence others for reaching a certain goal. This influencing happens by managerial processes and computer-mediated communication (e.g. e-mail) but also by face-to-face, where facial expressions have a significant role in conveying emotional information. Persons with high EI are typically perceived more positively, and they have better social skills. We hypothesize, that during social interaction high EI enhances the ability to detect other’s emotional state and controlling own emotional expressions. We suggest, that emotionally intelligent leader’s experience less stress during social leadership situations, since they have better skills in dealing with the related emotional work. Thus the high-EI leaders would be more able to enjoy these situations, but also be more efficient in choosing appropriate expressions for building constructive dialogue. We suggest, that emotionally intelligent leaders show more positive emotional expressions than low-EI leaders. To study these hypotheses we observed performance review discussions of 40 leaders (24 female) with 78 (45 female) of their followers. Each leader held a discussion with two followers. Psychophysiological methods were chosen because they provide objective and continuous data from the whole duration of the discussions. We recorded sweating of the hands (electrodermal activation) by electrodes placed to the fingers of the non-dominant hand to assess the stress-related physiological arousal of the leaders. In addition, facial electromyography was recorded from cheek (zygomaticus major, activated during e.g. smiling) and periocular (orbicularis oculi, activated during smiling) muscles using electrode pairs placed on the left side of the face. Leader’s trait EI was measured with a 360 questionnaire, filled by each leader’s followers, peers, managers and by themselves. High-EI leaders had less sweating of the hands (p = .007) than the low-EI leaders. It is thus suggested that the high-EI leaders experienced less physiological stress during the discussions. Also, high scores in the factor “Using of emotions” were related to more facial muscle activation indicating positive emotional expressions (cheek muscle: p = .048; periocular muscle: p = .076, almost statistically significant). The results imply that emotionally intelligent managers are positively relaxed during s social leadership situations such as a performance review discussion. The current study also highlights the importance of EI in face-to-face social interaction, given the central role facial expressions have in interaction situations. The study also offers new insight to the biological basis of trait EI. It is suggested that the identification, forming, and intelligently using of facial expressions are skills that could be trained during leadership development courses.

Keywords: emotional intelligence, leadership, performance review discussion, psychophysiology, social interaction

Procedia PDF Downloads 243
27864 Numerical Simulation of Two-Phase Flows Using a Pressure-Based Solver

Authors: Lei Zhang, Jean-Michel Ghidaglia, Anela Kumbaro

Abstract:

This work focuses on numerical simulation of two-phase flows based on the bi-fluid six-equation model widely used in many industrial areas, such as nuclear power plant safety analysis. A pressure-based numerical method is adopted in our studies due to the fact that in two-phase flows, it is common to have a large range of Mach numbers because of the mixture of liquid and gas, and density-based solvers experience stiffness problems as well as a loss of accuracy when approaching the low Mach number limit. This work extends the semi-implicit pressure solver in the nuclear component CUPID code, where the governing equations are solved on unstructured grids with co-located variables to accommodate complicated geometries. A conservative version of the solver is developed in order to capture exactly the shock in one-phase flows, and is extended to two-phase situations. An inter-facial pressure term is added to the bi-fluid model to make the system hyperbolic and to establish a well-posed mathematical problem that will allow us to obtain convergent solutions with refined meshes. The ability of the numerical method to treat phase appearance and disappearance as well as the behavior of the scheme at low Mach numbers will be demonstrated through several numerical results. Finally, inter-facial mass and heat transfer models are included to deal with situations when mass and energy transfer between phases is important, and associated industrial numerical benchmarks with tabulated EOS (equations of state) for fluids are performed.

Keywords: two-phase flows, numerical simulation, bi-fluid model, unstructured grids, phase appearance and disappearance

Procedia PDF Downloads 392
27863 Non-Invasive Characterization of the Mechanical Properties of Arterial Walls

Authors: Bruno RamaëL, GwenaëL Page, Catherine Knopf-Lenoir, Olivier Baledent, Anne-Virginie Salsac

Abstract:

No routine technique currently exists for clinicians to measure the mechanical properties of vascular walls non-invasively. Most of the data available in the literature come from traction or dilatation tests conducted ex vivo on native blood vessels. The objective of the study is to develop a non-invasive characterization technique based on Magnetic Resonance Imaging (MRI) measurements of the deformation of vascular walls under pulsating blood flow conditions. The goal is to determine the mechanical properties of the vessels by inverse analysis, coupling imaging measurements and numerical simulations of the fluid-structure interactions. The hyperelastic properties are identified using Solidworks and Ansys workbench (ANSYS Inc.) solving an optimization technique. The vessel of interest targeted in the study is the common carotid artery. In vivo MRI measurements of the vessel anatomy and inlet velocity profiles was acquired along the facial vascular network on a cohort of 30 healthy volunteers: - The time-evolution of the blood vessel contours and, thus, of the cross-section surface area was measured by 3D imaging angiography sequences of phase-contrast MRI. - The blood flow velocity was measured using a 2D CINE MRI phase contrast (PC-MRI) method. Reference arterial pressure waveforms were simultaneously measured in the brachial artery using a sphygmomanometer. The three-dimensional (3D) geometry of the arterial network was reconstructed by first creating an STL file from the raw MRI data using the open source imaging software ITK-SNAP. The resulting geometry was then transformed with Solidworks into volumes that are compatible with Ansys softwares. Tetrahedral meshes of the wall and fluid domains were built using the ANSYS Meshing software, with a near-wall mesh refinement method in the case of the fluid domain to improve the accuracy of the fluid flow calculations. Ansys Structural was used for the numerical simulation of the vessel deformation and Ansys CFX for the simulation of the blood flow. The fluid structure interaction simulations showed that the systolic and diastolic blood pressures of the common carotid artery could be taken as reference pressures to identify the mechanical properties of the different arteries of the network. The coefficients of the hyperelastic law were identified using Ansys Design model for the common carotid. Under large deformations, a stiffness of 800 kPa is measured, which is of the same order of magnitude as the Young modulus of collagen fibers. Areas of maximum deformations were highlighted near bifurcations. This study is a first step towards patient-specific characterization of the mechanical properties of the facial vessels. The method is currently applied on patients suffering from facial vascular malformations and on patients scheduled for facial reconstruction. Information on the blood flow velocity as well as on the vessel anatomy and deformability will be key to improve surgical planning in the case of such vascular pathologies.

Keywords: identification, mechanical properties, arterial walls, MRI measurements, numerical simulations

Procedia PDF Downloads 317
27862 Comparative Analysis of Feature Extraction and Classification Techniques

Authors: R. L. Ujjwal, Abhishek Jain

Abstract:

In the field of computer vision, most facial variations such as identity, expression, emotions and gender have been extensively studied. Automatic age estimation has been rarely explored. With age progression of a human, the features of the face changes. This paper is providing a new comparable study of different type of algorithm to feature extraction [Hybrid features using HAAR cascade & HOG features] & classification [KNN & SVM] training dataset. By using these algorithms we are trying to find out one of the best classification algorithms. Same thing we have done on the feature selection part, we extract the feature by using HAAR cascade and HOG. This work will be done in context of age group classification model.

Keywords: computer vision, age group, face detection

Procedia PDF Downloads 367
27861 Facial Recognition and Landmark Detection in Fitness Assessment and Performance Improvement

Authors: Brittany Richardson, Ying Wang

Abstract:

For physical therapy, exercise prescription, athlete training, and regular fitness training, it is crucial to perform health assessments or fitness assessments periodically. An accurate assessment is propitious for tracking recovery progress, preventing potential injury and making long-range training plans. Assessments include necessary measurements, height, weight, blood pressure, heart rate, body fat, etc. and advanced evaluation, muscle group strength, stability-mobility, and movement evaluation, etc. In the current standard assessment procedures, the accuracy of assessments, especially advanced evaluations, largely depends on the experience of physicians, coaches, and personal trainers. And it is challenging to track clients’ progress in the current assessment. Unlike the tradition assessment, in this paper, we present a deep learning based face recognition algorithm for accurate, comprehensive and trackable assessment. Based on the result from our assessment, physicians, coaches, and personal trainers are able to adjust the training targets and methods. The system categorizes the difficulty levels of the current activity for the client or user, furthermore make more comprehensive assessments based on tracking muscle group over time using a designed landmark detection method. The system also includes the function of grading and correcting the form of the clients during exercise. Experienced coaches and personal trainer can tell the clients' limit based on their facial expression and muscle group movements, even during the first several sessions. Similar to this, using a convolution neural network, the system is trained with people’s facial expression to differentiate challenge levels for clients. It uses landmark detection for subtle changes in muscle groups movements. It measures the proximal mobility of the hips and thoracic spine, the proximal stability of the scapulothoracic region and distal mobility of the glenohumeral joint, as well as distal mobility, and its effect on the kinetic chain. This system integrates data from other fitness assistant devices, including but not limited to Apple Watch, Fitbit, etc. for a improved training and testing performance. The system itself doesn’t require history data for an individual client, but the history data of a client can be used to create a more effective exercise plan. In order to validate the performance of the proposed work, an experimental design is presented. The results show that the proposed work contributes towards improving the quality of exercise plan, execution, progress tracking, and performance.

Keywords: exercise prescription, facial recognition, landmark detection, fitness assessments

Procedia PDF Downloads 132
27860 Examining Predictive Coding in the Hierarchy of Visual Perception in the Autism Spectrum Using Fast Periodic Visual Stimulation

Authors: Min L. Stewart, Patrick Johnston

Abstract:

Predictive coding has been proposed as a general explanatory framework for understanding the neural mechanisms of perception. As such, an underweighting of perceptual priors has been hypothesised to underpin a range of differences in inferential and sensory processing in autism spectrum disorders. However, empirical evidence to support this has not been well established. The present study uses an electroencephalography paradigm involving changes of facial identity and person category (actors etc.) to explore how levels of autistic traits (AT) affect predictive coding at multiple stages in the visual processing hierarchy. The study uses a rapid serial presentation of faces, with hierarchically structured sequences involving both periodic and aperiodic repetitions of different stimulus attributes (i.e., person identity and person category) in order to induce contextual expectations relating to these attributes. It investigates two main predictions: (1) significantly larger and late neural responses to change of expected visual sequences in high-relative to low-AT, and (2) significantly reduced neural responses to violations of contextually induced expectation in high- relative to low-AT. Preliminary frequency analysis data comparing high and low-AT show greater and later event-related-potentials (ERPs) in occipitotemporal areas and prefrontal areas in high-AT than in low-AT for periodic changes of facial identity and person category but smaller ERPs over the same areas in response to aperiodic changes of identity and category. The research advances our understanding of how abnormalities in predictive coding might underpin aberrant perceptual experience in autism spectrum. This is the first stage of a research project that will inform clinical practitioners in developing better diagnostic tests and interventions for people with autism.

Keywords: hierarchical visual processing, face processing, perceptual hierarchy, prediction error, predictive coding

Procedia PDF Downloads 109
27859 Comparison of the Yumul Faces Anxiety Scale to the Categorization Scale, the Numerical Verbal Rating Scale, and the State-Trait Anxiety Inventory for Preoperative Anxiety Evaluation

Authors: Ofelia Loani Elvir Lazo, Roya Yumul, David Chernobylsky, Omar Durra

Abstract:

Background: It is crucial to detect the patient’s existing anxiety to assist patients in a perioperative setting which is to be caused by the fear associated with surgical and anesthetic complications. However, the current gold standard for assessing patient anxiety, the STAI, is problematic to use in the preoperative setting, given the duration and concentration required to complete the 40-item questionnaire. Our primary aim in the study is to investigate the correlation of the Yumul Visual Facial Anxiety Scale (VFAS) and Numerical Verbal Rating Scale (NVRS) to State-Trait Anxiety Inventory (STAI) to determine the optimal anxiety scale to use in the perioperative setting. Methods: A clinical study of patients undergoing various surgeries was conducted utilizing each of the preoperative anxiety scales. Inclusion criteria included patients undergoing elective surgeries, while exclusion criteria included patients with anesthesia contraindications, inability to comprehend instructions, impaired judgement, substance abuse history, and those pregnant or lactating. 293 patients were analyzed in terms of demographics, anxiety scale survey results, and anesthesia data via Spearman Coefficients, Chi-Squared Analysis, and Fischer’s exact test utilized for comparative analysis. Results: Statistical analysis showed that VFAS had a higher correlation to STAI than NVRS (rs=0.66, p<0.0001 vs. rs=0.64, p<0.0001). The combined VFAS-Categorization Scores showed the highest correlation with the gold standard (rs=0.72, p<0.0001). Subgroup analysis showed similar results. STAI evaluation time (247.7 ± 54.81 sec) far exceeds VFAS (7.29 ± 1.61 sec), NVRS (7.23 ± 1.60 sec), and Categorization scales (7.29 ± 1.99 sec). Patients preferred VFAS (54.4%), Categorization (11.6%), and NVRS (8.8%). Anesthesiologists preferred VFAS (63.9%), NVRS (22.1%), and Categorization Scales (14.0%). Of note, the top five causes of preoperative anxiety were determined to be waiting (56.5%), pain (42.5%), family concerns (40.5%), no information about surgery (40.1%), or anesthesia (31.6%). Conclusıons: Both VFAS and Categorization tests also take significantly less time than STAI, which is critical in the preoperative setting. Combined VFAS-Categorization Score (VCS) demonstrates the highest correlation to the gold standard, STAI. Among both patients and anesthesiologists, VFAS was the most preferred scale. This forms the basis of the Yumul Faces Anxiety Scale, designed for quick quantization and assessment in the preoperative setting while maintaining a high correlation to the golden standard. Additional studies using the formulated Yumul Faces Anxiety Scale are merited.

Keywords: numerical verbal anxiety scale, preoperative anxiety, state-trait anxiety inventory, visual facial anxiety scale

Procedia PDF Downloads 116
27858 Dominant Ideology among Filipino Women as Dictated by Cosmopolitan Magazine

Authors: Yvonne Christelle M. de Guzman, Charity Faye T. Cabie

Abstract:

This study analyzed the contents of ten issues of Cosmopolitan Magazine from 2011 to 2015. The researcher found out the hegemony among Filipino women as dictated by Cosmopolitan magazine through the use of Semiotic Analysis, Laura Mulvey’s Male Gaze and Gramsci’s concept of hegemony. The researcher also looked at the themes of cover stories, words used to describe women, meanings behind the color of magazine’s front cover, clothing, physique and pose such as gesture and facial expression used by the cover girl. However, the entire content of the magazine was not taken into account.

Keywords: dominant ideology, male gaze, semiotics, women

Procedia PDF Downloads 389