Search results for: semantic memory
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1649

Search results for: semantic memory

509 Multichannel Surface Electromyography Trajectories for Hand Movement Recognition Using Intrasubject and Intersubject Evaluations

Authors: Christina Adly, Meena Abdelmeseeh, Tamer Basha

Abstract:

This paper proposes a system for hand movement recognition using multichannel surface EMG(sEMG) signals obtained from 40 subjects using 40 different exercises, which are available on the Ninapro(Non-Invasive Adaptive Prosthetics) database. First, we applied processing methods to the raw sEMG signals to convert them to their amplitudes. Second, we used deep learning methods to solve our problem by passing the preprocessed signals to Fully connected neural networks(FCNN) and recurrent neural networks(RNN) with Long Short Term Memory(LSTM). Using intrasubject evaluation, The accuracy using the FCNN is 72%, with a processing time for training around 76 minutes, and for RNN's accuracy is 79.9%, with 8 minutes and 22 seconds processing time. Third, we applied some postprocessing methods to improve the accuracy, like majority voting(MV) and Movement Error Rate(MER). The accuracy after applying MV is 75% and 86% for FCNN and RNN, respectively. The MER value has an inverse relationship with the prediction delay while varying the window length for measuring the MV. The different part uses the RNN with the intersubject evaluation. The experimental results showed that to get a good accuracy for testing with reasonable processing time, we should use around 20 subjects.

Keywords: hand movement recognition, recurrent neural network, movement error rate, intrasubject evaluation, intersubject evaluation

Procedia PDF Downloads 145
508 Protective Effect of Herniarin on Ionizing Radiation-Induced Impairments in Brain

Authors: Sophio Kalmakhelidze, Eka Shekiladze, Tamar Sanikidze, Mikheil Gogebashvili, Nazi Ivanishvili

Abstract:

Radiation-induced various degrees of brain injury and cognitive impairment have been described after cranial radiotherapy of brain tumors. High doses of ionizing radiation have a severe impact on the central nervous system, resulting in morphological and behavioral impairments. Structures of the limbic system are especially sensitive to radiation exposure. Hence, compounds or drugs that can reduce radiation-induced impairments can be used as promising antioxidants or radioprotectors. In our study Mice whole-body irradiation with 137Cs was performed at a dose rate of 1,1 Gy/min for a total dose of 5 Gy with a “Gamma-capsule-2”. Irradiated mice were treated with Herniarin (20 mg/kg) for five days before irradiation and the same dose was administrated after one hour of irradiation. The immediate and delayed effects of ionizing radiation, as well as, protective effect of Herniarin was evaluated during early and late post-irradiation periods. The results reveal that ionizing radiation (5 Gy) alters the structure of the hippocampus in adult mice during the late post-irradiation period resulting in the decline of memory formation and learning process. Furthermore, Simple Coumarin-Herniarin reveals a radiosensitizing effect reducing morphological and behavioral alterations.

Keywords: ionizing radiation, cognitive impairments, hippocampus, limbic system, Herniarin

Procedia PDF Downloads 73
507 Attachment and Memories: Activating Attachment in College Students through Narrative-Based Methods

Authors: Catherine Wright, Kate Luedke

Abstract:

This paper questions whether or not individuals who had been exposed to narratives describing secure and insecure-avoidant attachment styles experienced temporary changes in their attachment style when compared to individuals who had been exposed to neutral narratives. The Attachment Style Questionnaire (or ASQ) developed by Feeney, Noller, and Hanrahan in 1994 was utilized to assess attachment style. Participants filled out a truncated version of the ASQ prior to reading the respective narratives assigned to their groups, and filled out the entirety of the ASQ after reading the narratives. Utilizing a one-way independent groups ANOVA, researchers found that the group which read the insecure-avoidant narrative experienced a statistically significant decrease in secure attachment, as did the group which read the secure narrative. The control group, however, experienced a statistically significant increase in secure attachment. Based on these findings, researchers concluded that narratives may have the ability to call attention to parental shortcomings that individuals have experienced in the forms of reminding individuals of positive experiences that they were not able to experience while spending time with their parental figures and calling attention to the shortcomings of said parental figures by reminding them of the negative experiences which they did have with them.

Keywords: attachment, insecure-avoidant, memory, secure

Procedia PDF Downloads 402
506 CompPSA: A Component-Based Pairwise RNA Secondary Structure Alignment Algorithm

Authors: Ghada Badr, Arwa Alturki

Abstract:

The biological function of an RNA molecule depends on its structure. The objective of the alignment is finding the homology between two or more RNA secondary structures. Knowing the common functionalities between two RNA structures allows a better understanding and a discovery of other relationships between them. Besides, identifying non-coding RNAs -that is not translated into a protein- is a popular application in which RNA structural alignment is the first step A few methods for RNA structure-to-structure alignment have been developed. Most of these methods are partial structure-to-structure, sequence-to-structure, or structure-to-sequence alignment. Less attention is given in the literature to the use of efficient RNA structure representation and the structure-to-structure alignment methods are lacking. In this paper, we introduce an O(N2) Component-based Pairwise RNA Structure Alignment (CompPSA) algorithm, where structures are given as a component-based representation and where N is the maximum number of components in the two structures. The proposed algorithm compares the two RNA secondary structures based on their weighted component features rather than on their base-pair details. Extensive experiments are conducted illustrating the efficiency of the CompPSA algorithm when compared to other approaches and on different real and simulated datasets. The CompPSA algorithm shows an accurate similarity measure between components. The algorithm gives the flexibility for the user to align the two RNA structures based on their weighted features (position, full length, and/or stem length). Moreover, the algorithm proves scalability and efficiency in time and memory performance.

Keywords: alignment, RNA secondary structure, pairwise, component-based, data mining

Procedia PDF Downloads 459
505 Synthesis and Biological Evaluation of Some Benzoxazole Derivatives as Inhibitors of Acetylcholinesterase / Butyrylcholinesterase and Tyrosinase

Authors: Ozlem Temiz-Arpaci, Meryem Tasci, Fatma Sezer Senol, İlkay Erdogan Orhan

Abstract:

Alzheimer’s disease (AD), a neurodegenerative disorder characterized by a progressive deterioration of memory and cognition, occurs more frequently in elderly people. Current treatment approaches in this disease with the major therapeutic strategy are based on the AChE and BChE inhibition. On the other hand, tyrosinase inhibition has become a target for the treatment of Parkinson’s disease (PD) since this enzyme may play a role in neuromelanin formation in the human brain and could be critical in the formation of dopamine neurotoxicity associated with neurodegeneration linked to PD. Also benzoxazoles are structural isosteres of natural nucleotides that can interact with biopolymers so that benzoxazoles showed a lot of different biological activities. In this study, a series of 2,5-disubstituted-benzoxazole derivatives were synthesized and were evaluated as possible inhibitors of acetylcholinesterase (AChE) / butyrylcholinesterase (BChE) and tyrosinase. The results demonstrated that the compounds exhibited a weak spectrum of AChE / BChE inhibitory activity ranging between 3.92% - 54.32% except compound 8 which showed no activity against AChE and compound 4 which showed no activity against BChE at the specified molar concentrations. Also, the compounds indicated lower than tyrosinase inhibitory activity of ranging between 8.14% - 22.90% to that of reference (kojic acid).

Keywords: AChE and BChE inhibition, Alzheimer’s disease, benzoxazoles, tyrosinase inhibition

Procedia PDF Downloads 341
504 Structural, Magnetic, and Dielectric Studies of Tetragonally Ordered Sm₂Fe₂O₇ Pyrochlore Nanostructures for Spintronic Application

Authors: S. Nqayi

Abstract:

Understanding the structural, electronic, and magnetic properties of nanomaterials is essential for developing next-generation electronic and spintronic devices, contributing to the progress of nanoscience and nanotechnology applications. Multiferroic materials, with intimately coupled ferroic-order parameters, are widely considered to breed fascinating physical properties and provide unique opportunities for the development of next-generation devices, like multistate non-volatile memory. In this study, we are set to investigate the structural, electronic, and magnetic properties of the frustrated Feᴵᴵ/Smⱽᴵ sublattice in relation to the widely studied perovskites for spintronics applications. The atomic composition, microstructure, crystallography, magnetization, thermal, and dielectric properties of a pyrochlore Sm₂Fe₂O₇ system synthesized using sol-gel methods are currently being investigated. Precursor powders were dissolved in citric acid monohydrate to obtain a solution. The obtained solution was stirred and heated using a magnetic stirrer to obtain the gel phase. Then, the gel was dried at 200°C to remove water and organic compounds and form an orange powder. The X-ray diffraction analysis confirms that the structure crystallized as a pyrochlore structure with a tetragonal F4mm (107) symmetry. The presence of Fe³⁺/Fe⁴⁺ mixed states is also revealed by XPS analysis.

Keywords: nanostructures, multiferroic materials, pyrochlores, spintronics

Procedia PDF Downloads 56
503 Effects of Cell Phone Electromagnetic Radiation on the Brain System

Authors: A. Alao Olumuyiwa

Abstract:

Health hazards reported to be associated with exposure to electromagnetic radiations which include brain tumors, genotoxic effects, neurological effects, immune system deregulation, allergic responses and some cardiovascular effects are discussed under a closed tabular model in this study. This review however showed that there is strong and robust evidence that chronic exposures to electromagnetic frequency across the spectrum, through strength, consistency, biological plausibility and many dose-response relationships, may result in brain cancer and other carcinogenic disease symptoms. There is therefore no safe threshold because of the genotoxic nature of the mechanism that may however be involved. The discussed study explains that the cell phone has induced effects upon the blood –brain barrier permeability and the cerebellum exposure to continuous long hours RF radiation may result in significant increase in albumin extravasations. A physical Biomodeling approach is however employed to review this health effects using Specific Absorption Rate (SAR) of different GSM machines to critically examine the symptoms such as a decreased loco motor activity, increased grooming and reduced memory functions in a variety of animal spices in classified grouped and sub grouped models.

Keywords: brain cancer, electromagnetic radiations, physical biomodeling, specific absorption rate (SAR)

Procedia PDF Downloads 348
502 The Impact of Artificial Intelligence on Rural Life

Authors: Triza Edwar Fawzi Deif

Abstract:

In the process of urbanization in China, new rural construction is on the ascendant, which is becoming more and more popular. Under the driving effect of rural urbanization, the house pattern and tectonic methods of traditional vernacular houses have shown great differences from the family structure and values of contemporary peasant families. Therefore, it is particularly important to find a prototype, form and strategy to make a balance between the traditional memory and modern functional requirements. In order for research to combine the regional culture with modern life, under the situation of the current batch production of new rural residences, Badie village, in Zhejiang province, is taken as the case. This paper aims to put forward a prototype which can not only meet the demand of modern life but also ensure the continuation of traditional culture and historical context for the new rural dwellings design. This research not only helps to extend the local context in the construction of the new site but also contributes to the fusion of old and new rural dwellings in the old site construction. Through the study and research of this case, the research methodology and results can be drawn as reference for the new rural construction in other areas.

Keywords: steel slag, co-product, primary coating, steel aggregate capital, rural areas, rural planning, rural governance village, design strategy, new rural dwellings, regional context, regional expression

Procedia PDF Downloads 58
501 Stack Overflow Detection and Prevention on Operating Systems Using Machine Learning and Control-Flow Enforcement Technology

Authors: Cao Jiayu, Lan Ximing, Huang Jingjia, Burra Venkata Durga Kumar

Abstract:

The first virus to attack personal computers was born in early 1986, called C-Brain, written by a pair of Pakistani brothers. In those days, people still used dos systems, manipulating computers with the most basic command lines. In the 21st century today, computer performance has grown geometrically. But computer viruses are also evolving and escalating. We never stop fighting against security problems. Stack overflow is one of the most common security vulnerabilities in operating systems. It may result in serious security issues for an operating system if a program in it has a vulnerability with administrator privileges. Certain viruses change the value of specific memory through a stack overflow, allowing computers to run harmful programs. This study developed a mechanism to detect and respond to time whenever a stack overflow occurs. We demonstrate the effectiveness of standard machine learning algorithms and control flow enforcement techniques in predicting computer OS security using generating suspicious vulnerability functions (SVFS) and associated suspect areas (SAS). The method can minimize the possibility of stack overflow attacks occurring.

Keywords: operating system, security, stack overflow, buffer overflow, machine learning, control-flow enforcement technology

Procedia PDF Downloads 115
500 The Phenomena of False Cognates and Deceptive Cognates: Issues to Foreign Language Learning and Teaching Methodology Based on Set Theory

Authors: Marilei Amadeu Sabino

Abstract:

The aim of this study is to establish differences between the terms ‘false cognates’, ‘false friends’ and ‘deceptive cognates’, usually considered to be synonyms. It will be shown they are not synonyms, since they do not designate the same linguistic process or phenomenon. Despite their differences in meaning, many pairs of formally similar words in two (or more) different languages are true cognates, although they are usually known as ‘false’ cognates – such as, for instance, the English and Italian lexical items ‘assist x assistere’; ‘attend x attendere’; ‘argument x argomento’; ‘apology x apologia’; ‘camera x camera’; ‘cucumber x cocomero’; ‘fabric x fabbrica’; ‘factory x fattoria’; ‘firm x firma’; ‘journal x giornale’; ‘library x libreria’; ‘magazine x magazzino’; ‘parent x parente’; ‘preservative x preservativo’; ‘pretend x pretendere’; ‘vacancy x vacanza’, to name but a few examples. Thus, one of the theoretical objectives of this paper is firstly to elaborate definitions establishing a distinction between the words that are definitely ‘false cognates’ (derived from different etyma) and those that are just ‘deceptive cognates’ (derived from the same etymon). Secondly, based on Set Theory and on the concepts of equal sets, subsets, intersection of sets and disjoint sets, this study is intended to elaborate some theoretical and practical questions that will be useful in identifying more precisely similarities and differences between cognate words of different languages, and according to graphic interpretation of sets it will be possible to classify them and provide discernment about the processes of semantic changes. Therefore, these issues might be helpful not only to the Learning of Second and Foreign Languages, but they could also give insights into Foreign and Second Language Teaching Methodology. Acknowledgements: FAPESP – São Paulo State Research Support Foundation – the financial support offered (proc. n° 2017/02064-7).

Keywords: deceptive cognates, false cognates, foreign language learning, teaching methodology

Procedia PDF Downloads 338
499 Real-Time Course Recommendation System for Online Learning Platforms

Authors: benabbess anja

Abstract:

This research presents the design and implementation of a real-time course recommendation system for online learning platforms, leveraging user competencies and expertise levels. The system begins by extracting and classifying the complexity levels of courses from Udemy datasets using semantic enrichment techniques and resources such as WordNet and BERT. A predictive model assigns complexity levels to each course, adding columns that represent the course category, sub-category, and complexity level to the existing dataset. Simultaneously, user profiles are constructed through questionnaires capturing their skills, sub-skills, and proficiency levels. The recommendation process involves generating embeddings with BERT, followed by calculating cosine similarity between user profiles and courses. Courses are ranked based on their relevance, with the BERT model delivering the most accurate results. To enable real-time recommendations, Apache Kafka is integrated to track user interactions (clicks, comments, time spent, completed courses, feedback) and update user profiles. The embeddings are regenerated, and similarities with courses are recalculated to reflect users' evolving needs and behaviors, incorporating a progressive weighting of interactions for more personalized suggestions. This approach ensures dynamic and real-time course recommendations tailored to user progress and engagement, providing a more personalized and effective learning experience. This system aims to improve user engagement and optimize learning paths by offering courses that precisely match users' needs and current skill levels.

Keywords: recommendation system, online learning, real-time, user skills, expertise level, personalized recommendations, dynamic suggestions

Procedia PDF Downloads 10
498 The Data-Driven Localized Wave Solution of the Fokas-Lenells Equation using PINN

Authors: Gautam Kumar Saharia, Sagardeep Talukdar, Riki Dutta, Sudipta Nandy

Abstract:

The physics informed neural network (PINN) method opens up an approach for numerically solving nonlinear partial differential equations leveraging fast calculating speed and high precession of modern computing systems. We construct the PINN based on strong universal approximation theorem and apply the initial-boundary value data and residual collocation points to weekly impose initial and boundary condition to the neural network and choose the optimization algorithms adaptive moment estimation (ADAM) and Limited-memory Broyden-Fletcher-Golfard-Shanno (L-BFGS) algorithm to optimize learnable parameter of the neural network. Next, we improve the PINN with a weighted loss function to obtain both the bright and dark soliton solutions of Fokas-Lenells equation (FLE). We find the proposed scheme of adjustable weight coefficients into PINN has a better convergence rate and generalizability than the basic PINN algorithm. We believe that the PINN approach to solve the partial differential equation appearing in nonlinear optics would be useful to study various optical phenomena.

Keywords: deep learning, optical Soliton, neural network, partial differential equation

Procedia PDF Downloads 129
497 Prompt Design for Code Generation in Data Analysis Using Large Language Models

Authors: Lu Song Ma Li Zhi

Abstract:

With the rapid advancement of artificial intelligence technology, large language models (LLMs) have become a milestone in the field of natural language processing, demonstrating remarkable capabilities in semantic understanding, intelligent question answering, and text generation. These models are gradually penetrating various industries, particularly showcasing significant application potential in the data analysis domain. However, retraining or fine-tuning these models requires substantial computational resources and ample downstream task datasets, which poses a significant challenge for many enterprises and research institutions. Without modifying the internal parameters of the large models, prompt engineering techniques can rapidly adapt these models to new domains. This paper proposes a prompt design strategy aimed at leveraging the capabilities of large language models to automate the generation of data analysis code. By carefully designing prompts, data analysis requirements can be described in natural language, which the large language model can then understand and convert into executable data analysis code, thereby greatly enhancing the efficiency and convenience of data analysis. This strategy not only lowers the threshold for using large models but also significantly improves the accuracy and efficiency of data analysis. Our approach includes requirements for the precision of natural language descriptions, coverage of diverse data analysis needs, and mechanisms for immediate feedback and adjustment. Experimental results show that with this prompt design strategy, large language models perform exceptionally well in multiple data analysis tasks, generating high-quality code and significantly shortening the data analysis cycle. This method provides an efficient and convenient tool for the data analysis field and demonstrates the enormous potential of large language models in practical applications.

Keywords: large language models, prompt design, data analysis, code generation

Procedia PDF Downloads 43
496 An Investigation on Students’ Reticence in Iranian University EFL Classrooms

Authors: Azizeh Chalak, Firouzeh Baktash

Abstract:

Reticence is a prominent and complex phenomenon which occurs in foreign language classrooms and influences students’ oral passivity. The present study investigated the extent in which students experience reticence in the EFL classrooms and explored the underlying factors triggering reticence. The participants were 104 Iranian freshmen undergraduate male and female EFL students, who enrolled in listening and speaking courses, all majoring in English studying at Islamic Azad University Isfahan (Khorasgan) Branch and University of Isfahan, Isfahan, Iran. To collect the data, the Reticence Scale-12 (RS-12) questionnaire which measures the level of reticence consisting of six dimensions (anxiety, knowledge, timing, organization, skills, and memory) was administered to the participants. The statistical analyses showed that the reticent level was high among the Iranian EFL undergraduate students, and their major problems were feelings of anxiety and delivery skills. Moreover, the results revealed that factors such as low English proficiency, the teaching method, and lack of confidence contributed to the students’ reticence in Iranian EFL classrooms. It can be implied that language teachers’ awareness of learners’ reticence can help them choose more appropriate activities and provide a friendly environment enhancing hopefully more effective participation of EFL learners. The findings can have implications for EFL teachers, learners and policy makers.

Keywords: anxiety, Iranian EFL learners, reticence, reticence scale-12

Procedia PDF Downloads 499
495 Predicting the Diagnosis of Alzheimer’s Disease: Development and Validation of Machine Learning Models

Authors: Jay L. Fu

Abstract:

Patients with Alzheimer's disease progressively lose their memory and thinking skills and, eventually, the ability to carry out simple daily tasks. The disease is irreversible, but early detection and treatment can slow down the disease progression. In this research, publicly available MRI data and demographic data from 373 MRI imaging sessions were utilized to build models to predict dementia. Various machine learning models, including logistic regression, k-nearest neighbor, support vector machine, random forest, and neural network, were developed. Data were divided into training and testing sets, where training sets were used to build the predictive model, and testing sets were used to assess the accuracy of prediction. Key risk factors were identified, and various models were compared to come forward with the best prediction model. Among these models, the random forest model appeared to be the best model with an accuracy of 90.34%. MMSE, nWBV, and gender were the three most important contributing factors to the detection of Alzheimer’s. Among all the models used, the percent in which at least 4 of the 5 models shared the same diagnosis for a testing input was 90.42%. These machine learning models allow early detection of Alzheimer’s with good accuracy, which ultimately leads to early treatment of these patients.

Keywords: Alzheimer's disease, clinical diagnosis, magnetic resonance imaging, machine learning prediction

Procedia PDF Downloads 143
494 The Effects of Physical Activity and Serotonin on Depression, Anxiety, Body Image and Mental Health

Authors: Sh. Khoshemehry, M. E. Bahram, M. J. Pourvaghar

Abstract:

Sport has found a special place as an effective phenomenon in all societies of the contemporary world. The relationship between physical activity and exercise with different sciences has provided new fields for human study. The range of issues related to exercise and physical education is such that it requires specialized sciences and special studies. In this article, the psychological and social sections of exercise have been investigated for children and adults. It can be used for anyone in different age groups. Exercise and regular physical movements have a great impact on the mental and social health of the individual in addition to body health. It affects the individual's adaptability in society and his/her personality. Exercise affects the treatment of diseases such as depression, anxiety, stress, body image, and memory. Exercise is a safe haven for young people to achieve the optimum human development in its shelter. The effects of sensorimotor skills on mental actions and mental development are such a way that many psychologists and sports science experts believe these activities should be included in training programs in the first place. Familiarity of students and scholars with different programs and methods of sensorimotor activities not only causes their mental actions; but also increases mental health and vitality, enhances self-confidence and, therefore, mental health.

Keywords: anxiety, mental health, physical activity, serotonin

Procedia PDF Downloads 209
493 6,402: On the Aesthetic Experience of Facticity

Authors: Nicolás Rudas

Abstract:

Sociologists have brought to light the fascination of contemporary societies with numbers but fall short of explaining it. In their accounts, people generally misunderstand the technical intricacies of statistical knowledge and therefore accept numbers as unassailable “facts”. It is due to such pervasive fascination, furthermore, that both old and new forms of social control find fertile ground. By focusing on the process whereby the fetishization of numbers reaches its zenith, i.e., when specific statistics become emblematic of an entire society, it is asserted that numbers primarily function as moral symbols with immense potential for galvanizing collective action. Their “facticity” is not solely a cognitive problem but one that is deeply rooted in myth and connected with social experiences of epiphany and ritual. Evidence from Colombia is used to illustrate how certain quantifications become canonical. In 2021, Colombia’s Peace Court revealed that the national army had executed 6,402 innocent civilians to later report them as members of illegal armed groups. Rapidly, “6,402” transformed into a prominent item in the country’s political landscape. This article reconstructs such a process by following the first six months of the figure’s circulation, both in traditional and social media. In doing so, it is developed a new cultural-sociological conceptualization of numbers as “fact-icons” that departs from traditional understandings of statistics as “technical” objects. Numbers are icons whose appropriation is less rational than aesthetic.

Keywords: culture, statistics, collective memory, social movements

Procedia PDF Downloads 72
492 The Ideology of the Jordanian Media Women’s Discourse: Lana Mamkgh as an Example

Authors: Amani Hassan Abu Atieh

Abstract:

This study aims at examining the patterns of ideology reflected in the written discourse of women writers in the media of Jordan; Lana Mamkgh is taken as an example. This study critically analyzes the discursive, linguistic, and cognitive representations that she employs as an agent in the institutionalized discourse of the media. Grounded in van Dijk’s critical discourse analysis approach to Sociocognitive Discourse Studies, the present study builds a multilayer framework that encompasses van Dijk’s triangle: discourse, society, and cognition. Specifically, the study attempts to analyze, at both micro and macro levels, the underlying cognitive processes and structures, mainly ideology and discursive strategies, which are functional in the production of women’s discourse in terms of meaning, forms, and functions. Cognitive processes that social actors adopt are underlined by experience/context and semantic mental models on the one hand and social cognition on the other. This study is based on qualitative research and adopts purposive sampling, taking as an example a sample of an opinion article written by Lana Mamkgh in the Arabic Jordanian Daily, Al Rai. Taking her role as an agent in the public sphere, she stresses the National and feminist ideologies, demonstrating the use of assertive, evaluative, and expressive linguistic and rhetorical devices that appeal to the logic, ethics, and emotions of the addressee. Highlighting the agency of Jordanian writers in the media, the study sought to achieve the macro goal of dispensing political and social justice to the underprivileged. Further, the study seeks to prove that the voice of Jordanian women, viewed as underrepresented and invisible in the public arena, has come through clearly.

Keywords: critical discourse analysis, sociocognitive theory, ideology, women discourse, media

Procedia PDF Downloads 110
491 Characterising Stable Model by Extended Labelled Dependency Graph

Authors: Asraful Islam

Abstract:

Extended dependency graph (EDG) is a state-of-the-art isomorphic graph to represent normal logic programs (NLPs) that can characterize the consistency of NLPs by graph analysis. To construct the vertices and arcs of an EDG, additional renaming atoms and rules besides those the given program provides are used, resulting in higher space complexity compared to the corresponding traditional dependency graph (TDG). In this article, we propose an extended labeled dependency graph (ELDG) to represent an NLP that shares an equal number of nodes and arcs with TDG and prove that it is isomorphic to the domain program. The number of nodes and arcs used in the underlying dependency graphs are formulated to compare the space complexity. Results show that ELDG uses less memory to store nodes, arcs, and cycles compared to EDG. To exhibit the desirability of ELDG, firstly, the stable models of the kernel form of NLP are characterized by the admissible coloring of ELDG; secondly, a relation of the stable models of a kernel program with the handles of the minimal, odd cycles appearing in the corresponding ELDG has been established; thirdly, to our best knowledge, for the first time an inverse transformation from a dependency graph to the representing NLP w.r.t. ELDG has been defined that enables transferring analytical results from the graph to the program straightforwardly.

Keywords: normal logic program, isomorphism of graph, extended labelled dependency graph, inverse graph transforma-tion, graph colouring

Procedia PDF Downloads 215
490 Effective Glosses in Reading to Help L2 Vocabulary Learning for Low-Intermediate Technology University Students in Taiwan

Authors: Pi-Lan Yang

Abstract:

It is controversial which type of gloss condition (i.e., gloss language or gloss position) is more effective in second or foreign language (L2) vocabulary learning. The present study compared the performance on learning ten English words in the conditions of L2 English reading with no glosses and with glosses of Chinese equivalents/translations and L2 English definitions at the side of a page and at an attached sheet for low-intermediate Chinese-speaking learners of English, who were technology university students in Taiwan. It is found first that the performances on the immediate posttest and the delayed posttest were overall better in the gloss condition than those in the no-gloss condition. Next, it is found that the glosses of Chinese translations were more effective and sustainable than those of L2 English definitions. Finally, the effects of L2 English glosses at the side of a page were observed to be less sustainable than those at an attached sheet. In addition, an opinion questionnaire used also showed a preference for the glosses of Chinese translations in L2 English reading. These results would be discussed in terms of automated lexical access, sentence processing mechanisms, and the trade-off nature of storage and processing functions in working memory system, proposed by the capacity theory of language comprehension.

Keywords: glosses of Chinese equivalents/translations, glosses of L2 English definitions, L2 vocabulary learning, L2 English reading

Procedia PDF Downloads 248
489 Result of Fatty Acid Content in Meat of Selenge Breed Younger Cattle

Authors: Myagmarsuren Soronzonjav, N. Togtokhbayar, L. Davaahuu, B. Minjigdorj, Seong Gu Hwang

Abstract:

The number of natural or organic product consumers is increased in recent years and this healthy demand pushes to increase usage of healthy meat. At the same time, consumers pay more attention on the healthy fat, especially on unsaturated fatty acids. These long chain carbohydrates reduce heart diseases, improve memory and eye sight and activate the immune system. One of the important issues to be solved for our Mongolia’s food security is to provide healthy, fresh, widely available and cheap meat for the population. Thus, an importance of the Selenge breed meat production is increasing in order to supply the quality meat food security since the Selenge breed cattle are rapidly multiplied, beneficial in term of income, the same quality as Mongolian breed, and well digested for human body. We researched the lipid, unsaturated and saturated fatty acid contents of meat of Selenge breed younger cattle by their muscle types. Result of our research reveals that 11 saturated fatty acids are detected. For the content of palmitic acid among saturated fatty acids, 23.61% was in the sirloin meat, 24.01% was in the round and chuck meat, and 24.83% was in the short loin meat.

Keywords: chromatogram, gas chromatography, organic resolving, saturated and unsaturated fatty acids

Procedia PDF Downloads 270
488 Comprehensive Review of Ultralightweight Security Protocols

Authors: Prashansa Singh, Manjot Kaur, Rohit Bajaj

Abstract:

The proliferation of wireless sensor networks and Internet of Things (IoT) devices in the quickly changing digital landscape has highlighted the urgent need for strong security solutions that can handle these systems’ limited resources. A key solution to this problem is the emergence of ultralightweight security protocols, which provide strong security features while respecting the strict computational, energy, and memory constraints imposed on these kinds of devices. This in-depth analysis explores the field of ultralightweight security protocols, offering a thorough examination of their evolution, salient features, and the particular security issues they resolve. We carefully examine and contrast different protocols, pointing out their advantages and disadvantages as well as the compromises between resource limitations and security resilience. We also study these protocols’ application domains, including the Internet of Things, RFID systems, and wireless sensor networks, to name a few. In addition, the review highlights recent developments and advancements in the field, pointing out new trends and possible avenues for future research. This paper aims to be a useful resource for researchers, practitioners, and developers, guiding the design and implementation of safe, effective, and scalable systems in the Internet of Things era by providing a comprehensive overview of ultralightweight security protocols.

Keywords: wireless sensor network, machine-to-machine, MQTT broker, server, ultralightweight, TCP/IP

Procedia PDF Downloads 84
487 Indium-Gallium-Zinc Oxide Photosynaptic Device with Alkylated Graphene Oxide for Optoelectronic Spike Processing

Authors: Seyong Oh, Jin-Hong Park

Abstract:

Recently, neuromorphic computing based on brain-inspired artificial neural networks (ANNs) has attracted huge amount of research interests due to the technological abilities to facilitate massively parallel, low-energy consuming, and event-driven computing. In particular, research on artificial synapse that imitate biological synapses responsible for human information processing and memory is in the spotlight. Here, we demonstrate a photosynaptic device, wherein a synaptic weight is governed by a mixed spike consisting of voltage and light spikes. Compared to the device operated only by the voltage spike, ∆G in the proposed photosynaptic device significantly increased from -2.32nS to 5.95nS with no degradation of nonlinearity (NL) (potentiation/depression values were changed from 4.24/8 to 5/8). Furthermore, the Modified National Institute of Standards and Technology (MNIST) digit pattern recognition rates improved from 36% and 49% to 50% and 62% in ANNs consisting of the synaptic devices with 20 and 100 weight states, respectively. We expect that the photosynaptic device technology processed by optoelectronic spike will play an important role in implementing the neuromorphic computing systems in the future.

Keywords: optoelectronic synapse, IGZO (Indium-Gallium-Zinc Oxide) photosynaptic device, optoelectronic spiking process, neuromorphic computing

Procedia PDF Downloads 175
486 Dynamic Route Optimization in Vehicle Adhoc Networks: A Heuristics Routing Protocol

Authors: Rafi Ullah, Shah Muhammad Emaduddin, Taha Jilani

Abstract:

Vehicle Adhoc Networks (VANET) belongs to a special class of Mobile Adhoc Network (MANET) with high mobility. Network is created by road side vehicles equipped with communication devices like GPS and Wifi etc. Since the environment is highly dynamic due to difference in speed and high mobility of vehicles and weak stability of the network connection, it is a challenging task to design an efficient routing protocol for such an unstable environment. Our proposed algorithm uses heuristic for the calculation of optimal path for routing the packet efficiently in collaboration with several other parameters like geographical location, speed, priority, the distance among the vehicles, communication range, and networks congestion. We have incorporated probabilistic, heuristic and machine learning based approach inconsistency with the relay function of the memory buffer to keep the packet moving towards the destination. These parameters when used in collaboration provide us a very strong and admissible heuristics. We have mathematically proved that the proposed technique is efficient for the routing of packets, especially in a medical emergency situation. These networks can be used for medical emergency, security, entertainment and routing purposes.

Keywords: heuristics routing, intelligent routing, VANET, route optimization

Procedia PDF Downloads 180
485 Intervention of Self-Limiting L1 Inner Speech during L2 Presentations: A Study of Bangla-English Bilinguals

Authors: Abdul Wahid

Abstract:

Inner speech, also known as verbal thinking, self-talk or private speech, is characterized by the subjective language experience in the absence of overt or audible speech. It is a psychological form of verbal activity which is being rehearsed without the articulation of any sound wave. In Psychology, self-limiting speech means the type of speech which contains information that inhibits the development of the self. People, in most cases, experience inner speech in their first language. It is very frequent in Bangladesh where the Bangla (L1) speaking students lose track of speech during their presentations in English (L2). This paper investigates into the long pauses (more than 0.4 seconds long) in English (L2) presentations by Bangla speaking students (18-21 year old) and finds the intervention of Bangla (L1) inner speech as one of its causes. The overt speeches of the presenters are placed on Audacity Audio Editing software where the length of pauses are measured in milliseconds. Varieties of inner speech questionnaire (VISQ) have been conducted randomly amongst the participants out of whom 20 were selected who have similar phenomenology of inner speech. They have been interviewed to describe the type and content of the voices that went on in their head during the long pauses. The qualitative interview data are then codified and converted into quantitative data. It was observed that in more than 80% cases students experience self-limiting inner speech/self-talk during their unwanted pauses in L2 presentations.

Keywords: Bangla-English Bilinguals, inner speech, L1 intervention in bilingualism, motor schema, pauses, phonological loop, phonological store, working memory

Procedia PDF Downloads 152
484 Viscoelastic Modeling of Hot Mix Asphalt (HMA) under Repeated Loading by Using Finite Element Method

Authors: S. A. Tabatabaei, S. Aarabi

Abstract:

Predicting the hot mix asphalt (HMA) response and performance is a challenging task because of the subjectivity of HMA under the complex loading and environmental condition. The behavior of HMA is a function of temperature of loading and also shows the time and rate-dependent behavior directly affecting design criteria of mixture. Velocity of load passing make the time and rate. The viscoelasticity illustrates the reaction of HMA under loading and environmental conditions such as temperature and moisture effect. The behavior has direct effect on design criteria such as tensional strain and vertical deflection. In this paper, the computational framework for viscoelasticity and implementation in 3D dimensional HMA model is introduced to use in finite element method. The model was lied under various repeated loading conditions at constant temperature. The response of HMA viscoelastic behavior is investigated in loading condition under speed vehicle and sensitivity of behavior to the range of speed and compared to HMA which is supposed to have elastic behavior as in conventional design methods. The results show the importance of loading time pulse, unloading time and various speeds on design criteria. Also the importance of memory fading of material to storing the strain and stress due to repeated loading was shown. The model was simulated by ABAQUS finite element package

Keywords: viscoelasticity, finite element method, repeated loading, HMA

Procedia PDF Downloads 398
483 Analyzing Apposition and the Typology of Specific Reference in Newspaper Discourse in Nigeria

Authors: Monday Agbonica Bello Eje

Abstract:

The language of the print media is characterized by the use of apposition. This linguistic element function strategically in journalistic discourse where it is communicatively necessary to name individuals and provide information about them. Linguistic studies on the language of the print media with bias for apposition have largely dwelt on other areas but the examination of the typology of appositive reference in newspaper discourse. Yet, it is capable of revealing ways writers communicate and provide information necessary for readers to follow and understand the message. The study, therefore, analyses the patterns of appositional occurrences and the typology of reference in newspaper articles. The data were obtained from The Punch and Daily Trust Newspapers. A total of six editions of these newspapers were collected randomly spread over three months. News and feature articles were used in the analysis. Guided by the referential theory of meaning in discourse, the appositions identified were subjected to analysis. The findings show that the semantic relation of coreference and speaker coreference have the highest percentage and frequency of occurrence in the data. This is because the subject matter of news reports and feature articles focuses on humans and the events around them; as a result, readers need to be provided with some form of detail and background information in order to identify as well as follow the discourse. Also, the non-referential relation of absolute synonymy and speaker synonymy no doubt have fewer occurrences and percentages in the analysis. This is tied to a major feature of the language of the media: simplicity. The paper concludes that appositions is mainly used for the purpose of providing the reader with much detail. In this way, the writer transmits information which helps him not only to give detailed yet concise descriptions but also in some way help the reader to follow the discourse.

Keywords: apposition, discourse, newspaper, Nigeria, reference

Procedia PDF Downloads 176
482 Development of Algorithms for Solving and Analyzing Special Problems Transports Type

Authors: Dmitri Terzi

Abstract:

The article presents the results of an algorithmic study of a special optimization problem of the transport type (traveling salesman problem): 1) To solve the problem, a new natural algorithm has been developed based on the decomposition of the initial data into convex hulls, which has a number of advantages; it is applicable for a fairly large dimension, does not require a large amount of memory, and has fairly good performance. The relevance of the algorithm lies in the fact that, in practice, programs for problems with the number of traversal points of no more than twenty are widely used. For large-scale problems, the availability of algorithms and programs of this kind is difficult. The proposed algorithm is natural because the optimal solution found by the exact algorithm is not always feasible due to the presence of many other factors that may require some additional restrictions. 2) Another inverse problem solved here is to describe a class of traveling salesman problems that have a predetermined optimal solution. The constructed algorithm 2 allows us to characterize the structure of traveling salesman problems, as well as construct test problems to evaluate the effectiveness of algorithms and other purposes. 3) The appendix presents a software implementation of Algorithm 1 (in MATLAB), which can be used to solve practical problems, as well as in the educational process on operations research and optimization methods.

Keywords: traveling salesman problem, solution construction algorithm, convex hulls, optimality verification

Procedia PDF Downloads 76
481 Field-Programmable Gate Arrays Based High-Efficiency Oriented Fast and Rotated Binary Robust Independent Elementary Feature Extraction Method Using Feature Zone Strategy

Authors: Huang Bai-Cheng

Abstract:

When deploying the Oriented Fast and Rotated Binary Robust Independent Elementary Feature (BRIEF) (ORB) extraction algorithm on field-programmable gate arrays (FPGA), the access of global storage for 31×31 pixel patches of the features has become the bottleneck of the system efficiency. Therefore, a feature zone strategy has been proposed. Zones are searched as features are detected. Pixels around the feature zones are extracted from global memory and distributed into patches corresponding to feature coordinates. The proposed FPGA structure is targeted on a Xilinx FPGA development board of Zynq UltraScale+ series, and multiple datasets are tested. Compared with the streaming pixel patch extraction method, the proposed architecture obtains at least two times acceleration consuming extra 3.82% Flip-Flops (FFs) and 7.78% Look-Up Tables (LUTs). Compared with the non-streaming one, the proposed architecture saves 22.3% LUT and 1.82% FF, causing a latency of only 0.2ms and a drop in frame rate for 1. Compared with the related works, the proposed strategy and hardware architecture have the superiority of keeping a balance between FPGA resources and performance.

Keywords: feature extraction, real-time, ORB, FPGA implementation

Procedia PDF Downloads 122
480 Two-Dimensional Transition Metal Dichalcogenides for Photodetection and Biosensing

Authors: Mariam Badmus, Bothina Manasreh

Abstract:

Transition metal dichalcogenides (TMDs) have gained significant attention as two-dimensional (2D) materials due to their intrinsic band gaps and unique properties, which make them ideal candidates for electronic and photonic applications. Unlike graphene, which lacks a band gap, TMDs (MX₂, where M is a transition metal and X is a chalcogen such as sulfur, selenium, or tellurium) exhibit semiconductor behavior and can be exfoliated into monolayers, enhancing their properties. The properties of these materials are investigated using density functional theory, a quantum mechanical computational method to solve Schrodinger equation for many body problems to calculate electron density of the atoms involved on which the energy and properties of a system depend. They show promise for use in photodetectors, biosensors, memory devices, and other technologies in communications, health, and energy sectors. In particular, metallic TMDs, which lack an intrinsic band gap, benefit from doping with transition metals, this improves their electronic and optical properties. Doping monolayer TMDs yields more significant improvements than doping bulk materials. Notably, doping with metals such as vanadium enhances the magnetization of TMDs, expanding their potential applications in spintronics. This work highlights the effects of doping on TMDs and explores strategies for optimizing their performance for advanced technological applications.

Keywords: concentration, doping, magnetization, monolayer

Procedia PDF Downloads 15