Search results for: energy anomaly detection
10670 Multi-Criteria Evaluation of IDS Architectures in Cloud Computing
Authors: Elmahdi Khalil, Saad Enniari, Mostapha Zbakh
Abstract:
Cloud computing promises to increase innovation and the velocity with witch applications are deployed, all while helping any enterprise meet most IT service needs at a lower total cost of ownership and higher return investment. As the march of cloud continues, it brings both new opportunities and new security challenges. To take advantages of those opportunities while minimizing risks, we think that Intrusion Detection Systems (IDS) integrated in the cloud is one of the best existing solutions nowadays in the field. The concept of intrusion detection was known since past and was first proposed by a well-known researcher named Anderson in 1980's. Since that time IDS's are evolving. Although, several efforts has been made in the area of Intrusion Detection systems for cloud computing environment, many attacks still prevail. Therefore, the work presented in this paper proposes a multi criteria analysis and a comparative study between several IDS architectures designated to work in a cloud computing environments. To achieve this objective, in the first place we will search in the state of the art of several consistent IDS architectures designed to work in a cloud environment. Whereas, in a second step we will establish the criteria that will be useful for the evaluation of architectures. Later, using the approach of multi criteria decision analysis Mac Beth (Measuring Attractiveness by a Categorical Based Evaluation Technique we will evaluate the criteria and assign to each one the appropriate weight according to their importance in the field of IDS architectures in cloud computing. The last step is to evaluate architectures against the criteria and collecting results of the model constructed in the previous steps.Keywords: cloud computing, cloud security, intrusion detection/prevention system, multi-criteria decision analysis
Procedia PDF Downloads 47610669 Energy Security and Sustainable Development: Challenges and Prospects
Authors: Abhimanyu Behera
Abstract:
Over the past few years, energy security and sustainable development have moved rapidly into the global agenda. There are two main reasons: first, the impact of high and often volatile energy prices; second, concerns over environmental sustainability particularly about the global climate. Both issues are critically important in which impressive economic growth has boosted the demand for energy and put corresponding strains on the environment. Energy security is a broad concept that focuses on energy availability and pricing. Specifically, it refers to the ability of the energy supply system i.e. suppliers, transporters, distributors and regulatory, financial and R&D institutions to deliver the amount of competitively priced energy that customers demand, within accepted standards of reliability, timeliness, quality, safety. Traditionally, energy security has been defined in the context of the geopolitical risks to external oil supplies but today it is encompassing all energy forms, all the external and internal links bringing the energy to the final consumer, and all the many ways energy supplies can be disrupted including equipment malfunctions, system design flaws, operator errors, malicious computer activities, deficient market and regulatory frameworks, corporate financial problems, labour actions, severe weather and natural events, aggressive acts (e.g. war, terrorism and sabotage), and geopolitical disruptions. In practice, the most challenging disruptions are those linked to: 1) extreme weather events; 2) mismatched electricity supply and demand; 3) regulatory failures; and 4) concentration of oil and gas resources in certain regions of the world. However, insecure energy supplies inhibit development by raising energy costs and imposing expensive cuts in services when disruptions actually occur. The energy supply sector can best advance sustainable development by producing and delivering secure and environmentally-friendly sources of energy and by increasing the efficiency of energy use. With this objective, this paper seeks to highlight the significance of energy security and sustainable development in today’s world. Moreover, it critically overhauls the major challenges towards sustainability of energy security and what are the major policies are taken to overcome these challenges by Government is lucidly explicated in this paper.Keywords: energy, policies, security, sustainability
Procedia PDF Downloads 39210668 The Effect of Dark energy on Amplitude of Gravitational Waves
Authors: Jafar Khodagholizadeh
Abstract:
In this talk, we study the tensor mode equation of perturbation in the presence of nonzero $-\Lambda$ as dark energy, whose dynamic nature depends on the Hubble parameter $ H$ and/or its time derivative. Dark energy, according to the total vacuum contribution, has little effect during the radiation-dominated era, but it reduces the squared amplitude of gravitational waves (GWs) up to $60\%$ for the wavelengths that enter the horizon during the matter-dominated era. Moreover, the observations bound on dark energy models, such as running vacuum model (RVM), generalized running vacuum model (GRVM), and generalized running vacuum subcase (GRVS), are effective in reducing the GWs’ amplitude. Although this effect is less for the wavelengths that enter the horizon at later times, this reduction is stable and permanent.Keywords: gravitational waves, dark energy, GW's amplitude, all stage universe
Procedia PDF Downloads 15910667 Statistical Estimation of Ionospheric Energy Dissipation Using ØStgaard's Empirical Relation
Authors: M. A. Ahmadu, S. S. Rabia
Abstract:
During the past few decades, energy dissipation in the ionosphere resulting from the geomagnetic activity has caused an increasing number of major disruptions of important power and communication services, malfunctions and loss of expensive facilities. Here, the electron precipitation energy, w(ep) and joule heating energy, w(jh) was used in the computation of this dissipation using Østgaard’s empirical relation from hourly geomagnetic indices of 2012, under the assumption that the magnetosphere does not store any energy, so that at the beginning of the activity t1=0 and end at t2=t, the statistical results obtained show that ionospheric dissipation varies month to month, day to day and hour to hour and estimated with a value ~3.6 w(ep), which is in agreement with experimental result.Keywords: Ostgaard's, ionospheric dissipation, joule heating, electron precipitation, geomagnetic indices, empirical relation
Procedia PDF Downloads 29910666 Research on the Influencing Factors of Residents' Energy Consumption and Carbon Emission in Different Types of Communities - Taking Caijia New Town of Chongqing as an Example
Authors: Shuo Lei
Abstract:
In order to explore the influencing factors of residents' energy consumption and carbon emissions in different types of communities, this paper conducted research on residents' household energy consumption and carbon emissions in different types of communities in Caijia New Town, Chongqing. By calculating the carbon emissions of residents' household energy consumption, we analyze the structure and characteristics of the energy consumption of households in each type of community. At the same time, the key influencing factors affecting the carbon emissions of residents' energy consumption in Caijia New Town are analyzed from both social and spatial perspectives. The results of the study show that: (1) different types of neighborhoods have a clustering and locking effect on different types of resident groups, which makes the distribution of household energy consumption and carbon emissions closely related to the characteristics of the residents; (2) social and spatial factors have an impact on the residents' energy consumption and carbon emissions, and there is a significant difference in the carbon emission levels of different types of neighborhoods. Accordingly, an identification method is proposed to recognize the carbon emissions of Caijia New Town and even Chongqing City, which provides technical reference for the sustainable planning of low-carbon communities.Keywords: community type, residential energy consumption and carbon emissions, residential differentiation, influencing factors, low-carbon community
Procedia PDF Downloads 3410665 Investigating Citizens’ Perceptions and Attitudes toward China’s National Determined Contribution's Energy Restructuring Plan in Linfen City
Authors: Yuan Zhao, Phimsupha Kokchang
Abstract:
As a responsible nation, China has outlined its Nationally Determined Contributions (NDCs) of reaching peak carbon by 2030 and carbon neutrality by 2060. Peak and carbon neutrality are tough goals to achieve, and China must undertake a shift to green energy. In contrast, China's existing energy consumption structure is unsustainable and heavily dependent on coal supplies. China must revise its energy mix planning in order to strengthen energy security and satisfy the requirement for low-carbon energy generation to mitigate climate change. Shanxi Province is one of China's most important coal-producing regions, and Linfen is one of the province's key economic towns. However, Shanxi Province's economic development is severely hampered by the region's high levels of pollution and energy consumption. The purpose of this study is to investigate Linfen citizens' perceptions and attitudes toward China's NDC's energy restructuring plan through questionnaires. The majority of respondents were aware of China's NDCs, as indicated by 402 valid responses to an online questionnaire. Furthermore, respondents' perceptions and attitudes toward renewable energy initiatives are growing. To ensure that the results were dependable and consistent, reliability and validity were examined. According to the findings, the majority of Linfen's citizens believe that renewable energy projects such as solar and wind, which are consistent with China's NDCs, may improve their quality of life, public health, and the nation's economy.Keywords: China’s NDC, perceptions, attitudes, Linfen, energy restructuring
Procedia PDF Downloads 8210664 Rotational Energy Recovery System
Authors: Vijayendra Anil Menon, Ashwath Narayan Murali
Abstract:
The present day vehicles do not reuse the energy expelled in running the vehicle. The energy used to run the vehicle is expelled immediately.This has remained a constant for many decades. With all the vehicles running on non-renewable resources like fossil fuels, there is an urgent need to improve efficiency of the vehicles until a reliable replacement for fossil fuels is found.Our design is based on the concept of Kinetic energy recovery systems. Though our design lies in principle with the KERS, our design can be used in day-to-day driving. With our design, efficiency of vehicles increases and fuel conservation is possible thereby reducing the carbon footprint.Keywords: KERS, Battery, Wheels, Efficiency.
Procedia PDF Downloads 39610663 Providing Energy Management of a Fuel Cell-Battery Hybrid Electric Vehicle
Authors: Fatma Keskin Arabul, Ibrahim Senol, Ahmet Yigit Arabul, Ali Rifat Boynuegri
Abstract:
On account of the concern of the fossil fuel is depleting and its negative effects on the environment, interest in alternative energy sources is increasing day by day. However, considering the importance of transportation in human life, instead of oil and its derivatives fueled vehicles with internal combustion engines, electric vehicles which are sensitive to the environment and working with electrical energy has begun to develop. In this study, simulation was carried out for providing energy management and recovering regenerative braking in fuel cell-battery hybrid electric vehicle. The main power supply of the vehicle is fuel cell on the other hand not only instantaneous power is supplied by the battery but also the energy generated due to regenerative breaking is stored in the battery. Obtained results of the simulation is analyzed and discussed.Keywords: electric vehicles, fuel cell, battery, regenerative braking, energy management
Procedia PDF Downloads 71610662 Examining Renewable Energy Policy Implementation for Sustainable Development in Kenya
Authors: Eliud Kiprop, Kenichi Matsui, Joseph Karanja, Hesborn Ondiba
Abstract:
To double the share of renewable energy in the global energy mix by 2030 as part of actions for the Paris Agreement, policymakers in each ratifying country must accelerate their efforts within the next few years by implementing their own renewable energy strategies. Kenya has increased its funding for research and development in renewable energy sources largely because it intends to reduce greenhouse gas GHG emissions by 30% from business as usual (BAU) levels (143 MtCO₂eq) by 2030. In 2013, the Kenyan government launched an ambitious plan to increase the installed power generation capacity from 1,768MW to more than 5,000MW by the end of 2017. This paper examines the formulation and implementation process of this plan and shows how this plan will affect Kenya’s renewable energy industry and national policy implementation in general. Results demonstrate that, despite having a well- documented policy in place, the Kenyan government cannot meet its target of 5000MW by the end of 2017. Among other factors, we find that the main reason is attributable to the failure in adhering to the main principles of the policy plan. We also find that the government has failed to consider the future energy demand. Had the policy been implemented on time, we argue that there would have been excess power.Keywords: policy implementation, policy plan, renewable energy, sustainable development
Procedia PDF Downloads 22010661 Assessing Building Rooftop Potential for Solar Photovoltaic Energy and Rainwater Harvesting: A Sustainable Urban Plan for Atlantis, Western Cape
Authors: Adedayo Adeleke, Dineo Pule
Abstract:
The ongoing load-shedding in most parts of South Africa, combined with climate change causing severe drought conditions in Cape Town, has left electricity consumers seeking alternative sources of power and water. Solar energy, which is abundant in most parts of South Africa and is regarded as a clean and renewable source of energy, allows for the generation of electricity via solar photovoltaic systems. Rainwater harvesting is the collection and storage of rainwater from building rooftops, allowing people without access to water to collect it. The lack of dependable energy and water source must be addressed by shifting to solar energy via solar photovoltaic systems and rainwater harvesting. Before this can be done, the potential of building rooftops must be assessed to determine whether solar energy and rainwater harvesting will be able to meet or significantly contribute to Atlantis industrial areas' electricity and water demands. This research project presents methods and approaches for automatically extracting building rooftops in Atlantis industrial areas and evaluating their potential for solar photovoltaics and rainwater harvesting systems using Light Detection and Ranging (LiDAR) data and aerial imagery. The four objectives were to: (1) identify an optimal method of extracting building rooftops from aerial imagery and LiDAR data; (2) identify a suitable solar radiation model that can provide a global solar radiation estimate of the study area; (3) estimate solar photovoltaic potential overbuilding rooftop; and (4) estimate the amount of rainwater that can be harvested from the building rooftop in the study area. Mapflow, a plugin found in Quantum Geographic Information System(GIS) was used to automatically extract building rooftops using aerial imagery. The mean annual rainfall in Cape Town was obtained from a 29-year rainfall period (1991- 2020) and used to calculate the amount of rainwater that can be harvested from building rooftops. The potential for rainwater harvesting and solar photovoltaic systems was assessed, and it can be concluded that there is potential for these systems but only to supplement the existing resource supply and offer relief in times of drought and load-shedding.Keywords: roof potential, rainwater harvesting, urban plan, roof extraction
Procedia PDF Downloads 12210660 R-Killer: An Email-Based Ransomware Protection Tool
Authors: B. Lokuketagoda, M. Weerakoon, U. Madushan, A. N. Senaratne, K. Y. Abeywardena
Abstract:
Ransomware has become a common threat in past few years and the recent threat reports show an increase of growth in Ransomware infections. Researchers have identified different variants of Ransomware families since 2015. Lack of knowledge of the user about the threat is a major concern. Ransomware detection methodologies are still growing through the industry. Email is the easiest method to send Ransomware to its victims. Uninformed users tend to click on links and attachments without much consideration assuming the emails are genuine. As a solution to this in this paper R-Killer Ransomware detection tool is introduced. Tool can be integrated with existing email services. The core detection Engine (CDE) discussed in the paper focuses on separating suspicious samples from emails and handling them until a decision is made regarding the suspicious mail. It has the capability of preventing execution of identified ransomware processes. On the other hand, Sandboxing and URL analyzing system has the capability of communication with public threat intelligence services to gather known threat intelligence. The R-Killer has its own mechanism developed in its Proactive Monitoring System (PMS) which can monitor the processes created by downloaded email attachments and identify potential Ransomware activities. R-killer is capable of gathering threat intelligence without exposing the user’s data to public threat intelligence services, hence protecting the confidentiality of user data.Keywords: ransomware, deep learning, recurrent neural networks, email, core detection engine
Procedia PDF Downloads 21910659 Architecture Performance-Related Design Based on Graphic Parameterization
Authors: Wenzhe Li, Xiaoyu Ying, Grace Ding
Abstract:
Architecture plane form is an important consideration in the design of green buildings due to its significant impact on energy performance. The most effective method to consider energy performance in the early design stages is parametric modelling. This paper presents a methodology to program plane forms using MATLAB language, generating 16 kinds of plane forms by changing four designed parameters. DesignBuilder (an energy consumption simulation software) was proposed to simulate the energy consumption of the generated planes. A regression mathematical model was established to study the relationship between the plane forms and their energy consumption. The main finding of the study suggested that there was a cubic function relationship between the depth-ratio of U-shaped buildings and energy consumption, and there is also a cubic function relationship between the width-ratio and energy consumption. In the design, the depth-ratio of U-shaped buildings should not be less than 2.5, and the width-ratio should not be less than 2.Keywords: graphic parameterization, green building design, mathematical model, plane form
Procedia PDF Downloads 15710658 A Less Complexity Deep Learning Method for Drones Detection
Authors: Mohamad Kassab, Amal El Fallah Seghrouchni, Frederic Barbaresco, Raed Abu Zitar
Abstract:
Detecting objects such as drones is a challenging task as their relative size and maneuvering capabilities deceive machine learning models and cause them to misclassify drones as birds or other objects. In this work, we investigate applying several deep learning techniques to benchmark real data sets of flying drones. A deep learning paradigm is proposed for the purpose of mitigating the complexity of those systems. The proposed paradigm consists of a hybrid between the AdderNet deep learning paradigm and the Single Shot Detector (SSD) paradigm. The goal was to minimize multiplication operations numbers in the filtering layers within the proposed system and, hence, reduce complexity. Some standard machine learning technique, such as SVM, is also tested and compared to other deep learning systems. The data sets used for training and testing were either complete or filtered in order to remove the images with mall objects. The types of data were RGB or IR data. Comparisons were made between all these types, and conclusions were presented.Keywords: drones detection, deep learning, birds versus drones, precision of detection, AdderNet
Procedia PDF Downloads 18410657 Material Mechanical Property for Improving the Energy Density of Lithium-Ion Battery
Authors: Collins Chike Kwasi-Effah, Timon Rabczuk, Osarobo O. Ighodaro
Abstract:
The energy density of various battery technologies used in the electric vehicle industry still ranges between 250 Wh/kg to 650 Wh/kg, thus limiting their distance range compared to the conventional internal combustion engine vehicle. In order to overcome this limitation, a new material technology is necessary to overcome this limitation. The proposed sole lithium-air battery seems to be far behind in terms of practical implementation. In this paper, experimental analysis using COMSOL multiphysics has been conducted to predict the performance of lithium ion battery with variation in the elastic property of five different cathode materials including; LiMn2O4, LiFePO4, LiCoO2, LiV6O13, and LiTiS2. Combining LiCoO2, and aqueous lithium showed great improvement in the energy density. Thus, the material combination of LiCoO2/aqueous lithium-air could give a practical solution in achieving high energy density for application in the electric vehicle industry.Keywords: battery energy, energy density, lithium-ion, mechanical property
Procedia PDF Downloads 16410656 Dynamic Background Updating for Lightweight Moving Object Detection
Authors: Kelemewerk Destalem, Joongjae Cho, Jaeseong Lee, Ju H. Park, Joonhyuk Yoo
Abstract:
Background subtraction and temporal difference are often used for moving object detection in video. Both approaches are computationally simple and easy to be deployed in real-time image processing. However, while the background subtraction is highly sensitive to dynamic background and illumination changes, the temporal difference approach is poor at extracting relevant pixels of the moving object and at detecting the stopped or slowly moving objects in the scene. In this paper, we propose a moving object detection scheme based on adaptive background subtraction and temporal difference exploiting dynamic background updates. The proposed technique consists of a histogram equalization, a linear combination of background and temporal difference, followed by the novel frame-based and pixel-based background updating techniques. Finally, morphological operations are applied to the output images. Experimental results show that the proposed algorithm can solve the drawbacks of both background subtraction and temporal difference methods and can provide better performance than that of each method.Keywords: background subtraction, background updating, real time, light weight algorithm, temporal difference
Procedia PDF Downloads 34710655 FESA: Fuzzy-Controlled Energy-Efficient Selective Allocation and Reallocation of Tasks Among Mobile Robots
Authors: Anuradha Banerjee
Abstract:
Energy aware operation is one of the visionary goals in the area of robotics because operability of robots is greatly dependent upon their residual energy. Practically, the tasks allocated to robots carry different priority and often an upper limit of time stamp is imposed within which the task needs to be completed. If a robot is unable to complete one particular task given to it the task is reallocated to some other robot. The collection of robots is controlled by a Central Monitoring Unit (CMU). Selection of the new robot is performed by a fuzzy controller called Task Reallocator (TRAC). It accepts the parameters like residual energy of robots, possibility that the task will be successfully completed by the new robot within stipulated time, distance of the new robot (where the task is reallocated) from distance of the old one (where the task was going on) etc. The proposed methodology increases the probability of completing globally assigned tasks and saves huge amount of energy as far as the collection of robots is concerned.Keywords: energy-efficiency, fuzzy-controller, priority, reallocation, task
Procedia PDF Downloads 31910654 A Proposal for a Secure and Interoperable Data Framework for Energy Digitalization
Authors: Hebberly Ahatlan
Abstract:
The process of digitizing energy systems involves transforming traditional energy infrastructure into interconnected, data-driven systems that enhance efficiency, sustainability, and responsiveness. As smart grids become increasingly integral to the efficient distribution and management of electricity from both fossil and renewable energy sources, the energy industry faces strategic challenges associated with digitalization and interoperability — particularly in the context of modern energy business models, such as virtual power plants (VPPs). The critical challenge in modern smart grids is to seamlessly integrate diverse technologies and systems, including virtualization, grid computing and service-oriented architecture (SOA), across the entire energy ecosystem. Achieving this requires addressing issues like semantic interoperability, IT/OT convergence, and digital asset scalability, all while ensuring security and risk management. This paper proposes a four-layer digitalization framework to tackle these challenges, encompassing persistent data protection, trusted key management, secure messaging, and authentication of IoT resources. Data assets generated through this framework enable AI systems to derive insights for improving smart grid operations, security, and revenue generation. Furthermore, this paper also proposes a Trusted Energy Interoperability Alliance as a universal guiding standard in the development of this digitalization framework to support more dynamic and interoperable energy markets.Keywords: digitalization, IT/OT convergence, semantic interoperability, VPP, energy blockchain
Procedia PDF Downloads 18710653 Household Energy Usage and Practices in the Rural Areas of Northern Part of Mindanao Island, Philippines
Authors: Odinah Cuartero-Enteria, Aive Pecasales, Jhadly Philip Buniel, Christian Joy Vega, Shiela Estubo
Abstract:
In the Philippines, Mindanao Island has the cheapest electricity because of the hydroelectric plants. Due to the rapid increase of the electricity consumption which the sources of electricity cannot support, it causes rotating brownout during summer season. This study investigated the household energy usage and practices in the rural areas of northern part of the Mindanao Island, Philippines. The questionnaire that includes the respondents’ profile and their common practices in energy consumptions was used as a tool in gathering the data. Several households were subjected to the survey. Results show energy consumption is not dependent on the profile of the respondents. It was observed that most of the families prefer to use energy saving methods of reducing electricity consumption. The main energy saving methods are unplugging unused home appliances, using of compact fluorescent bulb and energy-efficient gadgets, and using high electricity consumption appliances by schedule. Based on the results, the households in the rural areas know the practices of reducing electricity consumption. However, it is highly recommended that concern agencies should initiate information dissemination and strict implementation of well-formulated energy conservation practices all over the areas in Mindanao.Keywords: Philippines, Mindanao island, rural areas, households, energy usages, practices
Procedia PDF Downloads 38410652 Influence of Coatings on Energy Conservation in Construction Industry
Authors: Nancy Sakr, Mohamed Abou-Zeid
Abstract:
World energy consumption has increased rapidly in the past few years. Due to population growth, total energy consumption is increasing; a large amount of energy is wasted on the cooling and heating processes in buildings. However, using thermal heating management can minimize costs, heat consumption and create a management system for the heat insulation for buildings. This concept is being implemented through different approaches. Based on analysis and research, there is evidence in the energy consumption before and after testing and applying construction approaches for thermal heating management in building units. This investigation addresses the evaluation of the influence of external coatings on energy consumption. Coatings are considered one of the smart effective available approaches for energy efficiency. Unfortunately, this approach is not widely applied in the construction industry. It needs more data to prove effectiveness and credibility between people to use it as a smart thermal insulation approach. Two precedents have been analyzed in order to monitor buildings’ heat exposure, and how the buildings will be affected by thermal insulation materials. Data sheets from chemical companies which produce similar coatings are compared with the usual products and the protective thermal products.Keywords: energy consumption, building envelope, thermal insulation, protective coatings
Procedia PDF Downloads 14810651 Energy Conservation Strategies of Buildings in Hot, Arid Region: Al-Khobar, Saudi Arabia
Authors: M. H. Shwehdi, S. Raja Mohammad
Abstract:
Recently energy savings have become more pronounced as a result of the world financial crises as well the unstable oil prices. Certainly all entities needs to adapt Energy Conservation and Management Strategies due to high monthly consumption of their spread locations and advancements of its telecom systems. These system improvements necessitate the establishment of more exchange centers as well provide energy savings. This paper investigates the impact of HVAC System Characteristics, Operational Strategies, the impact of Envelope Thermal Characteristics, and energy conservation measures. These are classified under three types of measures i.e. Zero-Investment; Low-Investment and High-Investment Energy Conservation Measures. The study shows that the Energy Conservation Measures (ECMs) pertaining to the HVAC system characteristics and operation represent the highest potential for energy reduction, attention should be given to window thermal and solar radiation characteristics when large window areas are used. The type of glazing system needs to be carefully considered in the early design phase of future buildings. Paper will present the thermal optimization of different size centers in the two hot-dry and hot-humid Saudi Arabian city of Al Khobar, East province.Keywords: energy conservation, optimization, thermal design, intermittent operation, exchange centers, hot-humid climate, Saudi Arabia
Procedia PDF Downloads 45510650 Effect of Defect Dipoles And Microstructure Engineering in Energy Storage Performance of Co-doped Barium Titanate Ceramics
Authors: Mahmoud Saleh Mohammed Alkathy
Abstract:
Electricity generated from renewable resources may help the transition to clean energy. A reliable energy storage system is required to use this energy properly. To do this, a high breakdown strength (Eb) and a significant difference between spontaneous polarization (Pmax) and remnant polarization (Pr) are required. To achieve this, the defect dipoles in lead free BaTiO3 ferroelectric ceramics are created using Mg2+ and Ni2+ ions as acceptor co-doping in the Ti site. According to the structural analyses, the co-dopant ions were effectively incorporated into the BTO unit cell. According to the ferroelectric study, the co-doped samples display a double hysteresis loop, stronger polarization, and high breakdown strength. The formation of oxygen vacancies and defect dipoles prevent domains' movement, resulting in hysteresis loop pinching. This results in increased energy storage density and efficiency. The defect dipoles mechanism effect can be considered a fascinating technology that can guide the researcher working on developing energy storage for next-generation applications.Keywords: microstructure, defect, energy storage, effciency
Procedia PDF Downloads 10010649 Methodological Approach for Historical Building Retrofit Based on Energy and Cost Analysis in the Different Climatic Zones
Authors: Selin Guleroglu, Ilker Kahraman, E. Selahattin Umdu
Abstract:
In today’s world, the building sector has a significant impact on primary energy consumption and CO₂ emissions. While new buildings must have high energy performance as indicated by the Energy Performance Directive in Buildings (EPBD), published by the European Union (EU), the energy performance of the existing buildings must also be enhanced with cost-efficient methods. Turkey has a high historical building density similar to south European countries, and the high energy consumption is the main contributor in the energy consumptioın of Turkey, which is rather higher than European counterparts. Historic buildings spread around Turkey for four main climate zones covering very similar climate characteristics to both the north and south European countries. The case study building is determined as the most common building type in Turkey. This study aims to investigate energy retrofit measures covering but not limited to passive and active measures to improve the energy performance of the historical buildings located in different climatic zones within the limits of preservation of the historical value of the building as a crucial constraint. Passive measures include wall, window, and roof construction elements, and active measures HVAC systems in retrofit scenarios. The proposed methodology can help to reach up to 30% energy saving based on primary energy consumption. DesignBuilder, an energy simulation tool, is used to determine the energy performance of buildings with suggested retrofit measures, and the Net Present Value (NPV) method is used for cost analysis of them. Finally, the most efficient energy retrofit measures for all buildings are determined by analyzing primary energy consumption and the cost performance of them. Results show that heat insulation, glazing type, and HVAC system has an important role in energy saving. Also, it found that these parameters have a different positive or negative effect on building energy consumption in different climate zones. For instance, low e glazing has a positive impact on the energy performance of the building in the first zone, while it has a negative effect on the building in the forth zone. Another important result is applying heat insulation has minimum impact on building energy performance compared to other zones.Keywords: energy performance, climatic zones, historic building, energy retrofit measures, NPV
Procedia PDF Downloads 17910648 Financial Statement Fraud: The Need for a Paradigm Shift to Forensic Accounting
Authors: Ifedapo Francis Awolowo
Abstract:
The unrelenting series of embarrassing audit failures should stimulate a paradigm shift in accounting. And in this age of information revolution, there is need for a constant improvement on the products or services one offers to the market in order to be relevant. This study explores the perceptions of external auditors, forensic accountants and accounting academics on whether a paradigm shift to forensic accounting can reduce financial statement frauds. Through Neo-empiricism/inductive analytical approach, findings reveal that a paradigm shift to forensic accounting might be the right step in the right direction in order to increase the chances of fraud prevention and detection in the financial statement. This research has implication on accounting education on the need to incorporate forensic accounting into present day accounting curriculum. Accounting professional bodies, accounting standard setters and accounting firms all have roles to play in incorporating forensic accounting education into accounting curriculum. Particularly, there is need to alter the ISA 240 to make the prevention and detection of frauds the responsibilities of bot those charged with the management and governance of companies and statutory auditors.Keywords: financial statement fraud, forensic accounting, fraud prevention and detection, auditing, audit expectation gap, corporate governance
Procedia PDF Downloads 37110647 Detection and Classification Strabismus Using Convolutional Neural Network and Spatial Image Processing
Authors: Anoop T. R., Otman Basir, Robert F. Hess, Eileen E. Birch, Brooke A. Koritala, Reed M. Jost, Becky Luu, David Stager, Ben Thompson
Abstract:
Strabismus refers to a misalignment of the eyes. Early detection and treatment of strabismus in childhood can prevent the development of permanent vision loss due to abnormal development of visual brain areas. We developed a two-stage method for strabismus detection and classification based on photographs of the face. The first stage detects the presence or absence of strabismus, and the second stage classifies the type of strabismus. The first stage comprises face detection using Haar cascade, facial landmark estimation, face alignment, aligned face landmark detection, segmentation of the eye region, and detection of strabismus using VGG 16 convolution neural networks. Face alignment transforms the face to a canonical pose to ensure consistency in subsequent analysis. Using facial landmarks, the eye region is segmented from the aligned face and fed into a VGG 16 CNN model, which has been trained to classify strabismus. The CNN determines whether strabismus is present and classifies the type of strabismus (exotropia, esotropia, and vertical deviation). If stage 1 detects strabismus, the eye region image is fed into stage 2, which starts with the estimation of pupil center coordinates using mask R-CNN deep neural networks. Then, the distance between the pupil coordinates and eye landmarks is calculated along with the angle that the pupil coordinates make with the horizontal and vertical axis. The distance and angle information is used to characterize the degree and direction of the strabismic eye misalignment. This model was tested on 100 clinically labeled images of children with (n = 50) and without (n = 50) strabismus. The True Positive Rate (TPR) and False Positive Rate (FPR) of the first stage were 94% and 6% respectively. The classification stage has produced a TPR of 94.73%, 94.44%, and 100% for esotropia, exotropia, and vertical deviations, respectively. This method also had an FPR of 5.26%, 5.55%, and 0% for esotropia, exotropia, and vertical deviation, respectively. The addition of one more feature related to the location of corneal light reflections may reduce the FPR, which was primarily due to children with pseudo-strabismus (the appearance of strabismus due to a wide nasal bridge or skin folds on the nasal side of the eyes).Keywords: strabismus, deep neural networks, face detection, facial landmarks, face alignment, segmentation, VGG 16, mask R-CNN, pupil coordinates, angle deviation, horizontal and vertical deviation
Procedia PDF Downloads 10010646 Highlighting of the Factors and Policies affecting CO2 Emissions level in Malaysian Transportation Sector
Authors: Siti Indati Mustapa, Hussain Ali Bekhet
Abstract:
Global CO2 emission and increasing fuel consumption to meet energy demand requirement has become a threat in recent decades. Effort to reduce the CO2 emission is now a matter of priority in most countries of the world including Malaysia. Transportation has been identified as the most intensive sector of carbon-based fuels and achievement of the voluntary target to meet 40% carbon intensity reduction set at the 15th Conference of the Parties (COP15) means that the emission from the transport sector must be reduced accordingly. This posed a great challenge to Malaysia and effort has to be made to embrace suitable and appropriate energy policy for sustainable energy and emission reduction of this sector. The focus of this paper is to analyse the trends of Malaysia’s energy consumption and emission of four different transport sub-sectors (road, rail, aviation and maritime). Underlying factors influencing the growth of energy consumption and emission trends are discussed. Besides, technology status towards energy efficiency in transportation sub-sectors is presented. By reviewing the existing policies and trends of energy used, the paper highlights prospective policy options towards achieving emission reduction in the transportation sector.Keywords: CO2 emissions, transportation sector, fuel consumption, energy policy, Malaysia
Procedia PDF Downloads 47210645 Modified Gold Screen Printed Electrode with Ruthenium Complex for Selective Detection of Porcine DNA
Authors: Siti Aishah Hasbullah
Abstract:
Studies on identification of pork content in food have grown rapidly to meet the Halal food standard in Malaysia. The used mitochondria DNA (mtDNA) approaches for the identification of pig species is thought to be the most precise marker due to the mtDNA genes are present in thousands of copies per cell, the large variability of mtDNA. The standard method commonly used for DNA detection is based on polymerase chain reaction (PCR) method combined with gel electrophoresis but has major drawback. Its major drawbacks are laborious, need longer time and toxic to handle. Therefore, the need for simplicity and fast assay of DNA is vital and has triggered us to develop DNA biosensors for porcine DNA detection. Therefore, the aim of this project is to develop electrochemical DNA biosensor based on ruthenium (II) complex, [Ru(bpy)2(p-PIP)]2+ as DNA hybridization label. The interaction of DNA and [Ru(bpy)2(p-HPIP)]2+ will be studied by electrochemical transduction using Gold Screen-Printed Electrode (GSPE) modified with gold nanoparticles (AuNPs) and succinimide acrylic microspheres. The electrochemical detection by redox active ruthenium (II) complex was measured by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The results indicate that the interaction of [Ru(bpy)2(PIP)]2+ with hybridization complementary DNA has higher response compared to single-stranded and mismatch complementary DNA. Under optimized condition, this porcine DNA biosensor incorporated modified GSPE shows good linear range towards porcine DNA.Keywords: gold, screen printed electrode, ruthenium, porcine DNA
Procedia PDF Downloads 31210644 Relay-Augmented Bottleneck Throughput Maximization for Correlated Data Routing: A Game Theoretic Perspective
Authors: Isra Elfatih Salih Edrees, Mehmet Serdar Ufuk Türeli
Abstract:
In this paper, an energy-aware method is presented, integrating energy-efficient relay-augmented techniques for correlated data routing with the goal of optimizing bottleneck throughput in wireless sensor networks. The system tackles the dual challenge of throughput optimization while considering sensor network energy consumption. A unique routing metric has been developed to enable throughput maximization while minimizing energy consumption by utilizing data correlation patterns. The paper introduces a game theoretic framework to address the NP-complete optimization problem inherent in throughput-maximizing correlation-aware routing with energy limitations. By creating an algorithm that blends energy-aware route selection strategies with the best reaction dynamics, this framework provides a local solution. The suggested technique considerably raises the bottleneck throughput for each source in the network while reducing energy consumption by choosing the best routes that strike a compromise between throughput enhancement and energy efficiency. Extensive numerical analyses verify the efficiency of the method. The outcomes demonstrate the significant decrease in energy consumption attained by the energy-efficient relay-augmented bottleneck throughput maximization technique, in addition to confirming the anticipated throughput benefits.Keywords: correlated data aggregation, energy efficiency, game theory, relay-augmented routing, throughput maximization, wireless sensor networks
Procedia PDF Downloads 9310643 Surface-Enhanced Raman Detection in Chip-Based Chromatography via a Droplet Interface
Authors: Renata Gerhardt, Detlev Belder
Abstract:
Raman spectroscopy has attracted much attention as a structurally descriptive and label-free detection method. It is particularly suited for chemical analysis given as it is non-destructive and molecules can be identified via the fingerprint region of the spectra. In this work possibilities are investigated how to integrate Raman spectroscopy as a detection method for chip-based chromatography, making use of a droplet interface. A demanding task in lab-on-a-chip applications is the specific and sensitive detection of low concentrated analytes in small volumes. Fluorescence detection is frequently utilized but restricted to fluorescent molecules. Furthermore, no structural information is provided. Another often applied technique is mass spectrometry which enables the identification of molecules based on their mass to charge ratio. Additionally, the obtained fragmentation pattern gives insight into the chemical structure. However, it is only applicable as an end-of-the-line detection because analytes are destroyed during measurements. In contrast to mass spectrometry, Raman spectroscopy can be applied on-chip and substances can be processed further downstream after detection. A major drawback of Raman spectroscopy is the inherent weakness of the Raman signal, which is due to the small cross-sections associated with the scattering process. Enhancement techniques, such as surface enhanced Raman spectroscopy (SERS), are employed to overcome the poor sensitivity even allowing detection on a single molecule level. In SERS measurements, Raman signal intensity is improved by several orders of magnitude if the analyte is in close proximity to nanostructured metal surfaces or nanoparticles. The main gain of lab-on-a-chip technology is the building block-like ability to seamlessly integrate different functionalities, such as synthesis, separation, derivatization and detection on a single device. We intend to utilize this powerful toolbox to realize Raman detection in chip-based chromatography. By interfacing on-chip separations with a droplet generator, the separated analytes are encapsulated into numerous discrete containers. These droplets can then be injected with a silver nanoparticle solution and investigated via Raman spectroscopy. Droplet microfluidics is a sub-discipline of microfluidics which instead of a continuous flow operates with the segmented flow. Segmented flow is created by merging two immiscible phases (usually an aqueous phase and oil) thus forming small discrete volumes of one phase in the carrier phase. The study surveys different chip designs to realize coupling of chip-based chromatography with droplet microfluidics. With regards to maintaining a sufficient flow rate for chromatographic separation and ensuring stable eluent flow over the column different flow rates of eluent and oil phase are tested. Furthermore, the detection of analytes in droplets with surface enhanced Raman spectroscopy is examined. The compartmentalization of separated compounds preserves the analytical resolution since the continuous phase restricts dispersion between the droplets. The droplets are ideal vessels for the insertion of silver colloids thus making use of the surface enhancement effect and improving the sensitivity of the detection. The long-term goal of this work is the first realization of coupling chip based chromatography with droplets microfluidics to employ surface enhanced Raman spectroscopy as means of detection.Keywords: chip-based separation, chip LC, droplets, Raman spectroscopy, SERS
Procedia PDF Downloads 25010642 Rapid and Sensitive Detection: Biosensors as an Innovative Analytical Tools
Authors: Sylwia Baluta, Joanna Cabaj, Karol Malecha
Abstract:
The evolution of biosensors was driven by the need for faster and more versatile analytical methods for application in important areas including clinical, diagnostics, food analysis or environmental monitoring, with minimum sample pretreatment. Rapid and sensitive neurotransmitters detection is extremely important in modern medicine. These compounds mainly occur in the brain and central nervous system of mammals. Any changes in the neurotransmitters concentration may lead to many diseases, such as Parkinson’s or schizophrenia. Classical techniques of chemical analysis, despite many advantages, do not permit to obtain immediate results or automatization of measurements.Keywords: adrenaline, biosensor, dopamine, laccase, tyrosinase
Procedia PDF Downloads 14710641 Development and Analysis of Multigeneration System by Using Combined Solar and Geothermal Energy Resources
Authors: Muhammad Umar Khan, Mahesh Kumar, Faraz Neakakhtar
Abstract:
Although industrialization marks to the economy of a country yet it increases the pollution and temperature of the environment. The world is now shifting towards green energy because the utilization of fossil fuels is resulting in global warming. So we need to develop systems that can operate on renewable energy resources and have low heat losses. The combined solar and geothermal multigeneration system can solve this issue. Rather than making rankine cycle purely a solar-driven, heat from solar is used to drive vapour absorption cycle and reheated to generate power using geothermal reservoir. The results are displayed by using Engineering Equation Solver software, where inputs are varied to optimize the energy and exergy efficiencies of the system. The cooling effect is 348.2 KW, while the network output is 23.8 MW and reducing resultant emission of 105553 tons of CO₂ per year. This eco-friendly multigeneration system is capable of eliminating the use of fossil fuels and increasing the geothermal energy efficiency.Keywords: cooling effect, eco-friendly, green energy, heat loses, multigeneration system, renewable energy, work output
Procedia PDF Downloads 272