Search results for: data based modeling
45124 Analysis of Factors Affecting the Number of Infant and Maternal Mortality in East Java with Geographically Weighted Bivariate Generalized Poisson Regression Method
Authors: Luh Eka Suryani, Purhadi
Abstract:
Poisson regression is a non-linear regression model with response variable in the form of count data that follows Poisson distribution. Modeling for a pair of count data that show high correlation can be analyzed by Poisson Bivariate Regression. Data, the number of infant mortality and maternal mortality, are count data that can be analyzed by Poisson Bivariate Regression. The Poisson regression assumption is an equidispersion where the mean and variance values are equal. However, the actual count data has a variance value which can be greater or less than the mean value (overdispersion and underdispersion). Violations of this assumption can be overcome by applying Generalized Poisson Regression. Characteristics of each regency can affect the number of cases occurred. This issue can be overcome by spatial analysis called geographically weighted regression. This study analyzes the number of infant mortality and maternal mortality based on conditions in East Java in 2016 using Geographically Weighted Bivariate Generalized Poisson Regression (GWBGPR) method. Modeling is done with adaptive bisquare Kernel weighting which produces 3 regency groups based on infant mortality rate and 5 regency groups based on maternal mortality rate. Variables that significantly influence the number of infant and maternal mortality are the percentages of pregnant women visit health workers at least 4 times during pregnancy, pregnant women get Fe3 tablets, obstetric complication handled, clean household and healthy behavior, and married women with the first marriage age under 18 years.Keywords: adaptive bisquare kernel, GWBGPR, infant mortality, maternal mortality, overdispersion
Procedia PDF Downloads 15845123 Analytical Investigation of Modeling and Simulation of Different Combinations of Sinusoidal Supplied Autotransformer under Linear Loading Conditions
Authors: M. Salih Taci, N. Tayebi, I. Bozkır
Abstract:
This paper investigates the operation of a sinusoidal supplied autotransformer on the different states of magnetic polarity of primary and secondary terminals for four different step-up and step-down analytical conditions. In this paper, a new analytical modeling and equations for dot-marked and polarity-based step-up and step-down autotransformer are presented. These models are validated by the simulation of current and voltage waveforms for each state. PSpice environment was used for simulation.Keywords: autotransformer modeling, autotransformer simulation, step-up autotransformer, step-down autotransformer, polarity
Procedia PDF Downloads 31645122 Combining Diffusion Maps and Diffusion Models for Enhanced Data Analysis
Authors: Meng Su
Abstract:
High-dimensional data analysis often presents challenges in capturing the complex, nonlinear relationships and manifold structures inherent to the data. This article presents a novel approach that leverages the strengths of two powerful techniques, Diffusion Maps and Diffusion Probabilistic Models (DPMs), to address these challenges. By integrating the dimensionality reduction capability of Diffusion Maps with the data modeling ability of DPMs, the proposed method aims to provide a comprehensive solution for analyzing and generating high-dimensional data. The Diffusion Map technique preserves the nonlinear relationships and manifold structure of the data by mapping it to a lower-dimensional space using the eigenvectors of the graph Laplacian matrix. Meanwhile, DPMs capture the dependencies within the data, enabling effective modeling and generation of new data points in the low-dimensional space. The generated data points can then be mapped back to the original high-dimensional space, ensuring consistency with the underlying manifold structure. Through a detailed example implementation, the article demonstrates the potential of the proposed hybrid approach to achieve more accurate and effective modeling and generation of complex, high-dimensional data. Furthermore, it discusses possible applications in various domains, such as image synthesis, time-series forecasting, and anomaly detection, and outlines future research directions for enhancing the scalability, performance, and integration with other machine learning techniques. By combining the strengths of Diffusion Maps and DPMs, this work paves the way for more advanced and robust data analysis methods.Keywords: diffusion maps, diffusion probabilistic models (DPMs), manifold learning, high-dimensional data analysis
Procedia PDF Downloads 10545121 Multi-Agent Railway Control System: Requirements Definitions of Multi-Agent System Using the Behavioral Patterns Analysis (BPA) Approach
Authors: Assem I. El-Ansary
Abstract:
This paper illustrates the event-oriented Behavioral Pattern Analysis (BPA) modeling approach in developing an Multi-Agent Railway Control System (MARCS). The Event defined in BPA is a real-life conceptual entity that is unrelated to any implementation. The major contributions of this research are the Behavioral Pattern Analysis (BPA) modeling methodology, and the development of an interactive software tool (DECISION), which is based on a combination of the Analytic Hierarchy Process (AHP) and the ELECTRE Multi-Criteria Decision Making (MCDM) methods.Keywords: analysis, multi-agent, railway control, modeling methodology, software modeling, event-oriented, behavioral pattern, use cases
Procedia PDF Downloads 54545120 Research of the Three-Dimensional Visualization Geological Modeling of Mine Based on Surpac
Authors: Honggang Qu, Yong Xu, Rongmei Liu, Zhenji Gao, Bin Wang
Abstract:
Today's mining industry is advancing gradually toward digital and visual direction. The three-dimensional visualization geological modeling of mine is the digital characterization of mineral deposits and is one of the key technology of digital mining. Three-dimensional geological modeling is a technology that combines geological spatial information management, geological interpretation, geological spatial analysis and prediction, geostatistical analysis, entity content analysis and graphic visualization in a three-dimensional environment with computer technology and is used in geological analysis. In this paper, the three-dimensional geological modeling of an iron mine through the use of Surpac is constructed, and the weight difference of the estimation methods between the distance power inverse ratio method and ordinary kriging is studied, and the ore body volume and reserves are simulated and calculated by using these two methods. Compared with the actual mine reserves, its result is relatively accurate, so it provides scientific bases for mine resource assessment, reserve calculation, mining design and so on.Keywords: three-dimensional geological modeling, geological database, geostatistics, block model
Procedia PDF Downloads 7545119 Analysis of School Burnout and Academic Motivation through Structural Equation Modeling
Authors: Ismail Seçer
Abstract:
The purpose of this study is to analyze the relationship between school burnout and academic motivation in high school students. The working group of the study consists of 455 students from the high schools in Erzurum city center, selected with appropriate sampling method. School Burnout Scale and Academic Motivation Scale were used in the study to collect data. Correlation analysis and structural equation modeling were used in the analysis of the data collected through the study. As a result of the study, it was determined that there are significant and negative relations between school burnout and academic motivation, and the school burnout has direct and indirect significant effects on the getting over himself, using knowledge and exploration dimension through the latent variable of academic motivation. Lastly, it was determined that school burnout is a significant predictor of academic motivation.Keywords: school burnout, motivation, structural equation modeling, university
Procedia PDF Downloads 32245118 Multi-Level Meta-Modeling for Enabling Dynamic Subtyping for Industrial Automation
Authors: Zoltan Theisz, Gergely Mezei
Abstract:
Modern industrial automation relies on service oriented concepts of Internet of Things (IoT) device modeling in order to provide a flexible and extendable environment for service meta-repository. However, state-of-the-art meta-modeling techniques prefer design-time modeling, which results in a heavy usage of class sometimes unnecessary static subtyping. Although this approach benefits from clear-cut object-oriented design principles, it also seals the model repository for further dynamic extensions. In this paper, a dynamic multi-level modeling approach is introduced that enables dynamic subtyping through a more relaxed partial instantiation mechanism. The approach is demonstrated on a simple sensor network example.Keywords: meta-modeling, dynamic subtyping, DMLA, industrial automation, arrowhead
Procedia PDF Downloads 35845117 Modeling Bessel Beams and Their Discrete Superpositions from the Generalized Lorenz-Mie Theory to Calculate Optical Forces over Spherical Dielectric Particles
Authors: Leonardo A. Ambrosio, Carlos. H. Silva Santos, Ivan E. L. Rodrigues, Ayumi K. de Campos, Leandro A. Machado
Abstract:
In this work, we propose an algorithm developed under Python language for the modeling of ordinary scalar Bessel beams and their discrete superpositions and subsequent calculation of optical forces exerted over dielectric spherical particles. The mathematical formalism, based on the generalized Lorenz-Mie theory, is implemented in Python for its large number of free mathematical (as SciPy and NumPy), data visualization (Matplotlib and PyJamas) and multiprocessing libraries. We also propose an approach, provided by a synchronized Software as Service (SaaS) in cloud computing, to develop a user interface embedded on a mobile application, thus providing users with the necessary means to easily introduce desired unknowns and parameters and see the graphical outcomes of the simulations right at their mobile devices. Initially proposed as a free Android-based application, such an App enables data post-processing in cloud-based architectures and visualization of results, figures and numerical tables.Keywords: Bessel Beams and Frozen Waves, Generalized Lorenz-Mie Theory, Numerical Methods, optical forces
Procedia PDF Downloads 37945116 Stochastic Richelieu River Flood Modeling and Comparison of Flood Propagation Models: WMS (1D) and SRH (2D)
Authors: Maryam Safrai, Tewfik Mahdi
Abstract:
This article presents the stochastic modeling of the Richelieu River flood in Quebec, Canada, occurred in the spring of 2011. With the aid of the one-dimensional Watershed Modeling System (WMS (v.10.1) and HEC-RAS (v.4.1) as a flood simulator, the delineation of the probabilistic flooded areas was considered. Based on the Monte Carlo method, WMS (v.10.1) delineated the probabilistic flooded areas with corresponding occurrence percentages. Furthermore, results of this one-dimensional model were compared with the results of two-dimensional model (SRH-2D) for the evaluation of efficiency and precision of each applied model. Based on this comparison, computational process in two-dimensional model is longer and more complicated versus brief one-dimensional one. Although, two-dimensional models are more accurate than one-dimensional method, but according to existing modellers, delineation of probabilistic flooded areas based on Monte Carlo method is achievable via one-dimensional modeler. The applied software in this case study greatly responded to verify the research objectives. As a result, flood risk maps of the Richelieu River with the two applied models (1d, 2d) could elucidate the flood risk factors in hydrological, hydraulic, and managerial terms.Keywords: flood modeling, HEC-RAS, model comparison, Monte Carlo simulation, probabilistic flooded area, SRH-2D, WMS
Procedia PDF Downloads 13945115 Atmospheric Dispersion Modeling for a Hypothetical Accidental Release from the 3 MW TRIGA Research Reactor of Bangladesh
Authors: G. R. Khan, Sadia Mahjabin, A. S. Mollah, M. R. Mawla
Abstract:
Atmospheric dispersion modeling is significant for any nuclear facilities in the country to predict the impact of radiological doses on environment as well as human health. That is why to ensure safety of workers and population at plant site; Atmospheric dispersion modeling and radiation dose calculations were carried out for a hypothetical accidental release of airborne radionuclide from the 3 MW TRIGA research reactor of Savar, Bangladesh. It is designed with reactor core which consists of 100 fuel elements(1.82245 cm in diameter and 38.1 cm in length), arranged in an annular corefor steady-state and square wave power level of 3 MW (thermal) and for pulsing with maximum power level of 860MWth.The fuel is in the form of a uniform mixture of 20% uranium and 80% zirconium hydride. Total effective doses (TEDs) to the public at various downwind distances were evaluated with a health physics computer code “HotSpot” developed by Lawrence Livermore National Laboratory, USA. The doses were estimated at different Pasquill stability classes (categories A-F) with site-specific averaged meteorological conditions. The meteorological data, such as, average wind speed, frequency distribution of wind direction, etc. have also been analyzed based on the data collected near the reactor site. The results of effective doses obtained remain within the recommended maximum effective dose.Keywords: accidental release, dispersion modeling, total effective dose, TRIGA
Procedia PDF Downloads 13645114 Validation of Electrical Field Effect on Electrostatic Desalter Modeling with Experimental Laboratory Data
Authors: Fatemeh Yazdanmehr, Iulian Nistor
Abstract:
The scope of the current study is the evaluation of the electric field effect on electrostatic desalting mathematical modeling with laboratory data. This research study was focused on developing a model for an existing operation desalting unit of one of the Iranian heavy oil field with a 75 MBPD production capacity. The high temperature of inlet oil to dehydration unit reduces the oil recovery, so the mathematical modeling of desalter operation parameters is very significant. The existing production unit operating data has been used for the accuracy of the mathematical desalting plant model. The inlet oil temperature to desalter was decreased from 110 to 80°C, and the desalted electrical field was increased from 0.75 to 2.5 Kv/cm. The model result shows that the desalter parameter changes meet the water-oil specification and also the oil production and consequently annual income is increased. In addition to that, changing desalter operation conditions reduces environmental footprint because of flare gas reduction. Following to specify the accuracy of selected electrostatic desalter electrical field, laboratory data has been used. Experimental data are used to ensure the effect of electrical field change on desalter. Therefore, the lab test is done on a crude oil sample. The results include the dehydration efficiency in the presence of a demulsifier and under electrical field (0.75 Kv) conditions at various temperatures. Comparing lab experimental and electrostatic desalter mathematical model results shows 1-3 percent acceptable error which confirms the validity of desalter specification and operation conditions changes.Keywords: desalter, electrical field, demulsification, mathematical modeling, water-oil separation
Procedia PDF Downloads 13545113 Determining the City Development Based on the Modeling of the Pollutant Emission from Power Plant by Using AERMOD Software
Authors: Abbasi Fakhrossadat, Moharreri Mohammadamir, Shadmanmahani Mohammadjavad
Abstract:
The development of cities can be influenced by various factors, including air pollution. In this study, the focus is on the city of Mashhad, which has four large power plants operating. The emission of pollutants from these power plants can have a significant impact on the quality of life and health of the city's residents. Therefore, modeling and analyzing the emission pattern of pollutants can provide useful information for urban decision-makers and help in estimating the urban development model. The aim of this research is to determine the direction of city development based on the modeling of pollutant emissions (NOX, CO, and PM10) from power plants in Mashhad. By using the AERMOD software, the release of these pollutants will be modeled and analyzed.Keywords: emission of air pollution, thermal power plant, urban development, AERMOD
Procedia PDF Downloads 7745112 Biophysically Motivated Phylogenies
Authors: Catherine Felce, Lior Pachter
Abstract:
Current methods for building phylogenetic trees from gene expression data consider mean expression levels. With single-cell technologies, we can leverage more information about cell dynamics by considering the entire distribution of gene expression across cells. Using biophysical modeling, we propose a method for constructing phylogenetic trees from scRNA-seq data, building on Felsenstein's method of continuous characters. This method can highlight genes whose level of expression may be unchanged between species, but whose rates of transcription/decay may have evolved over time.Keywords: phylogenetics, single-cell, biophysical modeling, transcription
Procedia PDF Downloads 4745111 Design of Enhanced Adaptive Filter for Integrated Navigation System of FOG-SINS and Star Tracker
Authors: Nassim Bessaad, Qilian Bao, Zhao Jiangkang
Abstract:
The fiber optics gyroscope in the strap-down inertial navigation system (FOG-SINS) suffers from precision degradation due to the influence of random errors. In this work, an enhanced Allan variance (AV) stochastic modeling method combined with discrete wavelet transform (DWT) for signal denoising is implemented to estimate the random process in the FOG signal. Furthermore, we devise a measurement-based iterative adaptive Sage-Husa nonlinear filter with augmented states to integrate a star tracker sensor with SINS. The proposed filter adapts the measurement noise covariance matrix based on the available data. Moreover, the enhanced stochastic modeling scheme is invested in tuning the process noise covariance matrix and the augmented state Gauss-Markov process parameters. Finally, the effectiveness of the proposed filter is investigated by employing the collected data in laboratory conditions. The result shows the filter's improved accuracy in comparison with the conventional Kalman filter (CKF).Keywords: inertial navigation, adaptive filtering, star tracker, FOG
Procedia PDF Downloads 7945110 Modeling of Silicon Window Layers for Solar Cells Based SIGE
Authors: Meriem Boukais, B. Dennai, A. Ould- Abbas
Abstract:
The efficiency of SiGe solar cells might be improved by a wide-band-gap window layer. In this work we were simulated using the one dimensional simulation program called analysis of microelectronic and photonic structures (AMPS-1D). In the modeling, the thickness of silicon window was varied from 80 to 150 nm. The rest of layer’s thicknesses were kept constant, by varying thickness of window layer the simulated device performance was demonstrate in the form of current-voltage (I-V) characteristics and quantum efficiency (QE).Keywords: modeling, SiGe, AMPS-1D, quantum efficiency, conversion, efficiency
Procedia PDF Downloads 72045109 Numerical Study of the Influence of the Primary Stream Pressure on the Performance of the Ejector Refrigeration System Based on Heat Exchanger Modeling
Authors: Elhameh Narimani, Mikhail Sorin, Philippe Micheau, Hakim Nesreddine
Abstract:
Numerical models of the heat exchangers in ejector refrigeration system (ERS) were developed and validated with the experimental data. The models were based on the switched heat exchangers model using the moving boundary method, which were capable of estimating the zones’ lengths, the outlet temperatures of both sides and the heat loads at various experimental points. The developed models were utilized to investigate the influence of the primary flow pressure on the performance of an R245fa ERS based on its coefficient of performance (COP) and exergy efficiency. It was illustrated numerically and proved experimentally that increasing the primary flow pressure slightly reduces the COP while the exergy efficiency goes through a maximum before decreasing.Keywords: Coefficient of Performance, COP, Ejector Refrigeration System, ERS, exergy efficiency (ηII), heat exchangers modeling, moving boundary method
Procedia PDF Downloads 19945108 An Agent-Based Modeling and Simulation of Human Muscle
Authors: Sina Saadati, Mohammadreza Razzazi
Abstract:
In this article, we have tried to present an agent-based model of human muscle. A suitable model of muscle is necessary for the analysis of mankind's movements. It can be used by clinical researchers who study the influence of motion sicknesses, like Parkinson's disease. It is also useful in the development of a prosthesis that receives the electromyography signals and generates force as a reaction. Since we have focused on computational efficiency in this research, the model can compute the calculations very fast. As far as it concerns prostheses, the model can be known as a charge-efficient method. In this paper, we are about to illustrate an agent-based model. Then, we will use it to simulate the human gait cycle. This method can also be done reversely in the analysis of gait in motion sicknesses.Keywords: agent-based modeling and simulation, human muscle, gait cycle, motion sickness
Procedia PDF Downloads 11245107 Field Saturation Flow Measurement Using Dynamic Passenger Car Unit under Mixed Traffic Condition
Authors: Ramesh Chandra Majhi
Abstract:
Saturation flow is a very important input variable for the design of signalized intersections. Saturation flow measurement is well established for homogeneous traffic. However, saturation flow measurement and modeling is a challenging task in heterogeneous characterized by multiple vehicle types and non-lane based movement. Present study focuses on proposing a field procedure for Saturation flow measurement and the effect of typical mixed traffic behavior at the signal as far as non-lane based traffic movement is concerned. Data collected during peak and off-peak hour from five intersections with varying approach width is used for validating the saturation flow model. The insights from the study can be used for modeling saturation flow and delay at signalized intersection in heterogeneous traffic conditions.Keywords: optimization, passenger car unit, saturation flow, signalized intersection
Procedia PDF Downloads 32645106 Artificial Intelligence Assisted Sentiment Analysis of Hotel Reviews Using Topic Modeling
Authors: Sushma Ghogale
Abstract:
With a surge in user-generated content or feedback or reviews on the internet, it has become possible and important to know consumers' opinions about products and services. This data is important for both potential customers and businesses providing the services. Data from social media is attracting significant attention and has become the most prominent channel of expressing an unregulated opinion. Prospective customers look for reviews from experienced customers before deciding to buy a product or service. Several websites provide a platform for users to post their feedback for the provider and potential customers. However, the biggest challenge in analyzing such data is in extracting latent features and providing term-level analysis of the data. This paper proposes an approach to use topic modeling to classify the reviews into topics and conduct sentiment analysis to mine the opinions. This approach can analyse and classify latent topics mentioned by reviewers on business sites or review sites, or social media using topic modeling to identify the importance of each topic. It is followed by sentiment analysis to assess the satisfaction level of each topic. This approach provides a classification of hotel reviews using multiple machine learning techniques and comparing different classifiers to mine the opinions of user reviews through sentiment analysis. This experiment concludes that Multinomial Naïve Bayes classifier produces higher accuracy than other classifiers.Keywords: latent Dirichlet allocation, topic modeling, text classification, sentiment analysis
Procedia PDF Downloads 9645105 Multi-Agent TeleRobotic Security Control System: Requirements Definitions of Multi-Agent System Using The Behavioral Patterns Analysis (BPA) Approach
Authors: Assem El-Ansary
Abstract:
This paper illustrates the event-oriented Behavioral Pattern Analysis (BPA) modeling approach in developing an Multi-Agent TeleRobotic Security Control System (MTSCS). The event defined in BPA is a real-life conceptual entity that is unrelated to any implementation. The major contributions of this research are the Behavioral Pattern Analysis (BPA) modeling methodology, and the development of an interactive software tool (DECISION), which is based on a combination of the Analytic Hierarchy Process (AHP) and the ELECTRE Multi-Criteria Decision Making (MCDM) methods.Keywords: analysis, multi-agent, TeleRobotics control, security, modeling methodology, software modeling, event-oriented, behavioral pattern, use cases
Procedia PDF Downloads 43745104 Handling Complexity of a Complex System Design: Paradigm, Formalism and Transformations
Authors: Hycham Aboutaleb, Bruno Monsuez
Abstract:
Current systems' complexity has reached a degree that requires addressing conception and design issues while taking into account environmental, operational, social, legal, and financial aspects. Therefore, one of the main challenges is the way complex systems are specified and designed. The exponentially growing effort, cost, and time investment of complex systems in modeling phase emphasize the need for a paradigm, a framework, and an environment to handle the system model complexity. For that, it is necessary to understand the expectations of the human user of the model and his limits. This paper presents a generic framework for designing complex systems, highlights the requirements a system model needs to fulfill to meet human user expectations, and suggests a graph-based formalism for modeling complex systems. Finally, a set of transformations are defined to handle the model complexity.Keywords: higraph-based, formalism, system engineering paradigm, modeling requirements, graph-based transformations
Procedia PDF Downloads 40245103 Agent/Group/Role Organizational Model to Simulate an Industrial Control System
Authors: Noureddine Seddari, Mohamed Belaoued, Salah Bougueroua
Abstract:
The modeling of complex systems is generally based on the decomposition of their components into sub-systems easier to handle. This division has to be made in a methodical way. In this paper, we introduce an industrial control system modeling and simulation based on the Multi-Agent System (MAS) methodology AALAADIN and more particularly the underlying conceptual model Agent/Group/Role (AGR). Indeed, in this division using AGR model, the overall system is decomposed into sub-systems in order to improve the understanding of regulation and control systems, and to simplify the implementation of the obtained agents and their groups, which are implemented using the Multi-Agents Development KIT (MAD-KIT) platform. This approach appears to us to be the most appropriate for modeling of this type of systems because, due to the use of MAS, it is possible to model real systems in which very complex behaviors emerge from relatively simple and local interactions between many different individuals, therefore a MAS is well adapted to describe a system from the standpoint of the activity of its components, that is to say when the behavior of the individuals is complex (difficult to describe with equations). The main aim of this approach is the take advantage of the performance, the scalability and the robustness that are intuitively provided by MAS.Keywords: complex systems, modeling and simulation, industrial control system, MAS, AALAADIN, AGR, MAD-KIT
Procedia PDF Downloads 23845102 Modeling and Simulation of Fluid Catalytic Cracking Process
Authors: Sungho Kim, Dae Shik Kim, Jong Min Lee
Abstract:
Fluid catalytic cracking (FCC) process is one of the most important process in modern refinery industry. This paper focuses on the fluid catalytic cracking (FCC) process. As the FCC process is difficult to model well, due to its non linearities and various interactions between its process variables, rigorous process modeling of whole FCC plant is demanded for control and plant-wide optimization of the plant. In this study, a process design for the FCC plant includes riser reactor, main fractionator, and gas processing unit was developed. A reactor model was described based on four-lumped kinetic scheme. Main fractionator, gas processing unit and other process units are designed to simulate real plant data, using a process flow sheet simulator, Aspen PLUS. The custom reactor model was integrated with the process flow sheet simulator to develop an integrated process model.Keywords: fluid catalytic cracking, simulation, plant data, process design
Procedia PDF Downloads 52745101 dynr.mi: An R Program for Multiple Imputation in Dynamic Modeling
Authors: Yanling Li, Linying Ji, Zita Oravecz, Timothy R. Brick, Michael D. Hunter, Sy-Miin Chow
Abstract:
Assessing several individuals intensively over time yields intensive longitudinal data (ILD). Even though ILD provide rich information, they also bring other data analytic challenges. One of these is the increased occurrence of missingness with increased study length, possibly under non-ignorable missingness scenarios. Multiple imputation (MI) handles missing data by creating several imputed data sets, and pooling the estimation results across imputed data sets to yield final estimates for inferential purposes. In this article, we introduce dynr.mi(), a function in the R package, Dynamic Modeling in R (dynr). The package dynr provides a suite of fast and accessible functions for estimating and visualizing the results from fitting linear and nonlinear dynamic systems models in discrete as well as continuous time. By integrating the estimation functions in dynr and the MI procedures available from the R package, Multivariate Imputation by Chained Equations (MICE), the dynr.mi() routine is designed to handle possibly non-ignorable missingness in the dependent variables and/or covariates in a user-specified dynamic systems model via MI, with convergence diagnostic check. We utilized dynr.mi() to examine, in the context of a vector autoregressive model, the relationships among individuals’ ambulatory physiological measures, and self-report affect valence and arousal. The results from MI were compared to those from listwise deletion of entries with missingness in the covariates. When we determined the number of iterations based on the convergence diagnostics available from dynr.mi(), differences in the statistical significance of the covariate parameters were observed between the listwise deletion and MI approaches. These results underscore the importance of considering diagnostic information in the implementation of MI procedures.Keywords: dynamic modeling, missing data, mobility, multiple imputation
Procedia PDF Downloads 16245100 Information Exchange Process Analysis between Authoring Design Tools and Lighting Simulation Tools
Authors: Rudan Xue, Annika Moscati, Rehel Zeleke Kebede, Peter Johansson
Abstract:
Successful buildings’ simulation and analysis inevitably require information exchange between multiple building information modeling (BIM) software. The BIM infor-mation exchange based on IFC is widely used. However, Industry Foundation Classifi-cation (IFC) files are not always reliable and information can get lost when using dif-ferent software for modeling and simulations. In this research, interviews with lighting simulation experts and a case study provided by a company producing lighting devices have been the research methods used to identify the necessary steps and data for suc-cessful information exchange between lighting simulation tools and authoring design tools. Model creation, information exchange, and model simulation have been identi-fied as key aspects for the success of information exchange. The paper concludes with recommendations for improved information exchange and more reliable simulations that take all the needed parameters into consideration.Keywords: BIM, data exchange, interoperability issues, lighting simulations
Procedia PDF Downloads 23745099 Effects of Different Meteorological Variables on Reference Evapotranspiration Modeling: Application of Principal Component Analysis
Authors: Akinola Ikudayisi, Josiah Adeyemo
Abstract:
The correct estimation of reference evapotranspiration (ETₒ) is required for effective irrigation water resources planning and management. However, there are some variables that must be considered while estimating and modeling ETₒ. This study therefore determines the multivariate analysis of correlated variables involved in the estimation and modeling of ETₒ at Vaalharts irrigation scheme (VIS) in South Africa using Principal Component Analysis (PCA) technique. Weather and meteorological data between 1994 and 2014 were obtained both from South African Weather Service (SAWS) and Agricultural Research Council (ARC) in South Africa for this study. Average monthly data of minimum and maximum temperature (°C), rainfall (mm), relative humidity (%), and wind speed (m/s) were the inputs to the PCA-based model, while ETₒ is the output. PCA technique was adopted to extract the most important information from the dataset and also to analyze the relationship between the five variables and ETₒ. This is to determine the most significant variables affecting ETₒ estimation at VIS. From the model performances, two principal components with a variance of 82.7% were retained after the eigenvector extraction. The results of the two principal components were compared and the model output shows that minimum temperature, maximum temperature and windspeed are the most important variables in ETₒ estimation and modeling at VIS. In order words, ETₒ increases with temperature and windspeed. Other variables such as rainfall and relative humidity are less important and cannot be used to provide enough information about ETₒ estimation at VIS. The outcome of this study has helped to reduce input variable dimensionality from five to the three most significant variables in ETₒ modelling at VIS, South Africa.Keywords: irrigation, principal component analysis, reference evapotranspiration, Vaalharts
Procedia PDF Downloads 25645098 A Mathematical-Based Formulation of EEG Fluctuations
Authors: Razi Khalafi
Abstract:
Brain is the information processing center of the human body. Stimuli in form of information are transferred to the brain and then brain makes the decision on how to respond to them. In this research we propose a new partial differential equation which analyses the EEG signals and make a relationship between the incoming stimuli and the brain response to them. In order to test the proposed model, a set of external stimuli applied to the model and the model’s outputs were checked versus the real EEG data. The results show that this model can model the EEG signal well. The proposed model is useful not only for modeling of the EEG signal in case external stimuli but it can be used for the modeling of brain response in case of internal stimuli.Keywords: Brain, stimuli, partial differential equation, response, eeg signal
Procedia PDF Downloads 43145097 A Comparative Study on Creep Modeling in Composites
Authors: Roham Rafiee, Behzad Mazhari
Abstract:
Composite structures, having incredible properties, have gained considerable popularity in the last few decades. Among all types, polymer matrix composites are being used extensively due to their unique characteristics including low weight, convenient fabrication process and low cost. Having polymer as matrix, these type of composites show different creep behavior when compared to metals and even other types of composites since most polymers undergo creep even in room temperature. One of the most challenging topics in creep is to introduce new techniques for predicting long term creep behavior of materials. Depending on the material which is being studied the appropriate method would be different. Methods already proposed for predicting long term creep behavior of polymer matrix composites can be divided into five categories: (1) Analytical Modeling, (2) Empirical Modeling, (3) Superposition Based Modeling (Semi-empirical), (4) Rheological Modeling, (5) Finite Element Modeling. Each of these methods has individual characteristics. Studies have shown that none of the mentioned methods can predict long term creep behavior of all PMC composites in all circumstances (loading, temperature, etc.) but each of them has its own priority in different situations. The reason to this issue can be found in theoretical basis of these methods. In this study after a brief review over the background theory of each method, they are compared in terms of their applicability in predicting long-term behavior of composite structures. Finally, the explained materials are observed through some experimental studies executed by other researchers.Keywords: creep, comparative study, modeling, composite materials
Procedia PDF Downloads 44045096 The Effectiveness of Using Video Modeling Procedures on the ipad to Teach Play Skills Children with ASD
Authors: Esra Orum Cattik
Abstract:
This study evaluated the effects of using video modeling procedures on the iPad to teach play skills to children with autism spectrum disorders. A male student with autism spectrum disorders participated in this study. A multiple baseline-across-skills single-subject design was used to evaluate the effects of using video modeling procedures on the iPad. During baseline, no prompts were presented to participants. In the intervention phase, the teacher gave video model on iPad to the first skill and asked play with toys for him. When the first play skill completed the second play skill began intervention. This procedure continued till all three play skill completed intervention. Finally, the participant learned all three play skills to use video modeling presented on the iPad. Based upon findings of this study, suggestions have been made to future researches.Keywords: autism spectrum disorders, play, play skills, video modeling, single subject design
Procedia PDF Downloads 40545095 Remaining Useful Life (RUL) Assessment Using Progressive Bearing Degradation Data and ANN Model
Authors: Amit R. Bhende, G. K. Awari
Abstract:
Remaining useful life (RUL) prediction is one of key technologies to realize prognostics and health management that is being widely applied in many industrial systems to ensure high system availability over their life cycles. The present work proposes a data-driven method of RUL prediction based on multiple health state assessment for rolling element bearings. Bearing degradation data at three different conditions from run to failure is used. A RUL prediction model is separately built in each condition. Feed forward back propagation neural network models are developed for prediction modeling.Keywords: bearing degradation data, remaining useful life (RUL), back propagation, prognosis
Procedia PDF Downloads 434