Search results for: simulation parameters
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12440

Search results for: simulation parameters

530 Marine Environmental Monitoring Using an Open Source Autonomous Marine Surface Vehicle

Authors: U. Pruthviraj, Praveen Kumar R. A. K. Athul, K. V. Gangadharan, S. Rao Shrikantha

Abstract:

An open source based autonomous unmanned marine surface vehicle (UMSV) is developed for some of the marine applications such as pollution control, environmental monitoring and thermal imaging. A double rotomoulded hull boat is deployed which is rugged, tough, quick to deploy and moves faster. It is suitable for environmental monitoring, and it is designed for easy maintenance. A 2HP electric outboard marine motor is used which is powered by a lithium-ion battery and can also be charged from a solar charger. All connections are completely waterproof to IP67 ratings. In full throttle speed, the marine motor is capable of up to 7 kmph. The motor is integrated with an open source based controller using cortex M4F for adjusting the direction of the motor. This UMSV can be operated by three modes: semi-autonomous, manual and fully automated. One of the channels of a 2.4GHz radio link 8 channel transmitter is used for toggling between different modes of the USMV. In this electric outboard marine motor an on board GPS system has been fitted to find the range and GPS positioning. The entire system can be assembled in the field in less than 10 minutes. A Flir Lepton thermal camera core, is integrated with a 64-bit quad-core Linux based open source processor, facilitating real-time capturing of thermal images and the results are stored in a micro SD card which is a data storage device for the system. The thermal camera is interfaced to an open source processor through SPI protocol. These thermal images are used for finding oil spills and to look for people who are drowning at low visibility during the night time. A Real Time clock (RTC) module is attached with the battery to provide the date and time of thermal images captured. For the live video feed, a 900MHz long range video transmitter and receiver is setup by which from a higher power output a longer range of 40miles has been achieved. A Multi-parameter probe is used to measure the following parameters: conductivity, salinity, resistivity, density, dissolved oxygen content, ORP (Oxidation-Reduction Potential), pH level, temperature, water level and pressure (absolute).The maximum pressure it can withstand 160 psi, up to 100m. This work represents a field demonstration of an open source based autonomous navigation system for a marine surface vehicle.

Keywords: open source, autonomous navigation, environmental monitoring, UMSV, outboard motor, multi-parameter probe

Procedia PDF Downloads 215
529 Aloe vera Prevents Injuries Induced by Whole Body X-ray Irradiation in Rodents

Authors: Shashi Bala, Neha A. Chugh, Subhash C. Bansal, Mohal L. Garg, Ashwani Koul

Abstract:

Purpose: The present study was designed to evaluate the radioprotective efficacy of Aloe vera from whole body X-ray exposure in rodents. Materials and Methods: For this purpose, after on week’s acclimatization, male balb/c mice procured from Central Animal House, Panjab University, Chandigarh (India), were divided into four groups: Group I mice served as control. Group II mice were orally administrated Aloe vera pulp extract (50 mg/ kg body weight) on alternate days for 30 days. Group III mice were subjected to whole body X-ray irradiation to cumulative dose of 2Gy (0.258Gy twice a day for four days in the last week). Group IV animals were pretreated with Aloe vera pulp extract on alternate days as in Group II and in the last week of the study, they were exposed to X-ray as in Group III. Results: Spleen of X-ray irradiated mice showed histopathological alterations accompanied with enhanced activity of lactate dehydrogenase (LDH) in serum. Elevated levels of reactive oxygen species (ROS), lipid peroxidation (LPO), enhanced activities in Glutathione based enzymes such as Glutathione peroxidase (GSH-Px), Glutathione reductase (GR), Catalase (CAT), Superoxide dismutase (SOD) associated with depletion in reduced Glutathione (GSH) concentration were observed after X-ray exposure in blood plasma and spleen.. Pro-inflammatory cytokines like tumor necrosis factors (TNF-α) and Inteleukin-6 (IL-6) levels were also found to be enhanced in serum of irradiated mice. Irradiation-induced significant elevation in Total leucocyte counts (TLC), neutrophil counts and decline in platelet counts, associated with unaltered levels of red blood cell counts (RBC’s) and haemoglobin (Hb) in various treatment groups. Clastogenic damage and apoptosis was also found to be increase in splenic tissue of X-ray exposed mice as assessed by micronucleus and TUNEL assay. However, X-ray irradiated animals administered with Aloe vera revealed significant improvement in levels of ROS/ LPO, LDH activity, and antioxidant mechanism. Aloe vera pretreated animals exhibited less severe damage, and early recovery in micronucleated cells, hematological parameters, apoptotic cells and inflammatory markers as compared to X-ray exposed mice. Conclusion: These results indicate that the radioprotective potential of Aloe vera against X-ray induced damage. This may be due to its free radical scavenging, antioxidant, anti-apoptotic and anti-inflammatory properties.

Keywords: aloe vera, antioxidant defense system, lactate dehydrogenase (LDH), micronucleus assay, x-ray

Procedia PDF Downloads 173
528 Upward Spread Forced Smoldering Phenomenon: Effects and Applications

Authors: Akshita Swaminathan, Vinayak Malhotra

Abstract:

Smoldering is one of the most persistent types of combustion which can take place for very long periods (hours, days, months) if there is an abundance of fuel. It causes quite a notable number of accidents and is one of the prime suspects for fire and safety hazards. It can be ignited with weaker ignition and is more difficult to suppress than flaming combustion. Upward spread smoldering is the case in which the air flow is parallel to the direction of the smoldering front. This type of smoldering is quite uncontrollable, and hence, there is a need to study this phenomenon. As compared to flaming combustion, a smoldering phenomenon often goes unrecognised and hence is a cause for various fire accidents. A simplified experimental setup was raised to study the upward spread smoldering, its effects due to varying forced flow and its effects when it takes place in the presence of external heat sources and alternative energy sources such as acoustic energy. Linear configurations were studied depending on varying forced flow effects on upward spread smoldering. Effect of varying forced flow on upward spread smoldering was observed and studied: (i) in the presence of external heat source (ii) in the presence of external alternative energy sources (acoustic energy). The role of ash removal was observed and studied. Results indicate that upward spread forced smoldering was affected by various key controlling parameters such as the speed of the forced flow, surface orientation, interspace distance (distance between forced flow and the pilot fuel). When an external heat source was placed on either side of the pilot fuel, it was observed that the smoldering phenomenon was affected. The surface orientation and interspace distance between the external heat sources and the pilot fuel were found to play a huge role in altering the regression rate. Lastly, by impinging an alternative energy source in the form of acoustic energy on the smoldering front, it was observed that varying frequencies affected the smoldering phenomenon in different ways. The surface orientation also played an important role. This project highlights the importance of fire and safety hazard and means of better combustion for all kinds of scientific research and practical applications. The knowledge acquired from this work can be applied to various engineering systems ranging from aircrafts, spacecrafts and even to buildings fires, wildfires and help us in better understanding and hence avoiding such widespread fires. Various fire disasters have been recorded in aircrafts due to small electric short circuits which led to smoldering fires. These eventually caused the engine to catch fire that cost damage to life and property. Studying this phenomenon can help us to control, if not prevent, such disasters.

Keywords: alternative energy sources, flaming combustion, ignition, regression rate, smoldering

Procedia PDF Downloads 112
527 Impact of Boundary Conditions on the Behavior of Thin-Walled Laminated Column with L-Profile under Uniform Shortening

Authors: Jaroslaw Gawryluk, Andrzej Teter

Abstract:

Simply supported angle columns subjected to uniform shortening are tested. The experimental studies are conducted on a testing machine using additional Aramis and the acoustic emission system. The laminate samples are subjected to axial uniform shortening. The tested columns are loaded with the force values from zero to the maximal load destroying the L-shaped column, which allowed one to observe the column post-buckling behavior until its collapse. Laboratory tests are performed at a constant velocity of the cross-bar equal to 1 mm/min. In order to eliminate stress concentrations between sample and support, flexible pads are used. Analyzed samples are made with carbon-epoxy laminate using the autoclave method. The configurations of laminate layers are: [60,0₂,-60₂,60₃,-60₂,0₃,-60₂,0,60₂]T, where direction 0 is along the length of the profile. Material parameters of laminate are: Young’s modulus along the fiber direction - 170GPa, Young’s modulus along the fiber transverse direction - 7.6GPa, shear modulus in-plane - 3.52GPa, Poisson’s ratio in-plane - 0.36. The dimensions of all columns are: length-300 mm, thickness-0.81mm, width of the flanges-40mm. Next, two numerical models of the column with and without flexible pads are developed using the finite element method in Abaqus software. The L-profile laminate column is modeled using the S8R shell elements. The layup-ply technique is used to define the sequence of the laminate layers. However, the model of grips is made of the R3D4 discrete rigid elements. The flexible pad is consists of the C3D20R type solid elements. In order to estimate the moment of the first laminate layer damage, the following initiation criteria were applied: maximum stress criterion, Tsai-Hill, Tsai-Wu, Azzi-Tsai-Hill, and Hashin criteria. The best compliance of results was observed for the Hashin criterion. It was found that the use of the pad in the numerical model significantly influences the damage mechanism. The model without pads characterized a much more stiffness, as evidenced by a greater bifurcation load and damage initiation load in all analyzed criteria, lower shortening, and less deflection of the column in its center than the model with flexible pads. Acknowledgment: The project/research was financed in the framework of the project Lublin University of Technology-Regional Excellence Initiative, funded by the Polish Ministry of Science and Higher Education (contract no. 030/RID/2018/19).

Keywords: angle column, compression, experiment, FEM

Procedia PDF Downloads 185
526 The Impacts of Export in Stimulating Economic Growth in Ethiopia: ARDL Model Analysis

Authors: Natnael Debalklie Teshome

Abstract:

The purpose of the study was to empirically investigate the impacts of export performance and its volatility on economic growth in the Ethiopian economy. To do so, time-series data of the sample period from 1974/75 – 2017/18 were collected from databases and annual reports of IMF, WB, NBE, MoFED, UNCTD, and EEA. The extended Cobb-Douglas production function of the neoclassical growth model framed under the endogenous growth theory was used to consider both the performance and instability aspects of export. First, the unit root test was conducted using ADF and PP tests, and data were found in stationery with a mix of I(0) and I(1). Then, the bound test and Wald test were employed, and results showed that there exists long-run co-integration among study variables. All the diagnostic test results also reveal that the model fulfills the criteria of the best-fitted model. Therefore, the ARDL model and VECM were applied to estimate the long-run and short-run parameters, while the Granger causality test was used to test the causality between study variables. The empirical findings of the study reveal that only export and coefficient of variation had significant positive and negative impacts on RGDP in the long run, respectively, while other variables were found to have an insignificant impact on the economic growth of Ethiopia. In the short run, except for gross capital formation and coefficients of variation, which have a highly significant positive impact, all other variables have a strongly significant negative impact on RGDP. This shows exports had a strong, significant impact in both the short-run and long-run periods. However, its positive and statistically significant impact is observed only in the long run. Similarly, there was a highly significant export fluctuation in both periods, while significant commodity concentration (CCI) was observed only in the short run. Moreover, the Granger causality test reveals that unidirectional causality running from export performance to RGDP exists in the long run and from both export and RGDP to CCI in the short run. Therefore, the export-led growth strategy should be sustained and strengthened. In addition, boosting the industrial sector is vital to bring structural transformation. Hence, the government has to give different incentive schemes and supportive measures to exporters to extract the spillover effects of exports. Greater emphasis on price-oriented diversification and specialization on major primary products that the country has a comparative advantage should also be given to reduce value-based instability in the export earnings of the country. The government should also strive to increase capital formation and human capital development via enhancing investments in technology and quality of education to accelerate the economic growth of the country.

Keywords: export, economic growth, export diversification, instability, co-integration, granger causality, Ethiopian economy

Procedia PDF Downloads 44
525 Optical and Near-UV Spectroscopic Properties of Low-Redshift Jetted Quasars in the Main Sequence in the Main Sequence Context

Authors: Shimeles Terefe Mengistue, Ascensión Del Olmo, Paola Marziani, Mirjana Pović, María Angeles Martínez-Carballo, Jaime Perea, Isabel M. Árquez

Abstract:

Quasars have historically been classified into two distinct classes, radio-loud (RL) and radio-quiet (RQ), taking into account the presence and absence of relativistic radio jets, respectively. The absence of spectra with a high S/N ratio led to the impression that all quasars (QSOs) are spectroscopically similar. Although different attempts were made to unify these two classes, there is a long-standing open debate involving the possibility of a real physical dichotomy between RL and RQ quasars. In this work, we present new high S/N spectra of 11 extremely powerful jetted quasars with radio-to-optical flux density ratio > 1000 that concomitantly cover the low-ionization emission of Mgii𝜆2800 and Hbeta𝛽 as well as the Feii blends in the redshift range 0.35 < z < 1, observed at Calar Alto Observatory (Spain). This work aims to quantify broad emission line differences between RL and RQ quasars by using the four-dimensional eigenvector 1 (4DE1) parameter space and its main sequence (MS) and to check the effect of powerful radio ejection on the low ionization broad emission lines. Emission lines are analysed by making two complementary approaches, a multicomponent non-linear fitting to account for the individual components of the broad emission lines and by analysing the full profile of the lines through parameters such as total widths, centroid velocities at different fractional intensities, asymmetry, and kurtosis indices. It is found that broad emission lines show large reward asymmetry both in Hbeta𝛽 and Mgii2800A. The location of our RL sources in a UV plane looks similar to the optical one, with weak Feii UV emission and broad Mgii2800A. We supplement the 11 sources with large samples from previous work to gain some general inferences. The result shows, compared to RQ, our extreme RL quasars show larger median Hbeta full width at half maximum (FWHM), weaker Feii emission, larger 𝑀BH, lower 𝐿bol/𝐿Edd, and a restricted space occupation in the optical and UV MS planes. The differences are more elusive when the comparison is carried out by restricting the RQ population to the region of the MS occupied by RL quasars, albeit an unbiased comparison matching 𝑀BH and 𝐿bol/𝐿Edd suggests that the most powerful RL quasars show the highest redward asymmetries in Hbeta.

Keywords: galaxies, active, line, profiles, quasars, emission lines, supermassive black holes

Procedia PDF Downloads 43
524 Different Response of Pure Arctic Char Salvelinus alpinus and Hybrid (Salvelinus alpinus vs. Salvelinus fontinalis Mitchill) to Various Hyperoxic Regimes

Authors: V. Stejskal, K. Lundova, R. Sebesta, T. Vanina, S. Roje

Abstract:

Pure strain of Arctic char (AC) Salvelinus alpinus and hybrid (HB) Salvelinus alpinus vs. Salvelinus fontinalis Mitchill belong to fish, which with great potential for culture in recirculating aquaculture systems (RAS). Aquaculture of these fish currently use flow-through systems (FTS), especially in Nordic countries such as Iceland (biggest producer), Norway, Sweden, and Canada. Four different water saturation regimes included normoxia (NOR), permanent hyperoxia (HYP), intermittent hyperoxia (HYP ± ) and regimes where one day of normoxia was followed by one day of hyperoxia (HYP1/1) were tested during 63 days of experiment in both species in two parallel experiments. Fish were reared in two identical RAS system consisted of 24 plastic round tanks (300 L each), drum filter, biological filter with moving beads and submerged biofilter. The temperature was maintained using flow-through cooler during at level of 13.6 ± 0.8 °C. Different water saturation regimes were achieved by mixing of pure oxygen (O₂) with water in three (one for each hyperoxic regime) mixing tower equipped with flowmeter for regulation of gas inflow. The water in groups HYP, HYP1/1 and HYP± was enriched with oxygen up to saturation of 120-130%. In HYP group was this level kept during whole day. In HYP ± group was hyperoxia kept for daylight phase (08:00-20:00) only and during night time was applied normoxia in this group. The oxygen saturation of 80-90% in NOR group was created using intensive aeration in header tank. The fish were fed with commercial feed to slight excess at 2 h intervals within the light phase of the day. Water quality parameters like pH, temperature and level of oxygen was monitoring three times (7 am, 10 am and 6 pm) per day using handy multimeter. Ammonium, nitrite and nitrate were measured in two day interval using spectrophotometry. Initial body weight (BW) was 40.9 ± 8.7 g and 70.6 ± 14.8 in AC and HB group, respectively. Final survival of AC ranged from 96.3 ± 4.6 (HYP) to 100 ± 0.0% in all other groups without significant differences among these groups. Similarly very high survival was reached in trial with HB with levels from 99.2 ± 1.3 (HYP, HYP1/1 and NOR) to 100 ± 0.0% (HYP ± ). HB fish showed best growth performance in NOR group reached final body weight (BW) 180.4 ± 2.3 g. Fish growth under different hyperoxic regimes was significantly reduced and final BW was 164.4 ± 7.6, 162.1 ± 12.2 and 151.7 ± 6.8 g in groups HY1/1, HYP ± and HYP, respectively. AC showed different preference for hyperoxic regimes as there were no significant difference in BW among NOR, HY1/1 and HYP± group with final values of 72.3 ± 11.3, 68.3 ± 8.4 and 77.1 ± 6.1g. Significantly reduced growth (BW 61.8 ± 6.8 g) was observed in HYP group. It is evident from present study that there are differences between pure bred Arctic char and hybrid in relation to hyperoxic regimes. The study was supported by projects 'CENAKVA' (No. CZ.1.05/2.1.00/01.0024), 'CENAKVA II' (No. LO1205 under the NPU I program), NAZV (QJ1510077) and GAJU (No. 060/2016/Z).

Keywords: recirculating aquaculture systems, Salmonidae, hyperoxia, abiotic factors

Procedia PDF Downloads 154
523 The Impression of Adaptive Capacity of the Rural Community in the Indian Himalayan Region: A Way Forward for Sustainable Livelihood Development

Authors: Rommila Chandra, Harshika Choudhary

Abstract:

The value of integrated, participatory, and community based sustainable development strategies is eminent, but in practice, it still remains fragmentary and often leads to short-lived results. Despite the global presence of climate change, its impacts are felt differently by different communities based on their vulnerability. The developing countries have the low adaptive capacity and high dependence on environmental variables, making them highly susceptible to outmigration and poverty. We need to understand how to enable these approaches, taking into account the various governmental and non-governmental stakeholders functioning at different levels, to deliver long-term socio-economic and environmental well-being of local communities. The research assessed the financial and natural vulnerability of Himalayan networks, focusing on their potential to adapt to various changes, through accessing their perceived reactions and local knowledge. The evaluation was conducted by testing indices for vulnerability, with a major focus on indicators for adaptive capacity. Data for the analysis were collected from the villages around Govind National Park and Wildlife Sanctuary, located in the Indian Himalayan Region. The villages were stratified on the basis of connectivity via road, thus giving two kinds of human settlements connected and isolated. The study focused on understanding the complex relationship between outmigration and the socio-cultural sentiments of local people to not abandon their land, assessing their adaptive capacity for livelihood opportunities, and exploring their contribution that integrated participatory methodologies can play in delivering sustainable development. The result showed that the villages having better road connectivity, access to market, and basic amenities like health and education have a better understanding about the climatic shift, natural hazards, and a higher adaptive capacity for income generation in comparison to the isolated settlements in the hills. The participatory approach towards environmental conservation and sustainable use of natural resources were seen more towards the far-flung villages. The study helped to reduce the gap between local understanding and government policies by highlighting the ongoing adaptive practices and suggesting precautionary strategies for the community studied based on their local conditions, which differ on the basis of connectivity and state of development. Adaptive capacity in this study has been taken as the externally driven potential of different parameters, leading to a decrease in outmigration and upliftment of the human environment that could lead to sustainable livelihood development in the rural areas of Himalayas.

Keywords: adaptive capacity, Indian Himalayan region, participatory, sustainable livelihood development

Procedia PDF Downloads 95
522 Management Problems in a Patient With Long-term Undiagnosed Permanent Hypoparathyroidism

Authors: Babarina Maria, Andropova Margarita

Abstract:

Introduction: Hypoparathyroidism (HypoPT) is a rare endocrine disorder with an estimated prevalence of 0.25 per 1000 individuals. The most common cause of HypoPT is the loss of active parathyroid tissue following thyroid or parathyroid surgery. Sometimes permanent postoperative HypoPT occures, manifested by hypocalcemia in combination with low levels of PTH during 6 months or more after surgery. Cognitive impairments in patients with hypocalcemia due to chronic HypoPT are observed, and this can lead to problems and challenges in everyday living: memory loss and impaired concentration, that may be the cause of poor compliance. Clinical case: Patient K., 66 years old, underwent thyroidectomy in 2013 (at the age of 55) because of papillary thyroid cancer T1NxMx, histopathology findings confirmed the diagnosis. 5 years after the surgery, she was followed up on an outpatient basis, TSH levelsonly were monitored, and the dose of levothyroxine was adjusted. In 2018 due to, increasing complaints include tingling and cramps in the arms and legs, memory loss, sleep disorder, fatigue, anxiety, hair loss, muscle pain, tachycardia, positive Chvostek, and Trousseau signs were diagnosed during examination, also in blood analyses: total Ca 1.86 mmol/l (2.15-2.55), Ca++ 0.96 mmol/l (1.12-1.3), P 1.55 mmol/l (0.74-1.52), Mg 0.79 mmol/l (0.66-1.07) - chronic postoperative HypoPT was diagnosed. Therapy was initiated: alfacalcidol 0.5 mcg per day, calcium carbonate 2000 mg per day, cholecalciferol 1000 IU per day, magnesium orotate 3000 mg per day. During the case follow-up, hypocalcemia, hyperphosphatemia persisted, hypercalciuria15.7 mmol/day (2.5-6.5) was diagnosed. Dietary recommendations were given because of the high content of phosphorus rich foods, and therapy was adjusted: the dose of alfacalcidol was increased to 2.5 mcg per day, and the dose of calcium carbonate was reduced to 1500 mg per day. As part of the screening for complications of hypoPT, data for cataracts, Fahr syndrome, nephrocalcinosis, and kidney stone disease were not obtained. However, HypoPT compensation was not achieved, and therefore hydrochlorothiazide 25 mg was initiated, the dose of alfacalcidol was increased to 3 mcg per day, calcium carbonate to 3000 mg per day, magnesium orotate and cholecalciferol were continued at the same doses. Therapeutic goals were achieved: calcium phosphate product <4.4 mmol2/l2, there were no episodes of hypercalcemia, twenty-four-hour urinary calcium excretion was significantly reduced. Conclusion: Timely prescription, careful explanation of drugs usage rules, and monitoring and maintaining blood and urine parameters within the target contribute to the prevention of HypoPT complications development and life-threatening events.

Keywords: hypoparathyroidism, hypocalcemia, hyperphosphatemia, hypercalciuria

Procedia PDF Downloads 83
521 An Integrated Approach to the Carbonate Reservoir Modeling: Case Study of the Eastern Siberia Field

Authors: Yana Snegireva

Abstract:

Carbonate reservoirs are known for their heterogeneity, resulting from various geological processes such as diagenesis and fracturing. These complexities may cause great challenges in understanding fluid flow behavior and predicting the production performance of naturally fractured reservoirs. The investigation of carbonate reservoirs is crucial, as many petroleum reservoirs are naturally fractured, which can be difficult due to the complexity of their fracture networks. This can lead to geological uncertainties, which are important for global petroleum reserves. The problem outlines the key challenges in carbonate reservoir modeling, including the accurate representation of fractures and their connectivity, as well as capturing the impact of fractures on fluid flow and production. Traditional reservoir modeling techniques often oversimplify fracture networks, leading to inaccurate predictions. Therefore, there is a need for a modern approach that can capture the complexities of carbonate reservoirs and provide reliable predictions for effective reservoir management and production optimization. The modern approach to carbonate reservoir modeling involves the utilization of the hybrid fracture modeling approach, including the discrete fracture network (DFN) method and implicit fracture network, which offer enhanced accuracy and reliability in characterizing complex fracture systems within these reservoirs. This study focuses on the application of the hybrid method in the Nepsko-Botuobinskaya anticline of the Eastern Siberia field, aiming to prove the appropriateness of this method in these geological conditions. The DFN method is adopted to model the fracture network within the carbonate reservoir. This method considers fractures as discrete entities, capturing their geometry, orientation, and connectivity. But the method has significant disadvantages since the number of fractures in the field can be very high. Due to limitations in the amount of main memory, it is very difficult to represent these fractures explicitly. By integrating data from image logs (formation micro imager), core data, and fracture density logs, a discrete fracture network (DFN) model can be constructed to represent fracture characteristics for hydraulically relevant fractures. The results obtained from the DFN modeling approaches provide valuable insights into the East Siberia field's carbonate reservoir behavior. The DFN model accurately captures the fracture system, allowing for a better understanding of fluid flow pathways, connectivity, and potential production zones. The analysis of simulation results enables the identification of zones of increased fracturing and optimization opportunities for reservoir development with the potential application of enhanced oil recovery techniques, which were considered in further simulations on the dual porosity and dual permeability models. This approach considers fractures as separate, interconnected flow paths within the reservoir matrix, allowing for the characterization of dual-porosity media. The case study of the East Siberia field demonstrates the effectiveness of the hybrid model method in accurately representing fracture systems and predicting reservoir behavior. The findings from this study contribute to improved reservoir management and production optimization in carbonate reservoirs with the use of enhanced and improved oil recovery methods.

Keywords: carbonate reservoir, discrete fracture network, fracture modeling, dual porosity, enhanced oil recovery, implicit fracture model, hybrid fracture model

Procedia PDF Downloads 58
520 Wind Direction and Its Linkage with Vibrio cholerae Dissemination

Authors: Shlomit Paz, Meir Broza

Abstract:

Cholera is an acute intestinal infection caused by ingestion of food or water contaminated with the bacterium Vibrio cholerae. It has a short incubation period and produces an enterotoxin that causes copious, painless, watery diarrhoea that can quickly lead to severe dehydration and death if treatment is not promptly given. In an epidemic, the source of the contamination is usually the feces of an infected person. The disease can spread rapidly in areas with poor treatment of sewage and drinking water. Cholera remains a global threat and is one of the key indicators of social development. An estimated 3-5 million cases and over 100,000 deaths occur each year around the world. The relevance of climatic events as causative factors for cholera epidemics is well known. However, the examination of the involvement of winds in intra-continental disease distribution is new. The study explore the hypothesis that the spreading of cholera epidemics may be related to the dominant wind direction over land by presenting the influence of the wind direction on windborn dissemination by flying insects, which may serve as vectors. Chironomids ("non-biting midges“) exist in the majority of freshwater aquatic habitats, especially in estuarine and organic-rich water bodies typical to Vibrio cholerae. Chironomid adults emerge into the air for mating and dispersion. They are highly mobile, huge in number and found frequently in the air at various elevations. The huge number of chironomid egg masses attached to hard substrate on the water surface, serve as a reservoir for the free-living Vibrio bacteria. Both male and female, while emerging from the water, may carry the cholera bacteria. In experimental simulation, it was demonstrated that the cholera-bearing adult midges are carried by the wind, and transmit the bacteria from one body of water to another. In our previous study, the geographic diffusions of three cholera outbreaks were examined through their linkage with the wind direction: a) the progress of Vibrio cholerae O1 biotype El Tor in Africa during 1970–1971 and b) again in 2005–2006; and c) the rapid spread of Vibrio cholerae O139 over India during 1992–1993. Using data and map of cholera dissemination (WHO database) and mean monthly SLP and geopotential data (NOAA NCEP-NCAR database), analysis of air pressure data at sea level and at several altitudes over Africa, India and Bangladesh show a correspondence between the dominant wind direction and the intra-continental spread of cholera. The results support the hypothesis that aeroplankton (the tiny life forms that float in the air and that may be caught and carried upward by the wind, landing far from their origin) carry the cholera bacteria from one body of water to an adjacent one. In addition to these findings, the current follow-up study will present new results regarding the possible involvement of winds in the spreading of cholera in recent outbreaks (2010-2013). The findings may improve the understanding of how climatic factors are involved in the rapid distribution of new strains throughout a vast continental area. Awareness of the aerial transfer of Vibrio cholerae may assist health authorities by improving the prediction of the disease’s geographic dissemination.

Keywords: cholera, Vibrio cholerae, wind direction, Vibrio cholerae dissemination

Procedia PDF Downloads 349
519 Comparison of Methodologies to Compute the Probabilistic Seismic Hazard Involving Faults and Associated Uncertainties

Authors: Aude Gounelle, Gloria Senfaute, Ludivine Saint-Mard, Thomas Chartier

Abstract:

The long-term deformation rates of faults are not fully captured by Probabilistic Seismic Hazard Assessment (PSHA). PSHA that use catalogues to develop area or smoothed-seismicity sources is limited by the data available to constraint future earthquakes activity rates. The integration of faults in PSHA can at least partially address the long-term deformation. However, careful treatment of fault sources is required, particularly, in low strain rate regions, where estimated seismic hazard levels are highly sensitive to assumptions concerning fault geometry, segmentation and slip rate. When integrating faults in PSHA various constraints on earthquake rates from geologic and seismologic data have to be satisfied. For low strain rate regions where such data is scarce it would be especially challenging. Faults in PSHA requires conversion of the geologic and seismologic data into fault geometries, slip rates and then into earthquake activity rates. Several approaches exist for translating slip rates into earthquake activity rates. In the most frequently used approach, the background earthquakes are handled using a truncated approach, in which earthquakes with a magnitude lower or equal to a threshold magnitude (Mw) occur in the background zone, with a rate defined by the rate in the earthquake catalogue. Although magnitudes higher than the threshold are located on the fault with a rate defined using the average slip rate of the fault. As high-lighted by several research, seismic events with magnitudes stronger than the selected magnitude threshold may potentially occur in the background and not only at the fault, especially in regions of slow tectonic deformation. It also has been known that several sections of a fault or several faults could rupture during a single fault-to-fault rupture. It is then essential to apply a consistent modelling procedure to allow for a large set of possible fault-to-fault ruptures to occur aleatory in the hazard model while reflecting the individual slip rate of each section of the fault. In 2019, a tool named SHERIFS (Seismic Hazard and Earthquake Rates in Fault Systems) was published. The tool is using a methodology to calculate the earthquake rates in a fault system where the slip-rate budget of each fault is conversed into rupture rates for all possible single faults and faultto-fault ruptures. The objective of this paper is to compare the SHERIFS method with one other frequently used model to analyse the impact on the seismic hazard and through sensibility studies better understand the influence of key parameters and assumptions. For this application, a simplified but realistic case study was selected, which is in an area of moderate to hight seismicity (South Est of France) and where the fault is supposed to have a low strain.

Keywords: deformation rates, faults, probabilistic seismic hazard, PSHA

Procedia PDF Downloads 38
518 Advances and Challenges in Assessing Students’ Learning Competencies in 21st Century Higher Education

Authors: O. Zlatkin-Troitschanskaia, J. Fischer, C. Lautenbach, H. A. Pant

Abstract:

In 21st century higher education (HE), the diversity among students has increased in recent years due to the internationalization and higher mobility. Offering and providing equal and fair opportunities based on students’ individual skills and abilities instead of their social or cultural background is one of the major aims of HE. In this context, valid, objective and transparent assessments of students’ preconditions and academic competencies in HE are required. However, as analyses of the current states of research and practice show, a substantial research gap on assessment practices in HE still exists, calling for the development of effective solutions. These demands lead to significant conceptual and methodological challenges. Funded by the German Federal Ministry of Education and Research, the research program 'Modeling and Measuring Competencies in Higher Education – Validation and Methodological Challenges' (KoKoHs) focusses on addressing these challenges in HE assessment practice by modeling and validating objective test instruments. Including 16 cross-university collaborative projects, the German-wide research program contributes to bridging the research gap in current assessment research and practice by concentrating on practical and policy-related challenges of assessment in HE. In this paper, we present a differentiated overview of existing assessments of HE at the national and international level. Based on the state of research, we describe the theoretical and conceptual framework of the KoKoHs Program as well as results of the validation studies, including their key outcomes. More precisely, this includes an insight into more than 40 developed assessments covering a broad range of transparent and objective methods for validly measuring domain-specific and generic knowledge and skills for five major study areas (Economics, Social Science, Teacher Education, Medicine and Psychology). Computer-, video- and simulation-based instruments have been applied and validated to measure over 20,000 students at the beginning, middle and end of their (bachelor and master) studies at more than 300 HE institutions throughout Germany or during their practical training phase, traineeship or occupation. Focussing on the validity of the assessments, all test instruments have been analyzed comprehensively, using a broad range of methods and observing the validity criteria of the Standards for Psychological and Educational Testing developed by the American Educational Research Association, the American Economic Association and the National Council on Measurement. The results of the developed assessments presented in this paper, provide valuable outcomes to predict students’ skills and abilities at the beginning and the end of their studies as well as their learning development and performance. This allows for a differentiated view of the diversity among students. Based on the given research results practical implications and recommendations are formulated. In particular, appropriate and effective learning opportunities for students can be created to support the learning development of students, promote their individual potential and reduce knowledge and skill gaps. Overall, the presented research on competency assessment is highly relevant to national and international HE practice.

Keywords: 21st century skills, academic competencies, innovative assessments, KoKoHs

Procedia PDF Downloads 123
517 Bi-Directional Impulse Turbine for Thermo-Acoustic Generator

Authors: A. I. Dovgjallo, A. B. Tsapkova, A. A. Shimanov

Abstract:

The paper is devoted to one of engine types with external heating – a thermoacoustic engine. In thermoacoustic engine heat energy is converted to an acoustic energy. Further, acoustic energy of oscillating gas flow must be converted to mechanical energy and this energy in turn must be converted to electric energy. The most widely used way of transforming acoustic energy to electric one is application of linear generator or usual generator with crank mechanism. In both cases, the piston is used. Main disadvantages of piston use are friction losses, lubrication problems and working fluid pollution which cause decrease of engine power and ecological efficiency. Using of a bidirectional impulse turbine as an energy converter is suggested. The distinctive feature of this kind of turbine is that the shock wave of oscillating gas flow passing through the turbine is reflected and passes through the turbine again in the opposite direction. The direction of turbine rotation does not change in the process. Different types of bidirectional impulse turbines for thermoacoustic engines are analyzed. The Wells turbine is the simplest and least efficient of them. A radial impulse turbine has more complicated design and is more efficient than the Wells turbine. The most appropriate type of impulse turbine was chosen. This type is an axial impulse turbine, which has a simpler design than that of a radial turbine and similar efficiency. The peculiarities of the method of an impulse turbine calculating are discussed. They include changes in gas pressure and velocity as functions of time during the generation of gas oscillating flow shock waves in a thermoacoustic system. In thermoacoustic system pressure constantly changes by a certain law due to acoustic waves generation. Peak values of pressure are amplitude which determines acoustic power. Gas, flowing in thermoacoustic system, periodically changes its direction and its mean velocity is equal to zero but its peak values can be used for bi-directional turbine rotation. In contrast with feed turbine, described turbine operates on un-steady oscillating flows with direction changes which significantly influence the algorithm of its calculation. Calculated power output is 150 W with frequency 12000 r/min and pressure amplitude 1,7 kPa. Then, 3-d modeling and numerical research of impulse turbine was carried out. As a result of numerical modeling, main parameters of the working fluid in turbine were received. On the base of theoretical and numerical data model of impulse turbine was made on 3D printer. Experimental unit was designed for numerical modeling results verification. Acoustic speaker was used as acoustic wave generator. Analysis if the acquired data shows that use of the bi-directional impulse turbine is advisable. By its characteristics as a converter, it is comparable with linear electric generators. But its lifetime cycle will be higher and engine itself will be smaller due to turbine rotation motion.

Keywords: acoustic power, bi-directional pulse turbine, linear alternator, thermoacoustic generator

Procedia PDF Downloads 353
516 Public-Private Partnership for Critical Infrastructure Resilience

Authors: Anjula Negi, D. T. V. Raghu Ramaswamy, Rajneesh Sareen

Abstract:

Road infrastructure is emphatically one of the top most critical infrastructure to the Indian economy. Road network in the country of around 3.3 million km is the second largest in the world. Nationwide statistics released by Ministry of Road, Transport and Highways reveal that every minute an accident happens and one death every 3.7 minutes. This reported scale in terms of safety is a matter of grave concern, and economically represents a national loss of 3% to the GDP. Union Budget 2016-17 has allocated USD 12 billion annually for development and strengthening of roads, an increase of 56% from last year. Thus, highlighting the importance of roads as critical infrastructure. National highway alone represent only 1.7% of the total road linkages, however, carry over 40% of traffic. Further, trends analysed from 2002 -2011 on national highways, indicate that in less than a decade, a 22 % increase in accidents have been reported, but, 68% increase in death fatalities. Paramount inference is that accident severity has increased with time. Over these years many measures to increase road safety, lessening damage to physical assets, reducing vulnerabilities leading to a build-up for resilient road infrastructure have been taken. In the context of national highway development program, policy makers proposed implementation of around 20 % of such road length on PPP mode. These roads were taken up on high-density traffic considerations and for qualitative implementation. In order to understand resilience impacts and safety parameters, enshrined in various PPP concession agreements executed with the private sector partners, such highway specific projects would be appraised. This research paper would attempt to assess such safety measures taken and the possible reasons behind an increase in accident severity through these PPP case study projects. Delving further on safety features to understand policy measures adopted in these cases and an introspection on reasons of severity, whether an outcome of increased speeds, faulty road design and geometrics, driver negligence, or due to lack of discipline in following lane traffic with increased speed. Assessment exercise would study these aspects hitherto to PPP and post PPP project structures, based on literature review and opinion surveys with sectoral experts. On the way forward, it is understood that the Ministry of Road, Transport and Highway’s estimate for strengthening the national highway network is USD 77 billion within next five years. The outcome of this paper would provide an understanding of resilience measures adopted, possible options for accessible and safe road network and its expansion to policy makers for possible policy initiatives and funding allocation in securing critical infrastructure.

Keywords: national highways, policy, PPP, safety

Procedia PDF Downloads 233
515 Effect of Fresh Concrete Curing Methods on Its Compressive Strength

Authors: Xianghe Dai, Dennis Lam, Therese Sheehan, Naveed Rehman, Jie Yang

Abstract:

Concrete is one of the most used construction materials that may be made onsite as fresh concrete and then placed in formwork to produce the desired shapes of structures. It has been recognized that the raw materials and mix proportion of concrete dominate the mechanical characteristics of hardened concrete, and the curing method and environment applied to the concrete in early stages of hardening will significantly influence the concrete properties, such as compressive strength, durability, permeability etc. In construction practice, there are various curing methods to maintain the presence of mixing water throughout the early stages of concrete hardening. They are also beneficial to concrete in hot weather conditions as they provide cooling and prevent the evaporation of water. Such methods include ponding or immersion, spraying or fogging, saturated wet covering etc. Also there are various curing methods that may be implemented to decrease the level of water lost which belongs to the concrete surface, such as putting a layer of impervious paper, plastic sheeting or membrane on the concrete to cover it. In the concrete material laboratory, accelerated strength gain methods supply the concrete with heat and additional moisture by applying live steam, coils that are subject to heating or pads that have been warmed electrically. Currently when determining the mechanical parameters of a concrete, the concrete is usually sampled from fresh concrete on site and then cured and tested in laboratories where standardized curing procedures are adopted. However, in engineering practice, curing procedures in the construction sites after the placing of concrete might be very different from the laboratory criteria, and this includes some standard curing procedures adopted in the laboratory that can’t be applied on site. Sometimes the contractor compromises the curing methods in order to reduce construction costs etc. Obviously the difference between curing procedures adopted in the laboratory and those used on construction sites might over- or under-estimate the real concrete quality. This paper presents the effect of three typical curing methods (air curing, water immersion curing, plastic film curing) and of maintaining concrete in steel moulds on the compressive strength development of normal concrete. In this study, Portland cement with 30% fly ash was used and different curing periods, 7 days, 28 days and 60 days were applied. It was found that the highest compressive strength was observed from concrete samples to which 7-day water immersion curing was applied and from samples maintained in steel moulds up to the testing date. The research results implied that concrete used as infill in steel tubular members might develop a higher strength than predicted by design assumptions based on air curing methods. Wrapping concrete with plastic film as a curing method might delay the concrete strength development in the early stages. Water immersion curing for 7 days might significantly increase the concrete compressive strength.

Keywords: compressive strength, air curing, water immersion curing, plastic film curing, maintaining in steel mould, comparison

Procedia PDF Downloads 276
514 The Effect of Acute Muscular Exercise and Training Status on Haematological Indices in Adult Males

Authors: Ibrahim Musa, Mohammed Abdul-Aziz Mabrouk, Yusuf Tanko

Abstract:

Introduction: Long term physical training affect the performance of athletes especially the females. Soccer which is a team sport, played in an outdoor field, require adequate oxygen transport system for the maximal aerobic power during exercise in order to complete 90 minutes of competitive play. Suboptimal haematological status has often been recorded in athletes with intensive physical activity. It may be due to the iron depletion caused by hemolysis or haemodilution results from plasma volume expansion. There is lack of data regarding the dynamics of red blood cell variables, in male football players. We hypothesized that, a long competitive season involving frequent matches and intense training could influence red blood cell variables, as a consequence of applying repeated physical loads when compared with sedentary. Methods: This cross sectional study was carried on 40 adult males (20 athletes and 20 non athletes) between 18-25 years of age. The 20 apparently healthy male non athletes were taken as sedentary and 20 male footballers comprise the study group. The university institutional review board (ABUTH/HREC/TRG/36) gave approval for all procedures in accordance with the Declaration of Helsinki. Red blood cell (RBC) concentration, packed cell volume (PCV), and plasma volume were measured in fasting state and immediately after exercise. Statistical analysis was done by using SPSS/ win.20.0 for comparison within and between the groups, using student’s paired and unpaired “t” test respectively. Results: The finding from our study shows that, immediately after termination of exercise, the mean RBC counts and PCV significantly (p<0.005) decreased with significant increased (p<0.005) in plasma volume when compared with pre-exercised values in both group. In addition the post exercise RBC was significantly higher in untrained (261.10±8.5) when compared with trained (255.20±4.5). However, there was no significant differences in the post exercise hematocrit and plasma volume parameters between the sedentary and the footballers. Moreover, beside changes in pre-exercise values among the sedentary and the football players, the resting red blood cell counts and Plasma volume (PV %) was significantly (p < 0.05) higher in the sedentary group (306.30±10.05 x 104 /mm3; 58.40±0.54%) when compared with football players (293.70±4.65 x 104 /mm3; 55.60±1.18%). On the other hand, the sedentary group exhibited significant (p < 0.05) decrease in PCV (41.60±0.54%) when compared with the football players (44.40±1.18%). Conclusions: It is therefore proposed that the acute football exercise induced reduction in RBC and PCV is entirely due to plasma volume expansion, and not of red blood cell hemolysis. In addition, the training status also influenced haematological indices of male football players differently from the sedentary at rest due to adaptive response. This is novel.

Keywords: Haematological Indices, Performance Status, Sedentary, Male Football Players

Procedia PDF Downloads 238
513 Freight Forwarders’ Liability: A Need for Revival of Unidroit Draft Convention after Six Decades

Authors: Mojtaba Eshraghi Arani

Abstract:

The freight forwarders, who are known as the Architect of Transportation, play a vital role in the supply chain management. The package of various services which they provide has made the legal nature of freight forwarders very controversial, so that they might be qualified once as principal or carrier and, on other occasions, as agent of the shipper as the case may be. They could even be involved in the transportation process as the agent of shipping line, which makes the situation much more complicated. The courts in all countries have long had trouble in distinguishing the “forwarder as agent” from “forwarder as principal” (as it is outstanding in the prominent case of “Vastfame Camera Ltd v Birkart Globistics Ltd And Others” 2005, Hong Kong). It is not fully known that in the case of a claim against the forwarder, what particular parameter would be used by the judge among multiple, and sometimes contradictory, tests for determining the scope of the forwarder liability. In particular, every country has its own legal parameters for qualifying the freight forwarders that is completely different from others, as it is the case in France in comparison with Germany and England. The unpredictability of the courts’ decisions in this regard has provided the freight forwarders with the opportunity to impose any limitation or exception of liability while pretending to play the role of a principal, consequently making the cargo interests incur ever-increasing damage. The transportation industry needs to remove such uncertainty by unifying national laws governing freight forwarders liability. A long time ago, in 1967, The International Institute for Unification of Private Law (UNIDROIT) prepared a draft convention called “Draft Convention on Contract of Agency for Forwarding Agents Relating to International Carriage of Goods” (hereinafter called “UNIDROIT draft convention”). The UNIDROIT draft convention provided a clear and certain framework for the liability of freight forwarder in each capacity as agent or carrier, but it failed to transform to a convention, and eventually, it was consigned to oblivion. Today, after nearly 6 decades from that era, the necessity of such convention can be felt apparently. However, one might reason that the same grounds, in particular, the resistance by forwarders’ association, FIATA, exist yet, and thus it is not logical to revive a forgotten draft convention after such long period of time. It is argued in this article that the main reason for resisting the UNIDROIT draft convention in the past was pending efforts for developing the “1980 United Nation Convention on International Multimodal Transport of Goods”. However, the latter convention failed to become in force on due time in a way that there was no new accession since 1996, as a result of which the UNIDROIT draft convention must be revived strongly and immediately submitted to the relevant diplomatic conference. A qualitative method with the concept of interpretation of data collection has been used in this manuscript. The source of the data is the analysis of international conventions and cases.

Keywords: freight forwarder, revival, agent, principal, uidroit, draft convention

Procedia PDF Downloads 56
512 Relationshiop Between Occupants' Behaviour And Indoor Air Quality In Malaysian Public Hospital Outpatient Department

Authors: Farha Ibrahim, Ely Zarina Samsudin, Ahmad Razali Ishak, Jeyanthini Sathasivam

Abstract:

Introduction: Indoor air quality (IAQ) has recently gained substantial traction as the airborne transmission of infectious respiratory disease has become an increasing public health concern. Public hospital outpatient department (OPD). IAQ warrants special consideration as it is the most visited department in which patients and staff are all directly impacted by poor IAQ. However, there is limited evidence on IAQ in these settings. Moreover, occupants’ behavior like occupant’s movement and operation of door, windows and appliances, have been shown to significantly affect IAQ, yet the influence of these determinants on IAQ in such settings have not been established. Objectives: This study aims to examine IAQ in Malaysian public hospitals OPD and assess its relationships with occupants’ behavior. Methodology: A multicenter cross-sectional study in which stratified random sampling of Johor public hospitals OPD (n=6) according to building age was conducted. IAQ measurements include indoor air temperature, relative humidity (RH), air velocity (AV), carbon dioxide (CO2), total bacterial count (TBC) and total fungal count (TFC). Occupants’ behaviors in Malaysian public hospital OPD are assessed using observation forms, and results were analyzed. Descriptive statistics were performed to characterize all study variables, whereas non-parametric Spearman Rank correlation analysis was used to assess the correlation between IAQ and occupants’ behavior. Results: After adjusting for potential cofounder, the study has suggested that occupants’ movement in new building, like seated quietly, is significantly correlated with AV in new building (r 0.642, p-value 0.010), CO2 in new (r 0.772, p-value <0.001) and old building (r -0.559, p-value 0.020), TBC in new (r 0.747, p-value 0.001) and old building (r -0.559, p-value 0.020), and TFC in new (r 0.777, p-value <0.001) and old building (r -0.485, p-value 0.049). In addition, standing relaxed movement is correlated with indoor air temperature (r 0.823, p-value <0.001) in new building, CO2 (r 0.559, p-value 0.020), TBC (r 0.559, p-value 0.020), and TFC (r -0.485, p-value 0.049) in old building, while walking is correlated with AV in new building (r -0.642, p-value 0.001), CO2 in new (r -0.772, p-value <0.001) and old building (r 0.559, p-value 0.020), TBC in new (r -0.747, p-value 0.001) and old building (r 0.559, p-value 0.020), and TFC in old building (r -0.485, p-value 0.049). The indoor air temperature is significantly correlated with number of doors kept opened (r 0.522, p-value 0.046), frequency of door adjustments (r 0.753, p-value 0.001), number of windows kept opened (r 0.522, p-value 0.046), number of air-conditioned (AC) switched on (r 0.698, p-value 0.004) and frequency of AC adjustment (r 0.753, p-value 0.001) in new hospital OPD building. AV is found to be significantly correlated with number of doors kept opened (r 0.642, p-value 0.01), frequency of door adjustments (r 0.553, p-value 0.032), number of windows kept opened (r 0.642, p-value 0.01), and frequency of AC adjustment, number of fans switched on, and frequency of fans adjustment(all with r 0.553, p-value 0.032) in new building. In old hospital OPD building, the number of doors kept opened is significantly correlated with CO₂, TBC (both r -0.559, p-value 0.020) and TFC (r -0.495, p-value 0.049), frequency of door adjustment is significantly correlated with CO₂, TBC (both r-0.559, p-value 0.020) and TFC (r -0.495, p-value 0.049), number of windows kept opened is significantly correlated with CO₂, TBC (both r 0.559, p-value 0.020) and TFC (r 0.495, p-value 0.049), frequency of window adjustment is significantly correlated with CO₂,TBC (both r -0.559, p-value 0.020) and TFC (r -0.495, p-value 0.049), number of AC switched on is significantly correlated with CO₂, TBC (both r -0.559, p-value 0.020) and TFC (r -0.495, p-value 0.049),, frequency of AC adjustment is significantly correlated with CO2 (r 0.559, p-value 0.020), TBC (0.559, p-value 0.020) and TFC (r -0.495, p-value 0.049), number of fans switched on is significantly correlated with CO2, TBC (both r 0.559, p-value 0.020) and TFC (r 0.495, p-value 0.049), and frequency of fans adjustment is significantly correlated with CO2, TBC (both r -0.559, p-value 0.020) and TFC (r -0.495, p-value 0.049). Conclusion: This study provided evidence on IAQ parameters in Malaysian public hospitals OPD and significant factors that may be effective targets of prospective intervention, thus enabling stakeholders to develop appropriate policies and programs to mitigate IAQ issues in Malaysian public hospitals OPD.

Keywords: outpatient department, iaq, occupants practice, public hospital

Procedia PDF Downloads 67
511 Capacity of Cold-Formed Steel Warping-Restrained Members Subjected to Combined Axial Compressive Load and Bending

Authors: Maryam Hasanali, Syed Mohammad Mojtabaei, Iman Hajirasouliha, G. Charles Clifton, James B. P. Lim

Abstract:

Cold-formed steel (CFS) elements are increasingly being used as main load-bearing components in the modern construction industry, including low- to mid-rise buildings. In typical multi-storey buildings, CFS structural members act as beam-column elements since they are exposed to combined axial compression and bending actions, both in moment-resisting frames and stud wall systems. Current design specifications, including the American Iron and Steel Institute (AISI S100) and the Australian/New Zealand Standard (AS/NZS 4600), neglect the beneficial effects of warping-restrained boundary conditions in the design of beam-column elements. Furthermore, while a non-linear relationship governs the interaction of axial compression and bending, the combined effect of these actions is taken into account through a simplified linear expression combining pure axial and flexural strengths. This paper aims to evaluate the reliability of the well-known Direct Strength Method (DSM) as well as design proposals found in the literature to provide a better understanding of the efficiency of the code-prescribed linear interaction equation in the strength predictions of CFS beam columns and the effects of warping-restrained boundary conditions on their behavior. To this end, the experimentally validated finite element (FE) models of CFS elements under compression and bending were developed in ABAQUS software, which accounts for both non-linear material properties and geometric imperfections. The validated models were then used for a comprehensive parametric study containing 270 FE models, covering a wide range of key design parameters, such as length (i.e., 0.5, 1.5, and 3 m), thickness (i.e., 1, 2, and 4 mm) and cross-sectional dimensions under ten different load eccentricity levels. The results of this parametric study demonstrated that using the DSM led to the most conservative strength predictions for beam-column members by up to 55%, depending on the element’s length and thickness. This can be sourced by the errors associated with (i) the absence of warping-restrained boundary condition effects, (ii) equations for the calculations of buckling loads, and (iii) the linear interaction equation. While the influence of warping restraint is generally less than 6%, the code suggested interaction equation led to an average error of 4% to 22%, based on the element lengths. This paper highlights the need to provide more reliable design solutions for CFS beam-column elements for practical design purposes.

Keywords: beam-columns, cold-formed steel, finite element model, interaction equation, warping-restrained boundary conditions

Procedia PDF Downloads 80
510 Development of an EEG-Based Real-Time Emotion Recognition System on Edge AI

Authors: James Rigor Camacho, Wansu Lim

Abstract:

Over the last few years, the development of new wearable and processing technologies has accelerated in order to harness physiological data such as electroencephalograms (EEGs) for EEG-based applications. EEG has been demonstrated to be a source of emotion recognition signals with the highest classification accuracy among physiological signals. However, when emotion recognition systems are used for real-time classification, the training unit is frequently left to run offline or in the cloud rather than working locally on the edge. That strategy has hampered research, and the full potential of using an edge AI device has yet to be realized. Edge AI devices are computers with high performance that can process complex algorithms. It is capable of collecting, processing, and storing data on its own. It can also analyze and apply complicated algorithms like localization, detection, and recognition on a real-time application, making it a powerful embedded device. The NVIDIA Jetson series, specifically the Jetson Nano device, was used in the implementation. The cEEGrid, which is integrated to the open-source brain computer-interface platform (OpenBCI), is used to collect EEG signals. An EEG-based real-time emotion recognition system on Edge AI is proposed in this paper. To perform graphical spectrogram categorization of EEG signals and to predict emotional states based on input data properties, machine learning-based classifiers were used. Until the emotional state was identified, the EEG signals were analyzed using the K-Nearest Neighbor (KNN) technique, which is a supervised learning system. In EEG signal processing, after each EEG signal has been received in real-time and translated from time to frequency domain, the Fast Fourier Transform (FFT) technique is utilized to observe the frequency bands in each EEG signal. To appropriately show the variance of each EEG frequency band, power density, standard deviation, and mean are calculated and employed. The next stage is to identify the features that have been chosen to predict emotion in EEG data using the K-Nearest Neighbors (KNN) technique. Arousal and valence datasets are used to train the parameters defined by the KNN technique.Because classification and recognition of specific classes, as well as emotion prediction, are conducted both online and locally on the edge, the KNN technique increased the performance of the emotion recognition system on the NVIDIA Jetson Nano. Finally, this implementation aims to bridge the research gap on cost-effective and efficient real-time emotion recognition using a resource constrained hardware device, like the NVIDIA Jetson Nano. On the cutting edge of AI, EEG-based emotion identification can be employed in applications that can rapidly expand the research and implementation industry's use.

Keywords: edge AI device, EEG, emotion recognition system, supervised learning algorithm, sensors

Procedia PDF Downloads 84
509 The Relationship between Anthropometric Obesity Indices and Insulin in Children with Metabolic Syndrome

Authors: Mustafa M. Donma, Orkide Donma

Abstract:

The number of indices developed for the evaluation of obesity both in adults and pediatric population is ever increasing. These indices are also used in cases with metabolic syndrome (MetS), mostly the ultimate form of morbid obesity. Aside from anthropometric measurements, formulas constituted using these parameters also find clinical use. These formulas can be listed as two groups; being weight-dependent and –independent. Some are extremely sophisticated equations and their clinical utility is questionable in routine clinical practice. The aim of this study is to compare presently available obesity indices and find the most practical one. Their associations with MetS components were also investigated to determine their capacities in differential diagnosis of morbid obesity with and without MetS. Children with normal body mass index (N-BMI) and morbid obesity were recruited for this study. Three groups were constituted. Age- and sex- dependent BMI percentiles for morbid obese (MO) children were above 99 according to World Health Organization tables. Of them, those with MetS findings were evaluated as MetS group. Children, whose values were between 85 and 15 were included in N-BMI group. The study protocol was approved by the Ethics Committee of the Institution. Parents filled out informed consent forms to participate in the study. Anthropometric measurements and blood pressure values were recorded. Body mass index, hip index (HI), conicity index (CI), triponderal mass index (TPMI), body adiposity index (BAI), body shape index (ABSI), body roundness index (BRI), abdominal volume index (AVI), waist-to-hip ratio (WHR) and waist circumference+hip circumference/2 ((WC+HC)/2) were the formulas examined within the scope of this study. Routine biochemical tests including fasting blood glucose (FBG), insulin (INS), triglycerides (TRG), high density lipoprotein-cholesterol (HDL-C) were performed. Statistical package program SPSS was used for the evaluation of study data. p<0.05 was accepted as the statistical significance degree. Hip index did not differ among the groups. A statistically significant difference was noted between N-BMI and MetS groups in terms of ABSI. All the other indices were capable of making discrimination between N-BMI-MO, N-BMI- MetS and MO-MetS groups. No correlation was found between FBG and any obesity indices in any groups. The same was true for INS in N-BMI group. Insulin was correlated with BAI, TPMI, CI, BRI, AVI and (WC+HC)/2 in MO group without MetS findings. In MetS group, the only index, which was correlated with INS was (WC+HC)/2. These findings have pointed out that complicated formulas may not be required for the evaluation of the alterations among N-BMI and various obesity groups including MetS. The simple easily computable weight-independent index, (WC+HC)/2, was unique, because it was the only index, which exhibits a valuable association with INS in MetS group. It did not exhibit any correlation with other obesity indices showing associations with INS in MO group. It was concluded that (WC+HC)/2 was pretty valuable practicable index for the discrimination of MO children with and without MetS findings.

Keywords: children, insulin, metabolic syndrome, obesity indices

Procedia PDF Downloads 55
508 Social Value of Travel Time Savings in Sub-Saharan Africa

Authors: Richard Sogah

Abstract:

The significance of transport infrastructure investments for economic growth and development has been central to the World Bank’s strategy for poverty reduction. Among the conventional surface transport infrastructures, road infrastructure is significant in facilitating the movement of human capital goods and services. When transport projects (i.e., roads, super-highways) are implemented, they come along with some negative social values (costs), such as increased noise and air pollution for local residents living near these facilities, displaced individuals, etc. However, these projects also facilitate better utilization of existing capital stock and generate other observable benefits that can be easily quantified. For example, the improvement or construction of roads creates employment, stimulates revenue generation (toll), reduces vehicle operating costs and accidents, increases accessibility, trade expansion, safety improvement, etc. Aside from these benefits, travel time savings (TTSs) which are the major economic benefits of urban and inter-urban transport projects and therefore integral in the economic assessment of transport projects, are often overlooked and omitted when estimating the benefits of transport projects, especially in developing countries. The absence of current and reliable domestic travel data and the inability of replicated models from the developed world to capture the actual value of travel time savings due to the large unemployment, underemployment, and other labor-induced distortions has contributed to the failure to assign value to travel time savings when estimating the benefits of transport schemes in developing countries. This omission of the value of travel time savings from the benefits of transport projects in developing countries poses problems for investors and stakeholders to either accept or dismiss projects based on schemes that favor reduced vehicular operating costs and other parameters rather than those that ease congestion, increase average speed, facilitate walking and handloading, and thus save travel time. Given the complex reality in the estimation of the value of travel time savings and the presence of widespread informal labour activities in Sub-Saharan Africa, we construct a “nationally ranked distribution of time values” and estimate the value of travel time savings based on the area beneath the distribution. Compared with other approaches, our method captures both formal sector workers and individuals/people who work outside the formal sector and hence changes in their time allocation occur in the informal economy and household production activities. The dataset for the estimations is sourced from the World Bank, the International Labour Organization, etc.

Keywords: road infrastructure, transport projects, travel time savings, congestion, Sub-Sahara Africa

Procedia PDF Downloads 86
507 Flexible Design Solutions for Complex Free form Geometries Aimed to Optimize Performances and Resources Consumption

Authors: Vlad Andrei Raducanu, Mariana Lucia Angelescu, Ion Cinca, Vasile Danut Cojocaru, Doina Raducanu

Abstract:

By using smart digital tools, such as generative design (GD) and digital fabrication (DF), problems of high actuality concerning resources optimization (materials, energy, time) can be solved and applications or products of free-form type can be created. In the new digital technology materials are active, designed in response to a set of performance requirements, which impose a total rethinking of old material practices. The article presents the design procedure key steps of a free-form architectural object - a column type one with connections to get an adaptive 3D surface, by using the parametric design methodology and by exploiting the properties of conventional metallic materials. In parametric design the form of the created object or space is shaped by varying the parameters values and relationships between the forms are described by mathematical equations. Digital parametric design is based on specific procedures, as shape grammars, Lindenmayer - systems, cellular automata, genetic algorithms or swarm intelligence, each of these procedures having limitations which make them applicable only in certain cases. In the paper the design process stages and the shape grammar type algorithm are presented. The generative design process relies on two basic principles: the modeling principle and the generative principle. The generative method is based on a form finding process, by creating many 3D spatial forms, using an algorithm conceived in order to apply its generating logic onto different input geometry. Once the algorithm is realized, it can be applied repeatedly to generate the geometry for a number of different input surfaces. The generated configurations are then analyzed through a technical or aesthetic selection criterion and finally the optimal solution is selected. Endless range of generative capacity of codes and algorithms used in digital design offers various conceptual possibilities and optimal solutions for both technical and environmental increasing demands of building industry and architecture. Constructions or spaces generated by parametric design can be specifically tuned, in order to meet certain technical or aesthetical requirements. The proposed approach has direct applicability in sustainable architecture, offering important potential economic advantages, a flexible design (which can be changed until the end of the design process) and unique geometric models of high performance.

Keywords: parametric design, algorithmic procedures, free-form architectural object, sustainable architecture

Procedia PDF Downloads 350
506 Sunflower Oil as a Nutritional Strategy to Reduce the Impacts of Heat Stress on Meat Quality and Dirtiness Pigs Score

Authors: Angela Cristina Da F. De Oliveira, Salma E. Asmar, Norbert P. Battlori, Yaz Vera, Uriel R. Valencia, Tâmara D. Borges, Antoni D. Bueno, Leandro B. Costa

Abstract:

The present study aimed to evaluate the replacement of 5% of starch per 5% of sunflower oil (SO) on meat quality and animal welfare of growing and finishing pigs (Iberic x Duroc), exposed to a heat stress environment. The experiment lasted 90 days, and it was carried out in a randomized block design, in a 2 x 2 factorial, composed of two diets (starch or sunflower oil (with or without) and two feed intake management (ad libitum and restriction). Seventy-two crossbred males (51± 6,29 kg body weight - BW) were housed in climate-controlled rooms, in collective pens and exposed to heat stress environment (32°C; 35% to 50% humidity). The treatments studies were: 1) control diet (5% starch x 0% SO) with ad libitum intake (n = 18); 2) SO diet (replacement of 5% of starch per 5% of SO) with ad libitum intake (n = 18); 3) control diet with restriction feed intake (n = 18); or 4) SO diet with restriction feed intake (n = 18). Feed were provided in two phases, 50-100 Kg BW for growing and 100-140 Kg BW for finishing, respectively. Within welfare evaluations, dirtiness score was evaluated all morning during ninety days of the experiment. The presence of manure was individually measured based on one side of the pig´s body and scored according to: 0 (less than 20% of the body surface); 1 (more than 20% but less than 50% of the body surface); 2 (over 50% of the body surface). After the experimental period, when animals reach 130-140 kg BW, they were slaughtered using carbon dioxide (CO2) stunning. Carcass weight, leanness and fat content, measured at the last rib, were recorded within 20 min post-mortem (PM). At 24h PM, pH, electrical conductivity and color measures (L, a*, b*) were recorded in the Longissimus thoracis and Semimembranosus muscles. Data shown no interaction between diet (control x SO) and management feed intake (ad libitum x restriction) on the meat quality parameters. Animals in ad libitum management presented an increase (p < 0.05) on BW, carcass weight (CW), back fat thickness (BT), and intramuscular fat content (IM) when compared with animals in restriction management. In contrast, animals in restriction management showing a higher (p < 0.05) carcass yield, percentage of lean and loin thickness. To welfare evaluations, the interaction between diet and management feed intake did not influence the degree of dirtiness. Although, the animals that received SO diet, independently of the management, were cleaner than animals in control group (p < 0,05), which, for pigs, demonstrate an important strategy to reduce body temperature. Based in our results, the diet and management feed intake had a significant influence on meat quality and animal welfare being considered efficient nutritional strategies to reduce heat stress and improved meat quality.

Keywords: dirtiness, environment, meat, pig

Procedia PDF Downloads 239
505 Sustainable Mining Fulfilling Constitutional Responsibilities: A Case Study of NMDC Limited Bacheli in India

Authors: Bagam Venkateswarlu

Abstract:

NMDC Limited, Indian multinational mining company operates under administrative control of Ministry of Steel, Government of India. This study is undertaken to evaluate how sustainable mining practiced by the company fulfils the provisions of Indian Constitution to secure to its citizen – justice, equality of status and opportunity, promoting social, economic, political, and religious wellbeing. The Constitution of India lays down a road map as to how the goal of being a “Welfare State” shall be achieved. The vision of sustainable mining being practiced is oriented along the constitutional responsibilities on Indian Citizens and the Corporate World. This qualitative study shall be backed by quantitative studies of National Mineral Development Corporation performances in various domains of sustainable mining and ESG, that is, environment, social and governance parameters. For example, Five Star Rating of mine is a comprehensive evaluation system introduced by Ministry of Mines, Govt. of India is one of the methodologies. Corporate Social Responsibilities is one of the thrust areas for securing social well-being. Green energy initiatives in and around the mines has given the title of “Eco-Friendly Miner” to NMDC Limited. While operating fully mechanized large scale iron ore mine (18.8 million tonne per annum capacity) in Bacheli, Chhattisgarh, M/s NMDC Limited caters to the needs of mineral security of State of Chhattisgarh and Indian Union. It preserves forest, wild-life, and environment heritage of richly endowed State of Chhattisgarh. In the remote and far-flung interiors of Chhattisgarh, NMDC empowers the local population by providing world class educational & medical facilities, transportation network, drinking water facilities, irrigational agricultural supports, employment opportunities, establishing religious harmony. All this ultimately results in empowered, educated, and improved awareness in population. Thus, the basic tenets of constitution of India- secularism, democracy, welfare for all, socialism, humanism, decentralization, liberalism, mixed economy, and non-violence is fulfilled. Constitution declares India as a welfare state – for the people, of the people and by the people. The sustainable mining practices by NMDC are in line with the objective. Thus, the purpose of study is fully met with. The potential benefit of the study includes replicating this model in existing or new establishments in various parts of country – especially in the under-privileged interiors and far-flung areas which are yet to see the lights of development.

Keywords: ESG values, Indian constitution, NMDC limited, sustainable mining, CSR, green energy

Procedia PDF Downloads 51
504 Smart Irrigation System for Applied Irrigation Management in Tomato Seedling Production

Authors: Catariny C. Aleman, Flavio B. Campos, Matheus A. Caliman, Everardo C. Mantovani

Abstract:

The seedling production stage is a critical point in the vegetable production system. Obtaining high-quality seedlings is a prerequisite for subsequent cropping to occur well and productivity optimization is required. The water management is an important step in agriculture production. The adequate water requirement in horticulture seedlings can provide higher quality and increase field production. The practice of irrigation is indispensable and requires a duly adjusted quality irrigation system, together with a specific water management plan to meet the water demand of the crop. Irrigation management in seedling management requires a great deal of specific information, especially when it involves the use of inputs such as hydrorentering polymers and automation technologies of the data acquisition and irrigation system. The experiment was conducted in a greenhouse at the Federal University of Viçosa, Viçosa - MG. Tomato seedlings (Lycopersicon esculentum Mill) were produced in plastic trays of 128 cells, suspended at 1.25 m from the ground. The seedlings were irrigated by 4 micro sprinklers of fixed jet 360º per tray, duly isolated by sideboards, following the methodology developed for this work. During Phase 1, in January / February 2017 (duration of 24 days), the cultivation coefficient (Kc) of seedlings cultured in the presence and absence of hydrogel was evaluated by weighing lysimeter. In Phase 2, September 2017 (duration of 25 days), the seedlings were submitted to 4 irrigation managements (Kc, timer, 0.50 ETo, and 1.00 ETo), in the presence and absence of hydrogel and then evaluated in relation to quality parameters. The microclimate inside the greenhouse was monitored with the use of air temperature, relative humidity and global radiation sensors connected to a microcontroller that performed hourly calculations of reference evapotranspiration by Penman-Monteith standard method FAO56 modified for the balance of long waves according to Walker, Aldrich, Short (1983), and conducted water balance and irrigation decision making for each experimental treatment. Kc of seedlings cultured on a substrate with hydrogel (1.55) was higher than Kc on a pure substrate (1.39). The use of the hydrogel was a differential for the production of earlier tomato seedlings, with higher final height, the larger diameter of the colon, greater accumulation of a dry mass of shoot, a larger area of crown projection and greater the rate of relative growth. The handling 1.00 ETo promoted higher relative growth rate.

Keywords: automatic system; efficiency of water use; precision irrigation, micro sprinkler.

Procedia PDF Downloads 93
503 Fabrication of Aluminum Nitride Thick Layers by Modified Reactive Plasma Spraying

Authors: Cécile Dufloux, Klaus Böttcher, Heike Oppermann, Jürgen Wollweber

Abstract:

Hexagonal aluminum nitride (AlN) is a promising candidate for several wide band gap semiconductor compound applications such as deep UV light emitting diodes (UVC LED) and fast power transistors (HEMTs). To date, bulk AlN single crystals are still commonly grown from the physical vapor transport (PVT). Single crystalline AlN wafers obtained from this process could offer suitable substrates for a defect-free growth of ultimately active AlGaN layers, however, these wafers still lack from small sizes, limited delivery quantities and high prices so far.Although there is already an increasing interest in the commercial availability of AlN wafers, comparatively cheap Si, SiC or sapphire are still predominantly used as substrate material for the deposition of active AlGaN layers. Nevertheless, due to a lattice mismatch up to 20%, the obtained material shows high defect densities and is, therefore, less suitable for high power devices as described above. Therefore, the use of AlN with specially adapted properties for optical and sensor applications could be promising for mass market products which seem to fulfill fewer requirements. To respond to the demand of suitable AlN target material for the growth of AlGaN layers, we have designed an innovative technology based on reactive plasma spraying. The goal is to produce coarse grained AlN boules with N-terminated columnar structure and high purity. In this process, aluminum is injected into a microwave stimulated nitrogen plasma. AlN, as the product of the reaction between aluminum powder and the plasma activated N2, is deposited onto the target. We used an aluminum filament as the initial material to minimize oxygen contamination during the process. The material was guided through the nitrogen plasma so that the mass turnover was 10g/h. To avoid any impurity contamination by an erosion of the electrodes, an electrode-less discharge was used for the plasma ignition. The pressure was maintained at 600-700 mbar, so the plasma reached a temperature high enough to vaporize the aluminum which subsequently was reacting with the surrounding plasma. The obtained products consist of thick polycrystalline AlN layers with a diameter of 2-3 cm. The crystallinity was determined by X-ray crystallography. The grain structure was systematically investigated by optical and scanning electron microscopy. Furthermore, we performed a Raman spectroscopy to provide evidence of stress in the layers. This paper will discuss the effects of process parameters such as microwave power and deposition geometry (specimen holder, radiation shields, ...) on the topography, crystallinity, and stress distribution of AlN.

Keywords: aluminum nitride, polycrystal, reactive plasma spraying, semiconductor

Procedia PDF Downloads 266
502 Act Local, Think Global: Superior Institute of Engineering of Porto Campaign for a Sustainable Campus

Authors: R. F. Mesquita Brandão

Abstract:

Act Local, Think Global is the name of a campaign implemented at Superior Institute of Engineering of Porto (ISEP), one of schools of Polytechnic of Porto, with the main objective of increase the sustainability of the campus. ISEP has a campus with 52.000 m2 and more than 7.000 students. The campaign started in 2019 and the results are very clear. In 2019 only 16% of the waste created in the campus was correctly separate for recycling and now almost 50% of waste goes to the correct waste container. Actions to reduce the energy consumption were implemented with significantly results. One of the major problems in the campus are the water leaks. To solve this problem was implemented a methodology for water monitoring during the night, a period of time where consumptions are normally low. If water consumption in the period is higher than a determinate value it may mean a water leak and an alarm is created to the maintenance teams. In terms of energy savings, some measurements were implemented to create savings in energy consumption and in equivalent CO₂ produced. In order to reduce the use of plastics in the campus, was implemented the prohibition of selling 33 cl plastic water bottles and in collaboration with the students association all meals served in the restaurants changed the water plastic bottle for a glass that can be refilled with water in the water dispensers. This measures created a reduction of use of more than 75.000 plastic bottles per year. In parallel was implemented the ISEP water glass bottle to be used in all scientific meetings and events. Has a way of involving all community in sustainability issues was developed and implemented a vertical garden in aquaponic system. In 2019, the first vertical garden without soil was installed inside a large campus building. The system occupies the entire exterior façade (3 floors) of the entrance to ISEP's G building. On each of these floors there is a planter with 42 positions available for plants. Lettuces, strawberries, peppers are examples of some vegetable produced that can be collected by the entire community. Associated to the vertical garden was developed a monitoring system were some parameters of the system are monitored. This project is under development because it will work in a stand-alone energy feeding, with the use of photovoltaic panels for production of energy necessities. All the system was, and still is, developed by students and teachers and is used in class projects of some ISEP courses. These and others measures implemented in the campus, will be more developed in the full paper, as well as all the results obtained, allowed ISEP to be the first Portuguese high school to obtain the certification “Coração Verde” (Green Heart), awarded by LIPOR, a Portuguese company with the mission of transform waste into new resources through the implementation of innovative and circular practices, generating and sharing value.

Keywords: aquaponics, energy efficiency, recycling, sustainability, waste separation

Procedia PDF Downloads 75
501 Placement Characteristics of Major Stream Vehicular Traffic at Median Openings

Authors: Tathagatha Khan, Smruti Sourava Mohapatra

Abstract:

Median openings are provided in raised median of multilane roads to facilitate U-turn movement. The U-turn movement is a highly complex and risky maneuver because U-turning vehicle (minor stream) makes 180° turns at median openings and merge with the approaching through traffic (major stream). A U-turning vehicle requires a suitable gap in the major stream to merge, and during this process, the possibility of merging conflict develops. Therefore, these median openings are potential hot spot of conflict and posses concern pertaining to safety. The traffic at the median openings could be managed efficiently with enhanced safety when the capacity of a traffic facility has been estimated correctly. The capacity of U-turns at median openings is estimated by Harder’s formula, which requires three basic parameters namely critical gap, follow up time and conflict flow rate. The estimation of conflicting flow rate under mixed traffic condition is very much complicated due to absence of lane discipline and discourteous behavior of the drivers. The understanding of placement of major stream vehicles at median opening is very much important for the estimation of conflicting traffic faced by U-turning movement. The placement data of major stream vehicles at different section in 4-lane and 6-lane divided multilane roads were collected. All the test sections were free from the effect of intersection, bus stop, parked vehicles, curvature, pedestrian movements or any other side friction. For the purpose of analysis, all the vehicles were divided into 6 categories such as motorized 2W, autorickshaw (3-W), small car, big car, light commercial vehicle, and heavy vehicle. For the collection of placement data of major stream vehicles, the entire road width was divided into sections of 25 cm each and these were numbered seriatim from the pavement edge (curbside) to the end of the road. The placement major stream vehicle crossing the reference line was recorded by video graphic technique on various weekdays. The collected data for individual category of vehicles at all the test sections were converted into a frequency table with a class interval of 25 cm each and the placement frequency curve. Separate distribution fittings were tried for 4- lane and 6-lane divided roads. The variation of major stream traffic volume on the placement characteristics of major stream vehicles has also been explored. The findings of this study will be helpful to determine the conflict volume at the median openings. So, the present work holds significance in traffic planning, operation and design to alleviate the bottleneck, prospect of collision and delay at median opening in general and at median opening in developing countries in particular.

Keywords: median opening, U-turn, conflicting traffic, placement, mixed traffic

Procedia PDF Downloads 117