Search results for: channel codes
1748 Effects of Watershed Erosion on Stream Channel Formation
Authors: Tiao Chang, Ivan Caballero, Hong Zhou
Abstract:
Streams carry water and sediment naturally by maintaining channel dimensions, pattern, and profile over time. Watershed erosion as a natural process has occurred to contribute sediment to streams over time. The formation of channel dimensions is complex. This study is to relate quantifiable and consistent channel dimensions at the bankfull stage to the corresponding watershed erosion estimation by the Revised Universal Soil Loss Equation (RUSLE). Twelve sites of which drainage areas range from 7 to 100 square miles in the Hocking River Basin of Ohio were selected for the bankfull geometry determinations including width, depth, cross-section area, bed slope, and drainage area. The twelve sub-watersheds were chosen to obtain a good overall representation of the Hocking River Basin. It is of interest to determine how these bankfull channel dimensions are related to the soil erosion of corresponding sub-watersheds. Soil erosion is a natural process that has occurred in a watershed over time. The RUSLE was applied to estimate erosions of the twelve selected sub-watersheds where the bankfull geometry measurements were conducted. These quantified erosions of sub-watersheds are used to investigate correlations with bankfull channel dimensions including discharge, channel width, channel depth, cross-sectional area, and pebble distribution. It is found that drainage area, bankfull discharge and cross-sectional area correlates strongly with watershed erosion well. Furthermore, bankfull width and depth are moderately correlated with watershed erosion while the particle size, D50, of channel bed sediment is not well correlated with watershed erosion.Keywords: watershed, stream, sediment, channel
Procedia PDF Downloads 2881747 Thermal Performance of a Pair of Synthetic Jets Equipped in Microchannel
Authors: J. Mohammadpour, G. E. Lau, S. Cheng, A. Lee
Abstract:
Numerical study was conducted using two synthetic jet actuators attached underneath a micro-channel. By fixing the oscillating frequency and diaphragm amplitude, the effects on the heat transfer within the micro-channel were investigated with two synthetic jets being in-phase and 180° out-of-phase at different orifice spacing. There was a significant benefit identified with two jets being 180° out-of-phase with each other at the orifice spacing of 2 mm. By having this configuration, there was a distinct pattern of vortex forming which disrupts the main channel flow as well as promoting thermal mixing at high velocity within the channel. Therefore, this configuration achieved higher cooling performance compared to the other cases studied in terms of the reduction in the maximum temperature and cooling uniformity in the silicon wafer.Keywords: synthetic jets, microchannel, electronic cooling, computational fluid dynamics
Procedia PDF Downloads 1981746 An Improved Data Aided Channel Estimation Technique Using Genetic Algorithm for Massive Multi-Input Multiple-Output
Authors: M. Kislu Noman, Syed Mohammed Shamsul Islam, Shahriar Hassan, Raihana Pervin
Abstract:
With the increasing rate of wireless devices and high bandwidth operations, wireless networking and communications are becoming over crowded. To cope with such crowdy and messy situation, massive MIMO is designed to work with hundreds of low costs serving antennas at a time as well as improve the spectral efficiency at the same time. TDD has been used for gaining beamforming which is a major part of massive MIMO, to gain its best improvement to transmit and receive pilot sequences. All the benefits are only possible if the channel state information or channel estimation is gained properly. The common methods to estimate channel matrix used so far is LS, MMSE and a linear version of MMSE also proposed in many research works. We have optimized these methods using genetic algorithm to minimize the mean squared error and finding the best channel matrix from existing algorithms with less computational complexity. Our simulation result has shown that the use of GA worked beautifully on existing algorithms in a Rayleigh slow fading channel and existence of Additive White Gaussian Noise. We found that the GA optimized LS is better than existing algorithms as GA provides optimal result in some few iterations in terms of MSE with respect to SNR and computational complexity.Keywords: channel estimation, LMMSE, LS, MIMO, MMSE
Procedia PDF Downloads 1911745 On the Free-Surface Generated by the Flow over an Obstacle in a Hydraulic Channel
Authors: M. Bouhadef, K. Bouzelha-Hammoum, T. Guendouzen-Dabouz, A. Younsi, T. Zitoun
Abstract:
The aim of this paper is to report the different experimental studies, conducted in the laboratory, dealing with the flow in the presence of an obstacle lying in a rectangular hydraulic channel. Both subcritical and supercritical regimes are considered. Generally, when considering the theoretical problem of the free-surface flow, in a fluid domain of finite depth, due to the presence of an obstacle, we suppose that the water is an inviscid fluid, which means that there is no sheared velocity profile, but constant upstream. In a hydraulic channel, it is impossible to satisfy this condition. Indeed, water is a viscous fluid and its velocity is null at the bottom. The two configurations are presented, i.e. a flow over an obstacle and a towed obstacle in a resting fluid.Keywords: experiments, free-surface flow, hydraulic channel, subcritical regime, supercritical flow
Procedia PDF Downloads 3071744 GE as a Channel Material in P-Type MOSFETs
Authors: S. Slimani, B. Djellouli
Abstract:
Novel materials and innovative device structures has become necessary for the future of CMOS. High mobility materials like Ge is a very promising material due to its high mobility and is being considered to replace Si in the channel to achieve higher drive currents and switching speeds .Various approaches to circumvent the scaling limits to benchmark the performance of nanoscale MOSFETS with different channel materials, the optimized structure is simulated within nextnano in order to highlight the quantum effects on DG MOSFETs when Si is replaced by Ge and SiO2 is replaced by ZrO2 and HfO2as the gate dielectric. The results have shown that Ge MOSFET have the highest mobility and high permittivity oxides serve to maintain high drive current. The simulations show significant improvements compared with DGMOSFET using SiO2 gate dielectric and Si channel.Keywords: high mobility, high-k, quantum effects, SOI-DGMOSFET
Procedia PDF Downloads 3671743 Statistical Channel Modeling for Multiple-Input-Multiple-Output Communication System
Authors: M. I. Youssef, A. E. Emam, M. Abd Elghany
Abstract:
The performance of wireless communication systems is affected mainly by the environment of its associated channel, which is characterized by dynamic and unpredictable behavior. In this paper, different statistical earth-satellite channel models are studied with emphasize on two main models, first is the Rice-Log normal model, due to its representation for the environment including shadowing and multi-path components that affect the propagated signal along its path, and a three-state model that take into account different fading conditions (clear area, moderate shadow and heavy shadowing). The provided models are based on AWGN, Rician, Rayleigh, and log-normal distributions were their Probability Density Functions (PDFs) are presented. The transmission system Bit Error Rate (BER), Peak-Average-Power Ratio (PAPR), and the channel capacity vs. fading models are measured and analyzed. These simulations are implemented using MATLAB tool, and the results had shown the performance of transmission system over different channel models.Keywords: fading channels, MIMO communication, RNS scheme, statistical modeling
Procedia PDF Downloads 1491742 Parametric Study on Water-Cooling Plates to Improve Cooling Performance on 18650 Li-Ion Battery
Authors: Raksit Nanthatanti, Jarruwat Charoensuk, S. Hirai, Manop Masomtop
Abstract:
In this study, the effect of channel geometry and operating circumstances on a liquid cooling plate for Lithium-ion Battery modules has been investigated Inlet temperature, water velocity, and channel count were the main factors. According to the passage, enhancing the number of cooling channels[2,3,4,6channelperbases] will affect water flow distribution caused by varying the velocity inlet inside the cooling block[0.5,1.0,1.5,2.0 m/sec] and intake temperatures[25,30,35,40oC], The findings indicate that the battery’s temperature drops as the number of channels increases. The maximum battery's operating temperature [45 oC] rises, but ∆t is needed to be less than 5 oC [v≤1m/sec]. Maximum temperature and local temperature difference of the battery change significantly with the change of the velocity inlet in the cooling channel and its thermal conductivity. The results of the simulation will help to increase cooling efficiency on the cooling system for Li-ion Battery based on a Mini channel in a liquid-cooling configurationKeywords: cooling efficiency, channel count, lithium-ion battery, operating
Procedia PDF Downloads 1021741 Effect of Channel Variation of Two-Dimensional Water Tunnel to Study Fluid Dynamics Phenomenon
Authors: Rizka Yunita, Mas Aji Rizki Wijayanto
Abstract:
Computational fluid dynamics (CFD) is the solution to explain how fluid dynamics behavior. In this work, we obtain the effect of channel width of two-dimensional fluid visualization. Using a horizontal water tunnel and flowing soap film, we got a visualization of continuous film that can be observe a graphical overview of the flow that occurs on a space or field in which the fluid flow. The horizontal water tunnel we used, divided into three parts, expansion area, parallel area that used to test the data, and contraction area. The width of channel is the boundary of parallel area with the originally width of 7.2 cm, and the variation of channel width we observed is about 1 cm and its times. To compute the velocity, vortex shedding, and other physical parameters of fluid, we used the cyclinder circular as an obstacle to create a von Karman vortex in fluid and analyzed that phenomenon by using Particle Imaging Velocimetry (PIV) method and comparing Reynolds number and Strouhal number from the visualization we got. More than width the channel, the film is more turbulent and have a separation zones that occurs of uncontinuous flowing fluid.Keywords: flow visualization, width of channel, vortex, Reynolds number, Strouhal number
Procedia PDF Downloads 3791740 Anticipation of Bending Reinforcement Based on Iranian Concrete Code Using Meta-Heuristic Tools
Authors: Seyed Sadegh Naseralavi, Najmeh Bemani
Abstract:
In this paper, different concrete codes including America, New Zealand, Mexico, Italy, India, Canada, Hong Kong, Euro Code and Britain are compared with the Iranian concrete design code. First, by using Adaptive Neuro Fuzzy Inference System (ANFIS), the codes having the most correlation with the Iranian ninth issue of the national regulation are determined. Consequently, two anticipated methods are used for comparing the codes: Artificial Neural Network (ANN) and Multi-variable regression. The results show that ANN performs better. Predicting is done by using only tensile steel ratio and with ignoring the compression steel ratio.Keywords: adaptive neuro fuzzy inference system, anticipate method, artificial neural network, concrete design code, multi-variable regression
Procedia PDF Downloads 2861739 Investigation of Threshold Voltage Shift in Gamma Irradiated N-Channel and P-Channel MOS Transistors of CD4007
Authors: S. Boorboor, S. A. H. Feghhi, H. Jafari
Abstract:
The ionizing radiations cause different kinds of damages in electronic components. MOSFETs, most common transistors in today’s digital and analog circuits, are severely sensitive to TID damage. In this work, the threshold voltage shift of CD4007 device, which is an integrated circuit including P-channel and N-channel MOS transistors, was investigated for low dose gamma irradiation under different gate bias voltages. We used linear extrapolation method to extract threshold voltage from ID-VG characteristic curve. The results showed that the threshold voltage shift was approximately 27.5 mV/Gy for N-channel and 3.5 mV/Gy for P-channel transistors at the gate bias of |9 V| after irradiation by Co-60 gamma ray source. Although the sensitivity of the devices under test were strongly dependent to biasing condition and transistor type, the threshold voltage shifted linearly versus accumulated dose in all cases. The overall results show that the application of CD4007 as an electronic buffer in a radiation therapy system is limited by TID damage. However, this integrated circuit can be used as a cheap and sensitive radiation dosimeter for accumulated dose measurement in radiation therapy systems.Keywords: threshold voltage shift, MOS transistor, linear extrapolation, gamma irradiation
Procedia PDF Downloads 2831738 Anthropogenic Impact on Migration Process of River Yamuna in Delhi-NCR Using Geospatial Techniques
Authors: Mohd Asim, K. Nageswara Rao
Abstract:
The present work was carried out on River Yamuna passing through Delhi- National Capital Region (Delhi-NCR) of India for a stretch of about 130 km to assess the anthropogenic impact on the channel migration process for a period of 200 years with the help of satellite data and topographical maps with integration of geographic information system environment. Digital Shoreline Analysis System (DSAS) application was used to quantify river channel migration in ArcGIS environment. The average river channel migration was calculated to be 22.8 m/year for the entire study area. River channel migration was found to be moving in westward and eastward direction. Westward migration is more than 4 km maximum in length and eastward migration is about 4.19 km. The river has migrated a total of 32.26 sq. km of area. The results reveal that the river is being impacted by various human activities. The impact indicators include engineering structures, sand mining, embankments, urbanization, land use/land cover, canal network. The DSAS application was also used to predict the position of river channel in future for 2032 and 2042 by analyzing the past and present rate and direction of movement. The length of channel in 2032 and 2042 will be 132.5 and 141.6 km respectively. The channel will migrate maximum after crossing Okhla Barrage near Faridabad for about 3.84 sq. km from 2022 to 2042 from west to east.Keywords: river migration, remote sensing, river Yamuna, anthropogenic impacts, DSAS, Delhi-NCR
Procedia PDF Downloads 1241737 A Neurosymbolic Learning Method for Uplink LTE-A Channel Estimation
Authors: Lassaad Smirani
Abstract:
In this paper we propose a Neurosymbolic Learning System (NLS) as a channel estimator for Long Term Evolution Advanced (LTE-A) uplink. The proposed system main idea based on Neural Network has modules capable of performing bidirectional information transfer between symbolic module and connectionist module. We demonstrate various strengths of the NLS especially the ability to integrate theoretical knowledge (rules) and experiential knowledge (examples), and to make an initial knowledge base (rules) converted into a connectionist network. Also to use empirical knowledge witch by learning will have the ability to revise the theoretical knowledge and acquire new one and explain it, and finally the ability to improve the performance of symbolic or connectionist systems. Compared with conventional SC-FDMA channel estimation systems, The performance of NLS in terms of complexity and quality is confirmed by theoretical analysis and simulation and shows that this system can make the channel estimation accuracy improved and bit error rate decreased.Keywords: channel estimation, SC-FDMA, neural network, hybrid system, BER, LTE-A
Procedia PDF Downloads 3941736 Magnetohydrodynamic Flows in a Conduit with Multiple Channels under a Magnetic Field Applied Perpendicular to the Plane of Flow
Authors: Yang Luo, Chang Nyung Kim
Abstract:
This study numerically analyzes a steady-state, three-dimensional liquid-metal magnetohydrodynamic flows in a conduit with multiple channels under a uniform magnetic field. The geometry of the conduit is of a four-parallel-channels system including one inflow channel and three outflow channels. The liquid-metal flows in the inflow channel, then turns 1800 in the transition segment, finally flows into three different outflow channels simultaneously. This kind of channel system can induce counter flow and co-flow, which is rarely investigated before. The axial velocity in the side layer near the first partitioning wall, which is located between the inflow channel and the first outflow channel, is the highest. ‘M-shaped’ velocity profiles are obtained in the side layers of the inflow and outflow channels. The interdependency of the current, fluid velocity, pressure, electric potential is examined in order to describe the electromagnetic characteristics of the liquid-metal flows.Keywords: liquid-metal, multiple channels, magnetic field, magnetohydrodynamic
Procedia PDF Downloads 2811735 Analytical Solution of Specific Energy Equation in Exponential Channels
Authors: Abdulrahman Abdulrahman
Abstract:
The specific energy equation has many applications in practical channels, such as exponential channels. In this paper, the governing equation of alternate depth ratio for exponential channels, in general, was investigated towards obtaining analytical solution for the alternate depth ratio in three exponential channel shapes, viz., rectangular, triangular, and parabolic channels. The alternate depth ratio for rectangular channels is quadratic; hence it is very simple to solve. While for parabolic and triangular channels, the alternate depth ratio is cubic and quartic equations, respectively, analytical solution for these equations may be achieved easily for a given Froud number. Different examples are solved to prove the efficiency of the proposed solution. Such analytical solution can be easily used in natural rivers and most of practical channels.Keywords: alternate depth, analytical solution, specific energy, parabolic channel, rectangular channel, triangular channel, open channel flow
Procedia PDF Downloads 1991734 Deep Learning-Based Channel Estimation for RIS-Assisted Unmanned Aerial Vehicle-Enabled Wireless Communication System
Authors: Getaneh Berie Tarekegn
Abstract:
Wireless communication via unmanned aerial vehicles (UAVs) has drawn a great deal of attention due to its flexibility in establishing line-of-sight (LoS) communications. However, in complex urban and dynamic environments, the movement of UAVs can be blocked by trees and high-rise buildings that obstruct directional paths. With reconfigurable intelligent surfaces (RIS), this problem can be effectively addressed. To achieve this goal, accurate channel estimation in RIS-assisted UAV-enabled wireless communications is crucial. This paper proposes an accurate channel estimation model using long short-term memory (LSTM) for a multi-user RIS-assisted UAV-enabled wireless communication system. According to simulation results, LSTM can improve the channel estimation performance of RIS-assisted UAV-enabled wireless communication.Keywords: channel estimation, reconfigurable intelligent surfaces, long short-term memory, unmanned aerial vehicles
Procedia PDF Downloads 571733 Performance Evaluation of a Minimum Mean Square Error-Based Physical Sidelink Share Channel Receiver under Fading Channel
Authors: Yang Fu, Jaime Rodrigo Navarro, Jose F. Monserrat, Faiza Bouchmal, Oscar Carrasco Quilis
Abstract:
Cellular Vehicle to Everything (C-V2X) is considered a promising solution for future autonomous driving. From Release 16 to Release 17, the Third Generation Partnership Project (3GPP) has introduced the definitions and services for 5G New Radio (NR) V2X. Experience from previous generations has shown that establishing a simulator for C-V2X communications is an essential preliminary step to achieve reliable and stable communication links. This paper proposes a complete framework of a link-level simulator based on the 3GPP specifications for the Physical Sidelink Share Channel (PSSCH) of the 5G NR Physical Layer (PHY). In this framework, several algorithms in the receiver part, i.e., sliding window in channel estimation and Minimum Mean Square Error (MMSE)-based equalization, are developed. Finally, the performance of the developed PSSCH receiver is validated through extensive simulations under different assumptions.Keywords: C-V2X, channel estimation, link-level simulator, sidelink, 3GPP
Procedia PDF Downloads 1311732 Longitudinal Vortices Mixing in Three-Stream Micromixers with Two Inlets
Authors: Yi-Tun Huang, Chih-Yang Wu, Shu-Wei Huang
Abstract:
In this work, we examine fluid mixing in a full three-stream mixing channel with longitudinal vortex generators (LVGs) built on the channel bottom by numerical simulation and experiment. The effects of the asymmetrical arrangement and the attack angle of the LVGs on fluid mixing are investigated. The results show that the micromixer with LVGs at a small asymmetry index (defined by the ratio of the distance from the center plane of the gap between the winglets to the center plane of the main channel to the width of the main channel) is superior to the micromixer with symmetric LVGs and that with LVGs at a large asymmetry index. The micromixer using five mixing modules of the LVGs with an attack angle between 16.5 degrees and 22.5 degrees can achieve excellent mixing over a wide range of Reynolds numbers. Here, we call a section of channel with two pairs of staggered asymmetrical LVGs a mixing module. Besides, the micromixer with LVGs at a small attack angle is more efficient than that with a larger attack angle when pressure losses are taken into account.Keywords: microfluidics, mixing, longitudinal vortex generators, two stream interfaces
Procedia PDF Downloads 5211731 Prediction of Boundary Shear Stress with Gradually Tapering Flood Plains
Authors: Spandan Sahu, Amiya Kumar Pati, Kishanjit Kumar Khatua
Abstract:
River is the main source of water. It is a form of natural open channel which gives rise to many complex phenomenon of sciences that needs to be tackled such as the critical flow conditions, boundary shear stress and depth averaged velocity. The development of society more or less solely depends upon the flow of rivers. The rivers are major sources of many sediments and specific ingredients which are much essential for human beings. During floods, part of a river is carried by the simple main channel and rest is carried by flood plains. For such compound asymmetric channels, the flow structure becomes complicated due to momentum exchange between main channel and adjoining flood plains. Distribution of boundary shear in subsections provides us with the concept of momentum transfer between the interface of main channel and the flood plains. Experimentally, to get better data with accurate results are very complex because of the complexity of the problem. Hence, Conveyance Estimation System (CES) software has been used to tackle the complex processes to determine the shear stresses at different sections of an open channel having asymmetric flood plains on both sides of the main channel and the results are compared with the symmetric flood plains for various geometrical shapes and flow conditions. Error analysis is also performed to know the degree of accuracy of the model implemented.Keywords: depth average velocity, non prismatic compound channel, relative flow depth , velocity distribution
Procedia PDF Downloads 1221730 Investigation of Heat Transfer by Natural Convection in an Open Channel
Authors: Mahmoud S. Ahmed, Hany A. Mohamed, Mohamed A. Omara, Mohamed F. Abdeen
Abstract:
Experimental study of natural convection heat transfer inside smooth and rough surfaces of vertical and inclined equilateral triangular channels of different inclination angles with a uniformly heated surface are performed. The inclination angle is changed from 15º to 90º. Smooth and rough surface of average roughness (0.02 mm) are used and their effect on the heat transfer characteristics are studied. The local and average heat transfer coefficients and Nusselt number are obtained for smooth and rough channels at different heat flux values, different inclination angles and different Rayleigh numbers (Ra) 6.48 × 105 ≤ Ra ≤ 4.78 × 106. The results show that the local Nusselt number decreases with increase of axial distance from the lower end of the triangular channel to a point near the upper end of channel, and then, it slightly increases. Higher values of local Nusselt number for rough channel along the axial distance compared with the smooth channel. The average Nusselt number of rough channel is higher than that of smooth channel by about 8.1% for inclined case at θ = 45o and 10% for vertical case. The results obtained are correlated using dimensionless groups for both rough and smooth surfaces of the inclined and vertical triangular channels.Keywords: natural heat transfer convection, constant heat flux, open channels, heat transfer
Procedia PDF Downloads 3931729 Development of Lead-Bismuth Eutectic Sub-Channel Code Available for Wire Spacer
Authors: Qi Lu, Jian Deng, Daishun Huang, Chao Guo
Abstract:
The lead cooled fast reactor is considered as one of the most potential Generation IV nuclear systems due to the low working pressure, the appreciable neutron economy, and the considerable passive characteristics. Meanwhile, the lead bismuth eutectic (LBE) has the related advantages of lead with the weaker corrosiveness, which has been paid much attention by recent decades. Moreover, the sub-channel code is a necessary analysis tool for the reactor thermal-hydraulic design and safety analysis, which has been developed combined with the accumulation of LBE experimental data and the understanding of physical phenomena. In this study, a sub-channel code available for LBE was developed, and the corresponding geometric characterization method of typical sub-channels was described in detail, especially for for the fuel assembly with wire spacer. As for this sub-channel code, the transversal thermal conduction through gap was taken into account. In addition, the physical properties, the heat transfer model, the flow resistance model and the turbulent mixing model were analyzed. Finally, the thermal-hydraulic experiments of LBE conducted on THEADES (THErmal-hydraulics and Ads DESign) were selected as the evaluation data of this sub-channel code, including 19 rods with wire spacer, and the calculated results were in good agreement with the experimental results.Keywords: lead bismuth eutectic, sub-channel code, wire spacer, transversal thermal conduction
Procedia PDF Downloads 1311728 Design Guidelines for URM Infills and Effect of Construction Sequence on Seismic Performance of Code Compliant RC Frame Buildings
Authors: Putul Haldar, Yogendra Singh, D. K. Paul
Abstract:
Un-Reinforced Masonry (URM) infilled RC framed buildings are the most common construction practice for modern multi-storey buildings in India like many other parts of the world. Although the behavior and failure pattern of the global structure changes significantly due to infill-frame interaction, the general design practice is to treat them as non-structural elements and their stiffness, strength and interaction with frame is often ignored, as it is difficult to simulate. Indian Standard, like many other major national codes, does not provide any explicit guideline for modeling of infills. This paper takes a stock of controlling design provisions in some of the major national seismic design codes (BIS 2002; CEN 2004; NZS-4230 2004; ASCE-41 2007) to ensure the desired seismic performance of infilled frame. Most of the national codes on seismic design of buildings still lack in adequate guidelines on modeling and design of URM infilled frames results in variable assumption in analysis and design. This paper, using nonlinear pushover analysis, also presents the effect of one of such assumptions of conventional ‘simultaneous’ analysis procedure of infilled frame on the seismic performance of URM infilled RC frame buildings.Keywords: URM infills, RC frame, seismic design codes, construction sequence of infilled frame
Procedia PDF Downloads 3891727 Estimation of Coefficient of Discharge of Side Trapezoidal Labyrinth Weir Using Group Method of Data Handling Technique
Authors: M. A. Ansari, A. Hussain, A. Uddin
Abstract:
A side weir is a flow diversion structure provided in the side wall of a channel to divert water from the main channel to a branch channel. The trapezoidal labyrinth weir is a special type of weir in which crest length of the weir is increased to pass higher discharge. Experimental and numerical studies related to the coefficient of discharge of trapezoidal labyrinth weir in an open channel have been presented in the present study. Group Method of Data Handling (GMDH) with the transfer function of quadratic polynomial has been used to predict the coefficient of discharge for the side trapezoidal labyrinth weir. A new model is developed for coefficient of discharge of labyrinth weir by regression method. Generalized models for predicting the coefficient of discharge for labyrinth weir using Group Method of Data Handling (GMDH) network have also been developed. The prediction based on GMDH model is more satisfactory than those given by traditional regression equations.Keywords: discharge coefficient, group method of data handling, open channel, side labyrinth weir
Procedia PDF Downloads 1601726 Overhead Reduction by Channel Estimation Using Linear Interpolation for Single Carrier Frequency Domain Equalization Transmission
Authors: Min-Su Song, Haeng-Bok Kil, Eui-Rim Jeong
Abstract:
This paper proposes a new method to reduce the overhead by pilots for single carrier frequency domain equalization (SC-FDE) transmission. In the conventional SC-FDE transmission structure, the overhead by transmitting pilot is heavy because the pilot are transmitted at every SC-FDE block. The proposed SC-FDE structure has fewer pilots and many SC-FCE blocks are transmitted between pilots. The channel estimation and equalization is performed at the pilot period and the channels between pilots are estimated through linear interpolation. This reduces the pilot overhead by reducing the pilot transmission compared with the conventional structure, and enables reliable channel estimation and equalization.Keywords: channel estimation, linear interpolation, pilot overhead, SC-FDE
Procedia PDF Downloads 2731725 Deep Learning-Based Channel Estimation for Reconfigurable Intelligent Surface-Assisted Unmanned Aerial Vehicle-Enabled Wireless Communication System
Authors: Getaneh Berie Tarekegn
Abstract:
Wireless communication via unmanned aerial vehicles (UAVs) has drawn a great deal of attention due to its flexibility in establishing line-of-sight (LoS) communications. However, in complex urban and dynamic environments, the movement of UAVs can be blocked by trees and high-rise buildings that obstruct directional paths. With reconfigurable intelligent surfaces (RIS), this problem can be effectively addressed. To achieve this goal, accurate channel estimation in RIS-assisted UAV-enabled wireless communications is crucial. This paper proposes an accurate channel estimation model using long short-term memory (LSTM) for a multi-user RIS-assisted UAV-enabled wireless communication system. According to simulation results, LSTM can improve the channel estimation performance of RIS-assisted UAV-enabled wireless communication.Keywords: channel estimation, reconfigurable intelligent surfaces, long short-term memory, unmanned aerial vehicles
Procedia PDF Downloads 1121724 A Quinary Coding and Matrix Structure Based Channel Hopping Algorithm for Blind Rendezvous in Cognitive Radio Networks
Authors: Qinglin Liu, Zhiyong Lin, Zongheng Wei, Jianfeng Wen, Congming Yi, Hai Liu
Abstract:
The multi-channel blind rendezvous problem in distributed cognitive radio networks (DCRNs) refers to how users in the network can hop to the same channel at the same time slot without any prior knowledge (i.e., each user is unaware of other users' information). The channel hopping (CH) technique is a typical solution to this blind rendezvous problem. In this paper, we propose a quinary coding and matrix structure-based CH algorithm called QCMS-CH. The QCMS-CH algorithm can guarantee the rendezvous of users using only one cognitive radio in the scenario of the asynchronous clock (i.e., arbitrary time drift between the users), heterogeneous channels (i.e., the available channel sets of users are distinct), and symmetric role (i.e., all users play a same role). The QCMS-CH algorithm first represents a randomly selected channel (denoted by R) as a fixed-length quaternary number. Then it encodes the quaternary number into a quinary bootstrapping sequence according to a carefully designed quaternary-quinary coding table with the prefix "R00". Finally, it builds a CH matrix column by column according to the bootstrapping sequence and six different types of elaborately generated subsequences. The user can access the CH matrix row by row and accordingly perform its channel, hoping to attempt rendezvous with other users. We prove the correctness of QCMS-CH and derive an upper bound on its Maximum Time-to-Rendezvous (MTTR). Simulation results show that the QCMS-CH algorithm outperforms the state-of-the-art in terms of the MTTR and the Expected Time-to-Rendezvous (ETTR).Keywords: channel hopping, blind rendezvous, cognitive radio networks, quaternary-quinary coding
Procedia PDF Downloads 911723 Mitigating CO2 Emissions in Developing Countries: The Role of Foreign Aid
Authors: Mohamed Boly
Abstract:
This paper investigates the link between foreign aid and environmental protection, specifically CO2 emissions, in aid recipient countries. Conflicting results exist in the literature regarding the environmental impact of foreign aid. We come to reconcile them, using Project-Level Aid Data with environment codes, over the 1980- 2010 period. The disaggregation of aid according to the environmental codes, show why the results of previous literature remain very mixed. Moreover, we find that the effect of environmental aid is conditioned by some specific characteristics of the recipient country, independently of the donor.Keywords: foreign aid, green aid, interactive effects, pollution
Procedia PDF Downloads 3051722 Using TRACE, PARCS, and SNAP Codes to Analyze the Load Rejection Transient of ABWR
Authors: J. R. Wang, H. C. Chang, A. L. Ho, J. H. Yang, S. W. Chen, C. Shih
Abstract:
The purpose of the study is to analyze the load rejection transient of ABWR by using TRACE, PARCS, and SNAP codes. This study has some steps. First, using TRACE, PARCS, and SNAP codes establish the model of ABWR. Second, the key parameters are identified to refine the TRACE/PARCS/SNAP model further in the frame of a steady state analysis. Third, the TRACE/PARCS/SNAP model is used to perform the load rejection transient analysis. Finally, the FSAR data are used to compare with the analysis results. The results of TRACE/PARCS are consistent with the FSAR data for the important parameters. It indicates that the TRACE/PARCS/SNAP model of ABWR has a good accuracy in the load rejection transient.Keywords: ABWR, TRACE, PARCS, SNAP
Procedia PDF Downloads 1971721 MMSE-Based Beamforming for Chip Interleaved CDMA in Aeronautical Mobile Radio Channel
Authors: Sherif K. El Dyasti, Esam A. Hagras, Adel E. El-Hennawy
Abstract:
This paper addresses the performance of antenna array beam-forming on Chip-Interleaved Code Division Multiple Access (CI_CDMA) system based on Minimum Mean Square Error (MMSE) detector in aeronautical mobile radio channel. Multipath fading, Doppler shifts caused by the speed of the aircraft, and Multiple Access Interference (MAI) are the most important reasons that affect and reduce the performance of aeronautical system. In this paper, we suggested the CI-CDMA with antenna array to combat this fading and improve the bit error rate (BER) performance. We further evaluate the performance of the proposed system in the four standard scenarios in aeronautical mobile radio channel.Keywords: aeronautical channel, CI-CDMA, beamforming, communication, information
Procedia PDF Downloads 4181720 Numerical Solution of Manning's Equation in Rectangular Channels
Authors: Abdulrahman Abdulrahman
Abstract:
When the Manning equation is used, a unique value of normal depth in the uniform flow exists for a given channel geometry, discharge, roughness, and slope. Depending on the value of normal depth relative to the critical depth, the flow type (supercritical or subcritical) for a given characteristic of channel conditions is determined whether or not flow is uniform. There is no general solution of Manning's equation for determining the flow depth for a given flow rate, because the area of cross section and the hydraulic radius produce a complicated function of depth. The familiar solution of normal depth for a rectangular channel involves 1) a trial-and-error solution; 2) constructing a non-dimensional graph; 3) preparing tables involving non-dimensional parameters. Author in this paper has derived semi-analytical solution to Manning's equation for determining the flow depth given the flow rate in rectangular open channel. The solution was derived by expressing Manning's equation in non-dimensional form, then expanding this form using Maclaurin's series. In order to simplify the solution, terms containing power up to 4 have been considered. The resulted equation is a quartic equation with a standard form, where its solution was obtained by resolving this into two quadratic factors. The proposed solution for Manning's equation is valid over a large range of parameters, and its maximum error is within -1.586%.Keywords: channel design, civil engineering, hydraulic engineering, open channel flow, Manning's equation, normal depth, uniform flow
Procedia PDF Downloads 2211719 Heat and Mass Transfer of an Oscillating Flow in a Porous Channel with Chemical Reaction
Authors: Zahra Neffah, Henda Kahalerras
Abstract:
A numerical study is made in a parallel-plate porous channel subjected to an oscillating flow and an exothermic chemical reaction on its walls. The flow field in the porous region is modeled by the Darcy–Brinkman–Forchheimer model and the finite volume method is used to solve the governing equations. The effects of the modified Frank-Kamenetskii (FKm) and Damköhler (Dm) numbers, the amplitude of oscillation (A), and the Strouhal number (St) are examined. The main results show an increase of heat and mass transfer rates with A and St, and their decrease with FKm and Dm.Keywords: chemical reaction, heat and mass transfer, oscillating flow, porous channel
Procedia PDF Downloads 413