Search results for: Guangxin Wang
212 Effects of Exercise in the Cold on Glycolipid Metabolism and Insulin Sensitivity in Obese Rats
Authors: Chaoge Wang, Xiquan Weng, Yan Meng, Wentao Lin
Abstract:
Objective: Cold exposure and exercise serve as two physiological stimuli to glycolipid metabolism and insulin sensitivity. So far, it remains to be elucidated whether exercise plus cold exposure can produce an addictive effect on promoting glycolipid metabolism and insulin sensitivity. Methods: 64 SD rats were subjected to high-fat and high-sugar diets for 9-week and sucessfully to establish an obesity model. They were randomly divided into 8 groups: normal control group (NC), normal exercise group (NE), continuous cold control group (CC), continuous cold exercise group (CE), acute clod control group (AC), acute cold exercise group (AE), intermittent cold control group (IC) and intermittent cold exercise group (IE). For continuous cold exposure, the rats stayed in a cold environment all day; for acute cold exposure, the rats were exposed to cold for only 4h before the end of the experiment; for intermittent cold exposure, the rats were exposed to cold for 4h per day. The protocol for treadmill runnings were as follows: 25m/min (speed), 0°C (slope), 30 mins each time, an interval for 10 mins between two runnings, twice/two days, lasting for 5 weeks. Sampling were conducted on the 5th weekend. Blood lipids, free fatty acids, blood glucose (FBG), and serum insulin (FINS) were examined, and the insulin resistance index (HOMA-IR = FBG (mmol/L)×FINS(mIU/L)/22.5) was calculated. SPSS 22.0 was used for statistical analysis of the experimental results, and the ANOVA analysis was performed between groups (p < 0.05 was significant). Results: (1) Compared with the NC group, the FBG of the rats was significantly declined in the NE, CE, AC, AE, and IE groups (p < 0.05), the FINS of the rats was significantly declined in the AE group (p < 0.05), the HOMA-IR of the rats was significantly declined in the NE, CE, AC, AE and IE groups (p < 0.05). Compared with the NE group, the FBG of the rats was significantly declined in the CE, AE, and IE groups (p < 0.05), the FINS and HOMA-IR of the rats were significantly declined in the AE group (p < 0.05). (2) Compared with the NC group, the CHO, TG, LDL-C, and FFA of the rats were significantly declined in CE and IE groups (p < 0.05), the HDL-C of the rats was significantly higher in NE, CC, CE, AE, and IE groups (p < 0.05). Compared with the NE group, the HDL-C of the rats was significantly higher in the CE and IE groups (p < 0.05). Conclusions: Sedentariness or exercise in the acute cold doesn't make sense in the treatment of type 2 diabetes, which led to one-off increases of the body's insulin sensitivity. Exercise in the continuous and intermittent cold can effectively decline the FBG, TC, TG, LDL-C, and FFA levels and increase the HDL-C level and insulin sensitivity in obese rats. These results can impact the prevention and treatment of type 2 diabetes.Keywords: cold, exercise, insulin sensitivity, obesity
Procedia PDF Downloads 142211 Black Soybeans Show Acute and Chronic Liver Protective Functions against CCl4 Induced Liver Damage
Authors: Cheng-Kuang Hsu, Chih-Hsiang Chang, Chi-Chih Wang
Abstract:
Black soybeans contain high amount of antioxidants including polyphenols, anthocyanins and flavones. The protective function of black soybean against CCl4 (a strong oxidant) induced acute and chronic liver damage was investigated in vivo using SD rats or ICR mouse. The evaluation of CCl4 induced oxidative stress in the liver tissues included the measurements of the levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST), the concentration of thiobarbituric acid reactive substances (TBARS), the activities of antioxidant enzymes (superoxide dismutase SOD, catalase, and glutathione peroxidase GPx), as well as the level of histological lesion in the liver tissues. For chronic experiment, a decoction at the concentration of 100 or 1000 mg/kg of body weight, produced by baking black soybean at 130°C for 5 min and followed by immerging in 100°C hot water for 20 min, showed the inhibitory effect against CCl4 induced liver damage in SD rats. Hot-water extract (80 °C for 30 min) from un-preheated black soybean at the concentration of 200 mg/kg of body weight could not reduce ALT and AST levels in CCl4 treated SD rats, but the hot-water extract from preheated black soybean did enhance antioxidant enzymes activities, decline ALT and AST levels. Specially, the hot-water extract from the seed cost of black soybean had the highest liver protective function since it can reduce vacuolization and necrosis in the liver tissues. For acute experiment, the hot-water extracts from black soybean and the seed coat, as well as pure cyanidin-3-glucoside (C3G) could reduce ALT and AST levels of CCl4 induced ICR mouse. The decoction and hot-water extract from the seed coat of black soybean had higher total polyphenols, anthocyanins and flavones contents than those extracts from whole black soybean. Such results agreed with high liver protective function in the decoction and hot-water from the seed coat of black soybean. Black soybean showed protective function only after preheating process (baking at 130°C for 5 to 10 min) because preheating treatment damaged the cell wall and made the extraction of the antioxidants more effectively.Keywords: black soybean, liver protective function, antioxidant, antioxidative stress
Procedia PDF Downloads 479210 Synthesis of Ultra-Small Platinum, Palladium and Gold Nanoparticles by Electrochemically Active Biofilms and Their Enhanced Catalytic Activities
Authors: Elaf Ahmed, Shahid Rasul, Ohoud Alharbi, Peng Wang
Abstract:
Ultra-Small Nanoparticles of metals (USNPs) have attracted the attention from the perspective of both basic and developmental science in a wide range of fields. These NPs exhibit electrical, optical, magnetic, and catalytic phenomena. In addition, they are considered effective catalysts because of their enormously large surface area. Many chemical methods of synthesising USNPs are reported. However, the drawback of these methods is the use of different capping agents and ligands in the process of the production such as Polyvinylpyrrolidone, Thiol and Ethylene Glycol. In this research ultra-small nanoparticles of gold, palladium and platinum metal have been successfully produced using electrochemically active biofilm (EAB) after optimising the pH of the media. The production of ultra-small nanoparticles has been conducted in a reactor using a simple two steps method. Initially biofilm was grown on the surface of a carbon paper for 7 days using Shewanella Loihica bacteria. Then, biofilm was employed to synthesise platinum, palladium and gold nanoparticles in water using sodium lactate as electron donor without using any toxic chemicals at mild operating conditions. Electrochemically active biofilm oxidise the electron donor and produces electrons in the solution. Since these electrons are a strong reducing agent, they can reduce metal precursors quite effectively and quickly. The As-synthesized ultra-small nanoparticles have a size range between (2-7nm) and showed excellent catalytic activity on the degradation of methyl orange. The growth of metal USNPs is strongly related to the condition of the EAB. Where using low pH for the synthesis was not successful due to the fact that it might affect and destroy the bacterial cells. However, increasing the pH to 7 and 9, led to the successful formation of USNPs. By changing the pH value, we noticed a change in the size range of the produced NPs. The EAB seems to act as a Nano factory for the synthesis of metal nanoparticles by offering a green, sustainable and toxic free synthetic route without the use of any capping agents or ligands and depending only on their respiration pathway.Keywords: electrochemically active biofilm, electron donor, shewanella loihica, ultra-small nanoparticles
Procedia PDF Downloads 192209 Inverted Geometry Ceramic Insulators in High Voltage Direct Current Electron Guns for Accelerators
Authors: C. Hernandez-Garcia, P. Adderley, D. Bullard, J. Grames, M. A. Mamun, G. Palacios-Serrano, M. Poelker, M. Stutzman, R. Suleiman, Y. Wang, , S. Zhang
Abstract:
High-energy nuclear physics experiments performed at the Jefferson Lab (JLab) Continuous Electron Beam Accelerator Facility require a beam of spin-polarized ps-long electron bunches. The electron beam is generated when a circularly polarized laser beam illuminates a GaAs semiconductor photocathode biased at hundreds of kV dc inside an ultra-high vacuum chamber. The photocathode is mounted on highly polished stainless steel electrodes electrically isolated by means of a conical-shape ceramic insulator that extends into the vacuum chamber, serving as the cathode electrode support structure. The assembly is known as a dc photogun, which has to simultaneously meet the following criteria: high voltage to manage space charge forces within the electron bunch, ultra-high vacuum conditions to preserve the photocathode quantum efficiency, no field emission to prevent gas load when field emitted electrons impact the vacuum chamber, and finally no voltage breakdown for robust operation. Over the past decade, JLab has tested and implemented the use of inverted geometry ceramic insulators connected to commercial high voltage cables to operate a photogun at 200kV dc with a 10 cm long insulator, and a larger version at 300kV dc with 20 cm long insulator. Plans to develop a third photogun operating at 400kV dc to meet the stringent requirements of the proposed International Linear Collider are underway at JLab, utilizing even larger inverted insulators. This contribution describes approaches that have been successful in solving challenging problems related to breakdown and field emission, such as triple-point junction screening electrodes, mechanical polishing to achieve mirror-like surface finish and high voltage conditioning procedures with Kr gas to extinguish field emission.Keywords: electron guns, high voltage techniques, insulators, vacuum insulation
Procedia PDF Downloads 112208 The Thinking of Dynamic Formulation of Rock Aging Agent Driven by Data
Authors: Longlong Zhang, Xiaohua Zhu, Ping Zhao, Yu Wang
Abstract:
The construction of mines, railways, highways, water conservancy projects, etc., have formed a large number of high steep slope wounds in China. Under the premise of slope stability and safety, the minimum cost, green and close to natural wound space repair, has become a new problem. Nowadays, in situ element testing and analysis, monitoring, field quantitative factor classification, and assignment evaluation will produce vast amounts of data. Data processing and analysis will inevitably differentiate the morphology, mineral composition, physicochemical properties between rock wounds, by which to dynamically match the appropriate techniques and materials for restoration. In the present research, based on the grid partition of the slope surface, tested the content of the combined oxide of rock mineral (SiO₂, CaO, MgO, Al₂O₃, Fe₃O₄, etc.), and classified and assigned values to the hardness and breakage of rock texture. The data of essential factors are interpolated and normalized in GIS, which formed the differential zoning map of slope space. According to the physical and chemical properties and spatial morphology of rocks in different zones, organic acids (plant waste fruit, fruit residue, etc.), natural mineral powder (zeolite, apatite, kaolin, etc.), water-retaining agent, and plant gum (melon powder) were mixed in different proportions to form rock aging agents. To spray the aging agent with different formulas on the slopes in different sections can affectively age the fresh rock wound, providing convenience for seed implantation, and reducing the transformation of heavy metals in the rocks. Through many practical engineering practices, a dynamic data platform of rock aging agent formula system is formed, which provides materials for the restoration of different slopes. It will also provide a guideline for the mixed-use of various natural materials to solve the complex, non-uniformity ecological restoration problem.Keywords: data-driven, dynamic state, high steep slope, rock aging agent, wounds
Procedia PDF Downloads 112207 Self-rated Health as a Predictor of Hospitalizations in Patients with Bipolar Disorder and Major Depression: A Prospective Cohort Study of the United Kingdom Biobank
Authors: Haoyu Zhao, Qianshu Ma, Min Xie, Yunqi Huang, Yunjia Liu, Huan Song, Hongsheng Gui, Mingli Li, Qiang Wang
Abstract:
Rationale: Bipolar disorder (BD) and major depressive disorder (MDD), as severe chronic illnesses that restrict patients’ psychosocial functioning and reduce their quality of life, are both categorized into mood disorders. Emerging evidence has suggested that the reliability of self-rated health (SRH) was wellvalidated and that the risk of various health outcomes, including mortality and health care costs, could be predicted by SRH. Compared with other lengthy multi-item patient-reported outcomes (PRO) measures, SRH was proven to have a comparable predictive ability to predict mortality and healthcare utilization. However, to our knowledge, no study has been conducted to assess the association between SRH and hospitalization among people with mental disorders. Therefore, our study aims to determine the association between SRH and subsequent all-cause hospitalizations in patients with BD and MDD. Methods: We conducted a prospective cohort study on people with BD or MDD in the UK from 2006 to 2010 using UK Biobank touchscreen questionnaire data and linked administrative health databases. The association between SRH and 2-year all-cause hospitalizations was assessed using proportional hazard regression after adjustment for sociodemographics, lifestyle behaviors, previous hospitalization use, the Elixhauser comorbidity index, and environmental factors. Results: A total of 29,966 participants were identified, experiencing 10,279 hospitalization events. Among the cohort, the average age was 55.88 (SD 8.01) years, 64.02% were female, and 3,029 (10.11%), 15,972 (53.30%), 8,313 (27.74%), and 2,652 (8.85%) reported excellent, good, fair, and poor SRH, respectively. Among patients reporting poor SRH, 54.19% had a hospitalization event within 2 years compared with 22.65% for those having excellent SRH. In the adjusted analysis, patients with good, fair, and poor SRH had 1.31 (95% CI 1.21-1.42), 1.82 (95% CI 1.68-1.98), and 2.45 (95% CI 2.22, 2.70) higher hazards of hospitalization, respectively, than those with excellent SRH. Conclusion: SRH was independently associated with subsequent all-cause hospitalizations in patients with BD or MDD. This large study facilitates rapid interpretation of SRH values and underscores the need for proactive SRH screening in this population, which might inform resource allocation and enhance high-risk population detection.Keywords: severe mental illnesses, hospitalization, risk prediction, patient-reported outcomes
Procedia PDF Downloads 159206 Cyclic Etching Process Using Inductively Coupled Plasma for Polycrystalline Diamond on AlGaN/GaN Heterostructure
Authors: Haolun Sun, Ping Wang, Mei Wu, Meng Zhang, Bin Hou, Ling Yang, Xiaohua Ma, Yue Hao
Abstract:
Gallium nitride (GaN) is an attractive material for next-generation power devices. It is noted that the performance of GaN-based high electron mobility transistors (HEMTs) is always limited by the self-heating effect. In response to the problem, integrating devices with polycrystalline diamond (PCD) has been demonstrated to be an efficient way to alleviate the self-heating issue of the GaN-based HEMTs. Among all the heat-spreading schemes, using PCD to cap the epitaxial layer before the HEMTs process is one of the most effective schemes. Now, the mainstream method of fabricating the PCD-capped HEMTs is to deposit the diamond heat-spreading layer on the AlGaN surface, which is covered by a thin nucleation dielectric/passivation layer. To achieve the pattern etching of the diamond heat spreader and device preparation, we selected SiN as the hard mask for diamond etching, which was deposited by plasma-enhanced chemical vapor deposition (PECVD). The conventional diamond etching method first uses F-based etching to remove the SiN from the special window region, followed by using O₂/Ar plasma to etch the diamond. However, the results of the scanning electron microscope (SEM) and focused ion beam microscopy (FIB) show that there are lots of diamond pillars on the etched diamond surface. Through our study, we found that it was caused by the high roughness of the diamond surface and the existence of the overlap between the diamond grains, which makes the etching of the SiN hard mask insufficient and leaves micro-masks on the diamond surface. Thus, a cyclic etching method was proposed to solve the problem of the residual SiN, which was left in the F-based etching. We used F-based etching during the first step to remove the SiN hard mask in the specific region; then, the O₂/Ar plasma was introduced to etch the diamond in the corresponding region. These two etching steps were set as one cycle. After the first cycle, we further used cyclic etching to clear the pillars, in which the F-based etching was used to remove the residual SiN, and then the O₂/Ar plasma was used to etch the diamond. Whether to take the next cyclic etching depends on whether there are still SiN micro-masks left. By using this method, we eventually achieved the self-terminated etching of the diamond and the smooth surface after the etching. These results demonstrate that the cyclic etching method can be successfully applied to the integrated preparation of polycrystalline diamond thin films and GaN HEMTs.Keywords: AlGaN/GaN heterojunction, O₂/Ar plasma, cyclic etching, polycrystalline diamond
Procedia PDF Downloads 133205 Developing a Discourse Community of Doctoral Students in a Multicultural Context
Authors: Jinghui Wang, Minjie Xing
Abstract:
The increasing number of international students for doctoral education has brought vitality and diversity to the educational environment in China, and at the same time constituted a new challenge to the English teaching in the higher education as the majority of international students come from developing countries where English is not their first language. To make their contribution to knowledge development and technical innovation, these international doctoral students need to present their research work in English, locally and globally. This study reports an exploratory study with an emphasis on the cognition and construction of academic discourse in the multicultural context. The present study aims to explore ways to better prepare them for international academic exchange in English. Voluntarily, all international doctoral students (n = 81) from 35 countries enrolled in the English Course: Speaking and Writing as a New Scientist, participated in the study. Two research questions were raised: 1) What did these doctoral students say about their cognition and construction of English academic discourses? 2) How did they manage to develop their productive skills in a multicultural context? To answer the research questions, data were collected from self-reports, in-depth interviews, and video-recorded class observations. The major findings of the study suggest that the participants to varying degrees benefitted from the cognition and construction of English academic discourse in the multicultural context. Specifically, 1) The cognition and construction of meta-discourse allowed them to construct their own academic discourses in English; 2) In the light of Swales’ CARS Model, they became sensitive to the “moves” involved in the published papers closely related to their study, and learned to use them in their English academic discourses; 3) Multimodality-driven presentation (multimedia modes) enabled these doctoral student to have their voice heard for technical innovation purposes; 4) Speaking as a new scientist, every doctoral student felt happy and able to serve as an intercultural mediator in the multicultural context, bridging the gap between their home culture and the global culture; and most importantly, 5) most of the participants reported developing an English discourse community among international doctoral students, becoming resourceful and productive in the multicultural context. It is concluded that the cognition and construction of academic discourse in the multicultural context proves to be conducive to the productivity and intercultural citizenship education of international doctoral students.Keywords: academic discourse, international doctoral students, meta-discourse, multicultural context
Procedia PDF Downloads 380204 The Risk and Prevention of Peer-To-Peer Network Lending in China
Authors: Zhizhong Yuan, Lili Wang, Chenya Zheng, Wuqi Yang
Abstract:
How to encourage and support peer-to-peer (P2P) network lending, and effectively monitor the risk of P2P network lending, has become the focus of the Chinese government departments, industrialists, experts and scholars in recent years. The reason is that this convenient online micro-credit service brings a series of credit risks and other issues. Avoiding the risks brought by the P2P network lending model, it can better play a benign role and help China's small and medium-sized private enterprises with vigorous development to solve the capital needs; otherwise, it will bring confusion to the normal financial order. As a form of financial services, P2P network lending has injected new blood into China's non-government finance in the past ten years, and has found a way out for idle funds and made up for the shortage of traditional financial services in China. However, it lacks feasible measures in credit evaluation and government supervision. This paper collects a large amount of data about P2P network lending of China. The data collection comes from the official media of the Chinese government, the public achievements of existing researchers and the analysis and collation of correlation data by the authors. The research content of this paper includes literature review; the current situation of China's P2P network lending development; the risk analysis of P2P network lending in China; the risk prevention strategy of P2P network lending in China. The focus of this paper is to try to find a specific program to strengthen supervision and avoid risks from the perspective of government regulators, operators of P2P network lending platform, investors and users of funds. These main measures include: China needs to develop self-discipline organization of P2P network lending industry and formulate self-discipline norms as soon as possible; establish a regular information disclosure system of P2P network lending platform; establish censorship of credit rating of borrowers; rectify the P2P network lending platform in compliance through the implementation of bank deposition. The results and solutions will benefit all the P2P network lending platforms, creditors, debtors, bankers, independent auditors and government agencies of China and other countries.Keywords: peer-to-peer(P2P), regulation, risk prevention, supervision
Procedia PDF Downloads 166203 Petrogenesis and Tectonic Implication of the Oligocene Na-Rich Granites from the North Sulawesi Arc, Indonesia
Authors: Xianghong Lu, Yuejun Wang, Chengshi Gan, Xin Qian
Abstract:
The North Sulawesi Arc, located on the east of Indonesia and to the south of the Celebes Sea, is the north part of the K-shape of Sulawesi Island and has a complex tectonic history since the Cenozoic due to the convergence of three plates (Eurasia, India-Australia and Pacific plates). Published rock records contain less precise chronology, mostly using K-Ar dating, and rare geochemistry data, which limit the understanding of the regional tectonic setting. This study presents detailed zircon U-Pb geochronological and Hf-O isotope and whole-rock geochemical analyses for the Na-rich granites from the North Sulawesi Arc. Zircon U-Pb geochronological analyses of three representative samples yield weighted mean ages of 30.4 ± 0.4 Ma, 29.5 ± 0.2 Ma, and 27.3 ± 0.4 Ma, respectively, revealing the Oligocene magmatism in the North Sulawesi Arc. The samples have high Na₂O and low K₂O contents with high Na₂O/K₂O ratios, belonging to Low-K tholeiitic Na-rich granites. The Na-rich granites are characterized by high SiO₂ contents (75.05-79.38 wt.%) and low MgO contents (0.07-0.91 wt.%) and show arc-like trace elemental signatures. They have low (⁸⁷Sr/⁸⁶Sr)i ratios (0.7044-0.7046), high εNd(t) values (from +5.1 to +6.6), high zircon εHf(t) values (from +10.1 to +18.8) and low zircon δ18O values (3.65-5.02). They show an Indian-Ocean affinity of Pb isotopic compositions with ²⁰⁶Pb/²⁰⁴Pb ratio of 18.16-18.37, ²⁰⁷Pb/²⁰⁴Pb ratio of 15.56-15.62, and ²⁰⁸Pb/²⁰⁴Pb ratio of 38.20-38.66. These geochemical signatures suggest that the Oligocene Na-rich granites from the North Sulawesi Arc formed by partial melting of the juvenile oceanic crust with sediment-derived fluid-related metasomatism in a subducting setting and support an intra-oceanic arc origin. Combined with the published study, the emergence of extensive calc-alkaline felsic arc magmatism can be traced back to the Early Oligocene period, subsequent to the Eocene back-arc basalts (BAB) that share similarity with the Celebes Sea basement. Since the opening of the Celebes Sea started from the Eocene (42~47 Ma) and stopped by the Early Oligocene (~32 Ma), the geodynamical mechanism of the formation of the Na-rich granites from the North Sulawesi Arc during the Oligocene might relate to the subduction of the Indian Ocean.Keywords: North Sulawesi Arc, oligocene, Na-rich granites, in-situ zircon Hf–O analysis, intra-oceanic origin
Procedia PDF Downloads 75202 Public Art as Social Critique to Shape Urban-Scape
Authors: Po-Ching Wang
Abstract:
Public art may be regarded as a social agenda. It is assumed that public art acts as an intermediate form that contributes significantly to community resurgence. That is, public art may be regarded as a verb/process or social intervention. It functions as a vanguard form, attacking boundaries and providing a sensibility for social strategy. Public art in tradition is generally expected to bring aesthetic pleasure to public. Contemporary public art, however, not only focuses on art installation, but it also often offers a process that aims to comment on, question, and challenge the socio-cultural status quo. During the last few decades, accelerated changes in the values and expectations brought to bear on varied urban issues, together with the destruction of the hegemony of traditional art and of museum authorities, has begun to contribute to freer and more democratic representations of public art. It is said that part of a public artwork’s role is to ruffle sacred feathers. In many cases, public art is created to address the dynamic social contradictions and mutability of public life; and artists and community participants approach public art from a variety of social critical perspectives and methodologies. Urban issues, such as social and environmental justice, health problems, violence, and political statements, provide plentiful source materials that fuel the performance of public art in many different settings. Further, public artworks have been extensively adopted to express social identity, make political statements, and/or to remedy social and environmental crises. Many murals on urban walls, for instance, reflect social conflicts and address civic rights, and these projects are usually the work of artists who though denied access to traditional gallery and museum channels are supported by community engagement and involvement. Public art as a social practice challenges the traditional western view of artistic practice. Art in the public realm creates a new media that provides a platform for a dialogical exchange between diverse social groups. It seems that public art has evolved as an arena for activism that addresses wide-ranging and highly controversial social issues and civilian concerns. The findings of this study indicate that public artworks are capable of playing a role of activist in facilitating community evolution via social progress.Keywords: aesthetics, community regeneration, city development, publicness, public participation, social progress
Procedia PDF Downloads 230201 Novel p22-Monoclonal Antibody Based Blocking ELISA for the Detection of African Swine Fever Virus Antibodies in Serum
Authors: Ghebremedhin Tsegay, Weldu Tesfagaber, Yuanmao Zhu, Xijun He, Wan Wang, Zhenjiang Zhang, Encheng Sun, Jinya Zhang, Yuntao Guan, Fang Li, Renqiang Liu, Zhigao Bu, Dongming Zhao*
Abstract:
African swine fever (ASF) is a highly infectious viral disease of pigs, resulting in significant economic loss worldwide. As there is no approved vaccines and treatments, the control of ASF entirely depends on early diagnosis and culling of infected pigs. Thus, highly specific and sensitive diagnostic assays are required for accurate and early diagnosis of ASF virus (ASFV). Currently, only a few recombinant proteins have been tested and validated for use as reagents in ASF diagnostic assays. The most promising ones for ASFV antibody detection were p72, p30, p54, and pp62. So far, three ELISA kits based on these recombinant proteins have been commercialized. Due to the complex nature of the virus and variety forms of the disease, robust serodiagnostic assays are still required. ASFV p22 protein, encoded by KP177R gene, is located in the inner membrane of viral particle and appeared transiently in the plasma membrane early after virus infection. The p22 protein interacts with numerous cellular proteins, involved in processes of phagocytosis and endocytosis through different cellular pathways. However, p22 does not seem to be involved in virus replication or swine pathogenicity. In this study, E.coli expressed recombinant p22 protein was used to generate a monoclonal antibody (mAb), and its potential use for the development of blocking ELISA (bELISA) was evaluated. A total of 806 pig serum samples were tested to evaluate the bELISA. Acording the ROC (Reciever operating chracteristic) analysis, 100% sensitivity and 98.10% of specificity was recorded when the PI cut-off value was set at 47%. The novel assay was able to detect the antibodies as early as 9 days post infection. Finaly, a highly sensitive, specific and rapid novel p22-mAb based bELISA assay was developed, and optimized for detection of antibodies against genotype I and II ASFVs. It is a promising candidate for an early and acurate detection of the antibodies and is highly expected to have a valuable role in the containment and prevention of ASF.Keywords: ASFV, blocking ELISA, diagnosis, monoclonal antibodies, sensitivity, specificity
Procedia PDF Downloads 75200 Engineering a Tumor Extracellular Matrix Towards an in vivo Mimicking 3D Tumor Microenvironment
Authors: Anna Cameron, Chunxia Zhao, Haofei Wang, Yun Liu, Guang Ze Yang
Abstract:
Since the first publication in 1775, cancer research has built a comprehensive understanding of how cellular components of the tumor niche promote disease development. However, only within the last decade has research begun to establish the impact of non-cellular components of the niche, particularly the extracellular matrix (ECM). The ECM, a three-dimensional scaffold that sustains the tumor microenvironment, plays a crucial role in disease progression. Cancer cells actively deregulate and remodel the ECM to establish a tumor-promoting environment. Recent work has highlighted the need to further our understanding of the complexity of this cancer-ECM relationship. In vitro models use hydrogels to mimic the ECM, as hydrogel matrices offer biological compatibility and stability needed for long term cell culture. However, natural hydrogels are being used in these models verbatim, without tuning their biophysical characteristics to achieve pathophysiological relevance, thus limiting their broad use within cancer research. The biophysical attributes of these gels dictate cancer cell proliferation, invasion, metastasis, and therapeutic response. Evaluating the three most widely used natural hydrogels, Matrigel, collagen, and agarose gel, the permeability, stiffness, and pore-size of each gel were measured and compared to the in vivo environment. The pore size of all three gels fell between 0.5-6 µm, which coincides with the 0.1-5 µm in vivo pore size found in the literature. However, the stiffness for hydrogels able to support cell culture ranged between 0.05 and 0.3 kPa, which falls outside the range of 0.3-20,000 kPa reported in the literature for an in vivo ECM. Permeability was ~100x greater than in vivo measurements, due in large part to the lack of cellular components which impede permeation. Though, these measurements prove important when assessing therapeutic particle delivery, as the ECM permeability decreased with increasing particle size, with 100 nm particles exhibiting a fifth of the permeability of 10 nm particles. This work explores ways of adjusting the biophysical characteristics of hydrogels by changing protein concentration and the trade-off, which occurs due to the interdependence of these factors. The global aim of this work is to produce a more pathophysiologically relevant model for each tumor type.Keywords: cancer, extracellular matrix, hydrogel, microfluidic
Procedia PDF Downloads 90199 The Routine Use of a Negative Pressure Incision Management System in Vascular Surgery: A Case Series
Authors: Hansraj Bookun, Angela Tan, Rachel Xuan, Linheng Zhao, Kejia Wang, Animesh Singla, David Kim, Christopher Loupos
Abstract:
Introduction: Incisional wound complications in vascular surgery patients represent a significant clinical and econometric burden of morbidity and mortality. The objective of this study was to trial the feasibility of applying the Prevena negative pressure incision management system as a routine dressing in patients who had undergone arterial surgery. Conventionally, Prevena has been applied to groin incisions, but this study features applications on multiple wound sites such as the thigh or major amputation stumps. Method: This was a cross-sectional observational, single-centre case series of 12 patients who had undergone major vascular surgery. Their wounds were managed with the Prevena system being applied either intra-operatively or on the first post-operative day. Demographic and operative details were collated as well as the length of stay and complication rates. Results: There were 9 males (75%) with mean age of 66 years and the comorbid burden was as follows: ischaemic heart disease (92%), diabetes (42%), hypertension (100%), stage 4 or greater kidney impairment (17%) and current or ex-smoking (83%). The main indications were acute ischaemia (33%), claudication (25%), and gangrene (17%). There were single instances of an occluded popliteal artery aneurysm, diabetic foot infection, and rest pain. The majority of patients (50%) had hybrid operations with iliofemoral endarterectomies, patch arterioplasties, and further peripheral endovascular treatment. There were 4 complex arterial bypass operations and 2 major amputations. The mean length of stay was 17 ± 10 days, with a range of 4 to 35 days. A single complication, in the form of a lymphocoele, was encountered in the context of an iliofemoral endarterectomy and patch arterioplasty. This was managed conservatively. There were no deaths. Discussion: The Prevena wound management system shows that in conjunction with safe vascular surgery, absolute wound complication rates remain low and that it remains a valuable adjunct in the treatment of vasculopaths.Keywords: wound care, negative pressure, vascular surgery, closed incision
Procedia PDF Downloads 136198 Portable and Parallel Accelerated Development Method for Field-Programmable Gate Array (FPGA)-Central Processing Unit (CPU)- Graphics Processing Unit (GPU) Heterogeneous Computing
Authors: Nan Hu, Chao Wang, Xi Li, Xuehai Zhou
Abstract:
The field-programmable gate array (FPGA) has been widely adopted in the high-performance computing domain. In recent years, the embedded system-on-a-chip (SoC) contains coarse granularity multi-core CPU (central processing unit) and mobile GPU (graphics processing unit) that can be used as general-purpose accelerators. The motivation is that algorithms of various parallel characteristics can be efficiently mapped to the heterogeneous architecture coupled with these three processors. The CPU and GPU offload partial computationally intensive tasks from the FPGA to reduce the resource consumption and lower the overall cost of the system. However, in present common scenarios, the applications always utilize only one type of accelerator because the development approach supporting the collaboration of the heterogeneous processors faces challenges. Therefore, a systematic approach takes advantage of write-once-run-anywhere portability, high execution performance of the modules mapped to various architectures and facilitates the exploration of design space. In this paper, A servant-execution-flow model is proposed for the abstraction of the cooperation of the heterogeneous processors, which supports task partition, communication and synchronization. At its first run, the intermediate language represented by the data flow diagram can generate the executable code of the target processor or can be converted into high-level programming languages. The instantiation parameters efficiently control the relationship between the modules and computational units, including two hierarchical processing units mapping and adjustment of data-level parallelism. An embedded system of a three-dimensional waveform oscilloscope is selected as a case study. The performance of algorithms such as contrast stretching, etc., are analyzed with implementations on various combinations of these processors. The experimental results show that the heterogeneous computing system with less than 35% resources achieves similar performance to the pure FPGA and approximate energy efficiency.Keywords: FPGA-CPU-GPU collaboration, design space exploration, heterogeneous computing, intermediate language, parameterized instantiation
Procedia PDF Downloads 116197 Magnetoelastically Induced Perpendicular Magnetic Anisotropy and Perpendicular Exchange Bias of CoO/CoPt Multilayer Films
Authors: Guo Lei, Wang Yue, Nakamura Yoshio, Shi Ji
Abstract:
Recently, perpendicular exchange bias (PEB) is introduced as an active topic attracting continuous efforts. Since its discovery, extrinsic control of PEB has been proposed, due to its scientific significance in spintronic devices and potential application in high density magnetic random access memory with perpendicular magnetic tunneling junction (p-MTJ). To our knowledge, the researches aiming to controlling PEB so far are focused mainly on enhancing the interfacial exchange coupling by adjusting the FM/AFM interface roughness, or optimizing the crystalline structures of FM or AFM layer by employing different seed layers. In present work, the effects of magnetoelastically induced PMA on PEB have been explored in [CoO5nm/CoPt5nm]5 multilayer films. We find the PMA strength of FM layer also plays an important role on PEB at the FM/AFM interface and it is effective to control PEB of [CoO5nm/CoPt5nm]5 multilayer films by changing the magnetoelastically induced PMA of CoPt layer. [CoO5nm/CoPt5nm]5 multilayer films were deposited by magnetron sputtering on fused quartz substrate at room temperature, then annealed at 100°C, 250°C, 300°C and 375°C for 3h, respectively. XRD results reveal that all the samples are well crystallized with preferred fcc CoPt (111) orientation. The continuous multilayer structure with sharp component transition at the CoO5nm/CoPt5nm interface are identified clearly by transmission electron microscopy (TEM), x-ray reflectivity (XRR) and atomic force microscope (AFM). CoPt layer in-plane tensile stress is calculated by sin2φ method, and we find it increases gradually upon annealing from 0.99 GPa (as-deposited) up to 3.02 GPa (300oC-annealed). As to the magnetic property, significant enhancement of PMA is achieved in [CoO5nm/CoPt5nm]5 multilayer films after annealing due to the increase of CoPt layer in-plane tensile stress. With the enhancement of magnetoelastically induced PMA, great improvement of PEB is also achieved in [CoO5nm/CoPt5nm]5 multilayer films, which increases from 130 Oe (as-deposited) up to 1060 Oe (300oC-annealed), showing the same change tendency as PMA and the strong correlation with CoPt layer in-plane tensile stress. We consider it is the increase of CoPt layer in-plane tensile stress that leads to the enhancement of PMA, and thus the enhancement of magnetoelastically induced PMA results in the improvement of PEB in [CoO5nm/CoPt5nm]5 multilayer films.Keywords: perpendicular exchange bias, magnetoelastically induced perpendicular magnetic anisotropy, CoO5nm/CoPt5nm]5 multilayer film with in-plane stress, perpendicular magnetic tunneling junction
Procedia PDF Downloads 461196 A Re-Evaluation of Green Architecture and Its Contributions to Environmental Sustainability
Authors: Po-Ching Wang
Abstract:
Considering the notable effects of natural resource consumption and impacts on fragile ecosystems, reflection on contemporary sustainable design is critical. Nevertheless, the idea of ‘green’ has been misapplied and even abused, and, in fact, much damage to the environment has been done in its name. In 1996’s popular science fiction film Independence Day, an alien species, having exhausted the natural resources of one planet, moves on to another —a fairly obvious irony on contemporary human beings’ irresponsible use of the Earth’s natural resources in modern times. In fact, the human ambition to master nature and freely access the world’s resources has long been inherent in manifestos evinced by productions of the environmental design professions. Ron Herron’s Walking City, an experimental architectural piece of 1964, is one example that comes to mind here. For this design concept, the architect imagined a gigantic nomadic urban aggregate that by way of an insect-like robotic carrier would move all over the world, on land and sea, to wherever its inhabitants want. Given the contemporary crisis regarding natural resources, recently ideas pertinent to structuring a sustainable environment have been attracting much interest in architecture, a field that has been accused of significantly contributing to ecosystem degradation. Great art, such as Fallingwater building, has been regarded as nature-friendly, but its notion of ‘green’ might be inadequate in the face of the resource demands made by human populations today. This research suggests a more conservative and scrupulous attitude to attempting to modify nature for architectural settings. Designs that pursue spiritual or metaphysical interconnections through anthropocentric aesthetics are not sufficient to benefit ecosystem integrity; though high-tech energy-saving processes may contribute to a fine-scale sustainability, they may ultimately cause catastrophe in the global scale. Design with frugality is proposed in order to actively reduce environmental load. The aesthetic taste and ecological sensibility of design professions and the public alike may have to be reshaped in order to make the goals of environmental sustainability viable.Keywords: anthropocentric aesthetic, aquarium sustainability, biosphere 2, ecological aesthetic, ecological footprint, frugal design
Procedia PDF Downloads 208195 Living or Surviving in an Intercultural Context: A Study on Transformative Learning of UK Students in China and Chinese Students in the UK
Authors: Yiran Wang
Abstract:
As international education continues to expand countries providing such opportunities not only benefit but also face challenges. For traditional destinations, including the United States and the United Kingdom, the number of international students has been falling. At the same time emerging economies, such as China, are witnessing a rapid increase in the number of international students enrolled in their universities. China is, therefore, beginning to play an important role in the competitive global market for higher education. This study analyses and compares the experiences of international students in the UK and China using Transformative Learning theory. While there is an extensive literature on both international higher education and also Transformative Learning theory there are currently three contributions this study makes. First, this research applies the theory to two international student groups: UK students in Chinese universities and Chinese students in UK universities.Second, this study includes a focus on the intercultural learning of Chinese doctoral students in the UK filling a gap in current research. Finally, this investigation has extended the very limited number of current research projects on UK students in China. It is generally acknowledged that international students will experience various challenges when they are in a culturally different context. Little research has focused on how, why, and why not learners are transformed through exposure to their new environment. This study applies Transformative Learning theory to address two research questions: first, do UK international students in Chinese universities and Chinese international students in UK universities experience transformational learning in/during their overseas studies? Second, what factors foster or impede international students’ experience of transformative learning? To answer the above questions, semi-structured interviews were used to investigate international students’ academic and social experiences. Based on the insights provided by Mezirow,Taylor,and previous studies on international students, this study argues that international students’ intercultural experience is a complex process.Transformation can occur in various ways and social and personal perspectives underpin the transformative learning of the students studied. Contributing factors include culture shock, educational conventions,the student’s motivation, expectations, personality, gender and previous work experience.The results reflect the significance of differences in teaching styles in the UK and China and the impact this can have on the student teaching and learning process when they move to a new university.Keywords: intercultural learning, international higher education, transformative learning, UK and Chinese international students
Procedia PDF Downloads 410194 Cadmium Accumulation and Depuration Characteristics through Food Source of Cage-Cultivated Fish after Accidental Pollution in Longjiang River
Authors: Qianli Ma, Xuemin Zhao, Lingai Yao, Zhencheng Xu, Li Wang
Abstract:
Heavy metal pollution accidents, frequently happened in this decade in China, severely threaten aquatic ecosystem and economy. In January 2012, a basin-scale accidental Cd pollution happened in Longjiang River in southwest China. Although water quality was recovered in short period by emergency treatment with flocculants, a large amount of contaminated cage-cultivated fish were left with the task of preventing or mitigating Cd contamination of fish. In this study, unpolluted Ctenopharyngodon idellus were fed by Cd-contaminated macrophytes for assessing the effect of Cd accumulation through food exposure, and the contaminated C. idellus were fed with Cd-free macrophytes for assessing the ability of Cd depuration. The on-site cultivation experiments were done in two sites of Lalang (S1, accidental Cd pollution originated) and Sancha (S2, a large amount of flocculants were added to accelerate Cd precipitation) in Longjiang river. Results showed that Cd content in fish muscle presented an increasing trend in the accumulation experiment. In S1, Cd content of fish muscle rose sharply from day 8 to day 18 with higher average Cd content in macrophytes and sediment, and kept in the range of 0.208-0.308 mg/kg afterward. In S2, Cd content of fish muscle rose gradually throughout the experiment and reached the maximum level of 0.285 mg/kg on day 76. The results of the depuration experiment showed that Cd content in fish muscle decreased and significant changes were observed in the first half time of the experiment. Meanwhile, fish with lower initial Cd content presented higher elimination constant. In S1, Cd content of fish significantly decreased from 0.713 to 0.304 mg/kg in 18 days and kept decreasing to 0.110 mg/kg in the end, and 84.6% of Cd content was eliminated. While in S2, there was a sharp decrease of Cd content of fish in 0-8 days from 0.355 mg/kg to 0.069 mg/kg. The total elimination percentage was 93.8% and 80.6% of which appeared in day 0-8. The elimination constant of fish in S2 was 0.03 which was higher than 0.02 in S1. Collectively, our results showed Cd could be absorbed through food exposure and accumulate in fish muscle, and the accumulated Cd in fish muscle can be excreted after isolated from the polluted food sources. This knowledge allows managers to assess health risk of Cd contaminated fish and minimize aquaculture loss when considering fish cultivation after accidental pollution.Keywords: accidental pollution, cadmium accumulation and depuration, cage-cultivated fish, environmental management, river
Procedia PDF Downloads 251193 A Long Range Wide Area Network-Based Smart Pest Monitoring System
Authors: Yun-Chung Yu, Yan-Wen Wang, Min-Sheng Liao, Joe-Air Jiang, Yuen-Chung Lee
Abstract:
This paper proposes to use a Long Range Wide Area Network (LoRaWAN) for a smart pest monitoring system which aims at the oriental fruit fly (Bactrocera dorsalis) to improve the communication efficiency of the system. The oriental fruit fly is one of the main pests in Southeast Asia and the Pacific Rim. Different smart pest monitoring systems based on the Internet of Things (IoT) architecture have been developed to solve problems of employing manual measurement. These systems often use Octopus II, a communication module following the 2.4GHz IEEE 802.15.4 ZigBee specification, as sensor nodes. The Octopus II is commonly used in low-power and short-distance communication. However, the energy consumption increase as the logical topology becomes more complicate to have enough coverage in the large area. By comparison, LoRaWAN follows the Low Power Wide Area Network (LPWAN) specification, which targets the key requirements of the IoT technology, such as secure bi-directional communication, mobility, and localization services. The LoRaWAN network has advantages of long range communication, high stability, and low energy consumption. The 433MHz LoRaWAN model has two superiorities over the 2.4GHz ZigBee model: greater diffraction and less interference. In this paper, The Octopus II module is replaced by a LoRa model to increase the coverage of the monitoring system, improve the communication performance, and prolong the network lifetime. The performance of the LoRa-based system is compared with a ZigBee-based system using three indexes: the packet receiving rate, delay time, and energy consumption, and the experiments are done in different settings (e.g. distances and environmental conditions). In the distance experiment, a pest monitoring system using the two communication specifications is deployed in an area with various obstacles, such as buildings and living creatures, and the performance of employing the two communication specifications is examined. The experiment results show that the packet receiving the rate of the LoRa-based system is 96% , which is much higher than that of the ZigBee system when the distance between any two modules is about 500m. These results indicate the capability of a LoRaWAN-based monitoring system in long range transmission and ensure the stability of the system.Keywords: LoRaWan, oriental fruit fly, IoT, Octopus II
Procedia PDF Downloads 351192 Software User Experience Enhancement through Collaborative Design
Authors: Shan Wang, Fahad Alhathal, Daniel Hobson
Abstract:
User-centered design skills play an important role in crafting a positive and intuitive user experience for software applications. Embracing a user-centric design approach involves understanding the needs, preferences, and behaviors of the end-users throughout the design process. This mindset not only enhances the usability of the software but also fosters a deeper connection between the digital product and its users. This paper encompasses a 6-month knowledge exchange collaboration project between an academic institution and an external industry in 2023, aims to improve the user experience of a digital platform utilized for a knowledge management tool, to understand users' preferences for features, identify sources of frustration, and pinpoint areas for enhancement. This research conducted one of the most effective methods to implement user-centered design through co-design workshops for testing user onboarding experiences that involve the active participation of users in the design process. More specifically, in January 2023, we organized eight workshops with a diverse group of 11 individuals. Throughout these sessions, we accumulated a total of 11 hours of qualitative data in both video and audio formats. Subsequently, we conducted an analysis of user journeys, identifying common issues and potential areas for improvement. This analysis was pivotal in guiding the knowledge management software in prioritizing feature enhancements and design improvements. Employing a user-centered design thinking process, we developed a series of graphic design solutions in collaboration with the software management tool company. These solutions were targeted at refining onboarding user experiences, workplace interfaces, and interactive design. Some of these design solutions were translated into tangible interfaces for the knowledge management tool. By actively involving users in the design process and valuing their input, developers can create products that are not only functional but also resonate with the end-users, ultimately leading to greater success in the competitive software landscape. In conclusion, this paper not only contributes insights into designing onboarding user experiences for software within a co-design approach but also presents key theories on leveraging the user-centered design process in software design to enhance overall user experiences.Keywords: user experiences, co-design, design process, knowledge management tool, user-centered design
Procedia PDF Downloads 66191 Exo-III Assisted Amplification Strategy through Target Recycling of Hg²⁺ Detection in Water: A GNP Based Label-Free Colorimetry Employing T-Rich Hairpin-Loop Metallobase
Authors: Abdul Ghaffar Memon, Xiao Hong Zhou, Yunpeng Xing, Ruoyu Wang, Miao He
Abstract:
Due to deleterious environmental and health effects of the Hg²⁺ ions, various online, detection methods apart from the traditional analytical tools have been developed by researchers. Biosensors especially, label, label-free, colorimetric and optical sensors have advanced with sensitive detection. However, there remains a gap of ultrasensitive quantification as noise interact significantly especially in the AuNP based label-free colorimetry. This study reported an amplification strategy using Exo-III enzyme for target recycling of Hg²⁺ ions in a T-rich hairpin loop metallobase label-free colorimetric nanosensor with an improved sensitivity using unmodified gold nanoparticles (uGNPs) as an indicator. The two T-rich metallobase hairpin loop structures as 5’- CTT TCA TAC ATA GAA AAT GTA TGT TTG -3 (HgS1), and 5’- GGC TTT GAG CGC TAA GAA A TA GCG CTC TTT G -3’ (HgS2) were tested in the study. The thermodynamic properties of HgS1 and HgS2 were calculated using online tools (http://biophysics.idtdna.com/cgi-bin/meltCalculator.cgi). The lab scale synthesized uGNPs were utilized in the analysis. The DNA sequence had T-rich bases on both tails end, which in the presence of Hg²⁺ forms a T-Hg²⁺-T mismatch, promoting the formation of dsDNA. Later, the Exo-III incubation enable the enzyme to cleave stepwise mononucleotides from the 3’ end until the structure become single-stranded. These ssDNA fragments then adsorb on the surface of AuNPs in their presence and protect AuNPs from the induced salt aggregation. The visible change in color from blue (aggregation stage in the absence of Hg²⁺) and pink (dispersion state in the presence of Hg²⁺ and adsorption of ssDNA fragments) can be observed and analyzed through UV spectrometry. An ultrasensitive quantitative nanosensor employing Exo-III assisted target recycling of mercury ions through label-free colorimetry with nanomolar detection using uGNPs have been achieved and is further under the optimization to achieve picomolar range by avoiding the influence of the environmental matrix. The proposed strategy will supplement in the direction of uGNP based ultrasensitive, rapid, onsite, label-free colorimetric detection.Keywords: colorimetric, Exo-III, gold nanoparticles, Hg²⁺ detection, label-free, signal amplification
Procedia PDF Downloads 309190 Sulforaphane Alleviates Muscular Dystrophy in Mdx Mice by Activation of Nrf2
Authors: Chengcao Sun, Cuili Yang, Shujun Li, Ruilin Xue, Liang Wang, Yongyong Xi, Dejia Li
Abstract:
Backgrounds: Sulforaphane, one of the most important isothiocyanates in the human diet, is known to have chemopreventive and antioxidant activities in different tissues via activation of NF-E2-related factor 2 (Nrf2)-mediated induction of antioxidant/phase II enzymes, such as heme oxygenase-1 (HO-1) and NAD(P)H quinone oxidoreductase 1 (NQO1). However, its effects on muscular dystrophy remain unknown. This work was undertaken to evaluate the effects of Sulforaphane on Duchenne muscular dystrophy (DMD). Methods: 4-week-old mdx mice were treated with SFN by gavage (2 mg/kg body weight per day) for 8 weeks. Blood was collected from eye socket every week, and tibial anterior, extensor digitorum longus, gastrocnemius, soleus, triceps brachii muscles and heart samples were collected after 8-week gavage. Force measurements and mice exercise capacity assays were detected. GSH/GSSG ratio, TBARS, CK and LDH levels were analyzed by spectrophotometric methods. H&E staining was used to analyze histological and morphometric of skeletal muscles of mdx mice, and Evas blue dye staining was made to detect sarcolemmal integrity of mdx mice. Further, the role of Sulforaphane on Nrf2/ARE signaling pathway was analyzed by ELISA, western blot and qRT-PCR. Results: Our results demonstrated that SFN treatment increased the expression and activity of muscle phase II enzymes NQO1 and HO-1 with Nrf2 dependent manner. SFN significantly increased skeletal muscle mass, muscle force (~30%), running distance (~20%) and GSH/GSSG ratio (~3.2 folds) of mdx mice, and decreased the activities of plasma creatine phosphokinase (CK) (~45%) and lactate dehydrogenase (LDH) (~40%), gastrocnemius hypertrophy (~25%), myocardial hypertrophy (~20%) and MDA levels (~60%). Further, SFN treatment also reduced the central nucleation (~40%), fiber size variability, inflammation and improved the sarcolemmal integrity of mdx mice. Conclusions: Collectively, these results show that SFN can improve muscle function, pathology and protect dystrophic muscle from oxidative damage in mdx mice through Nrf2 signaling pathway, which indicate Nrf2 may have clinical implications for the treatment of patients with muscular dystrophy.Keywords: sulforaphane, duchenne muscular dystrophy, Nrf2, oxidative stress
Procedia PDF Downloads 321189 Dynamic Change of Floods Disaster Monitoring for River Central Bar by Remote Sensing Time-Series Images
Authors: Zuoji Huang, Jinyan Sun, Chunlin Wang, Haiming Qian, Nan Xu
Abstract:
The spatial extent and area of central river bars can always vary due to the impact of water level, sediment supply and human activities. In 2016, a catastrophic flood disaster caused by sustained and heavy rainfall happened in the middle and lower Yangtze River. The flood led to the most serious economic and social loss since 1954, and strongly affected the central river bar. It is essential to continuously monitor the dynamics change of central bars because it can avoid frequent field measurements in central bars before and after the flood disaster and is helpful for flood warning. This paper focused on the dynamic change of central bars of Phoenix bar and Changsha bar in the Yangtze River in 2016. In this study, GF-1 (GaoFen-1) WFV(wide field view) data was employed owing to its high temporal frequency and high spatial resolution. A simple NDWI (Normalized Difference Water Index) method was utilized for river central bar mapping. Human-checking was then performed to ensure the mapping quality. The relationship between the area of central bars and the measured water level was estimated using four mathematical models. Furthermore, a risk assessment index was proposed to map the spatial pattern of inundation risk of central bars. The results indicate a good ability of the GF-1 WFV imagery with a 16-m spatial resolution to characterize the seasonal variation of central river bars and to capture the impact of a flood disaster on the area of central bars. This paper observed a significant negative but nonlinear relationship between the water level and the area of central bars, and found that the cubic function fits best among four models (R² = 0.9839, P < 0.000001, RMSE = 0.4395). The maximum of the inundated area of central bars appeared during the rainy season on July 8, 2016, and the minimum occurred during the dry season on December 28, 2016, which are consistent with the water level measured by the hydrological station. The results derived from GF-1 data could provide a useful reference for decision-making of real-time disaster early warning and post-disaster reconstruction.Keywords: central bars, dynamic change, water level, the Yangtze river
Procedia PDF Downloads 241188 Assessing Social Sustainability for Biofuels Supply Chains: The Case of Jet Biofuel in Brazil
Authors: Z. Wang, F. Pashaei Kamali, J. A. Posada Duque, P. Osseweijer
Abstract:
Globally, the aviation sector is seeking for sustainable solutions to comply with the pressure to reduce greenhouse gas emissions. Jet fuels derived from biomass are generally perceived as a sustainable alternative compared with their fossil counterparts. However, the establishment of jet biofuels supply chains will have impacts on environment, economy, and society. While existing studies predominantly evaluated environmental impacts and techno-economic feasibility of jet biofuels, very few studies took the social / socioeconomic aspect into consideration. Therefore, this study aims to provide a focused evaluation of social sustainability for aviation biofuels with a supply chain perspective. Three potential jet biofuel supply chains based on different feedstocks, i.e. sugarcane, eucalyptus, and macauba were analyzed in the context of Brazil. The assessment of social sustainability is performed with a process-based approach combined with input-output analysis. Over the supply chains, a set of social sustainability issues including employment, working condition (occupational accident and wage level), labour right, education, equity, social development (GDP and trade balance) and food security were evaluated in a (semi)quantitative manner. The selection of these social issues is based on two criteria: (1) the issues are highly relevant and important to jet biofuel production; (2) methodologies are available for assessing these issues. The results show that the three jet biofuel supply chains lead to a differentiated level of social effects. The sugarcane-based supply chain creates the highest number of jobs whereas the biggest contributor of GDP turns out to be the macauba-based supply chain. In comparison, the eucalyptus-based supply chain stands out regarding working condition. It is also worth noting that biojet fuel supply chain with high level of social benefits could result in high level of social concerns (such as occupational accident, violation of labour right and trade imbalance). Further research is suggested to investigate the possible interactions between different social issues. In addition, the exploration of a wider range of social effects is needed to expand the comprehension of social sustainability for biofuel supply chains.Keywords: biobased supply chain, jet biofuel, social assessment, social sustainability, socio-economic impacts
Procedia PDF Downloads 263187 Taxonomy of Araceous Plants on Limestone Mountains in Lop Buri and Saraburi Provinces, Thailand
Authors: Duangchai Sookchaloem, Sutida Maneeanakekul
Abstract:
Araceous plant or Araceae is a monocotyledon family having numerous potential useful plants. Two hundred and ten species of Araceae were reported in Thailand, of which 43 species were reported as threatened plants. Fifty percent of endemic status and rare status plants were recorded in limestone areas. Currently, these areas are seriously threatened by land-use changes. The study on taxonomy of Araceous plants was carried out in Lop Buri and Saraburi limestone mountains from February 2011 to May 2015. The purposes of this study were to study species diversity, taxonomic character and ecological habitat. 55 specimens collected from various limestone areas including Pra Phut Tabat National forest (Pra Phut Tabat Mountain, Khao Pra Phut Tabat Noi Mountains, Wat Thum Krabog Mountain), Tab Khwang and Muak Lek Natinal forest (Pha Lad mountain, and Muak Lek waterfall) in Saraburi province ,and Wang Plaeng Ta Muang and Lumnarai National forest (Wat Thum chang phuk mountain), Panead National forest (Wat Khao Samo Khon Mountain), Lan Ta Ridge National forest (Khao Wong Prachan mountain, Wat Pa Chumchon) in Lop Buri province. Twenty species of Araceous plants were identified using characteristics of underground stem, phyllotaxis and leaf blade, spathe and spadix. Species list are Aglaonema cochinchinense, A. simplex, Alocasia acuminata, Amorphophallus paeoniifolius, A. albispathus, A. saraburiensis, A. pseudoharmandii, Pycnospatha arietina, Hapaline kerri, Lasia spinosa, Pothos scandens, Typhonium laoticum, T. orbifolium, T. saraburiense, T. trilobatum, T. sp.1, T. sp. 2, Cryptocoryne crispatula var. balansae, Scindapsus sp., and Rhaphidophora peepla. Five species are new locality records. One species (Typhonium sp.1) is considered as a new species. Seven species were reported as threatened plants in Thailand Red Data Book. Taxonomic features were used for key to species constructions. Araceous specimens were found in mixed deciduous forests, dry evergreen forests with 50-470 m. elevation. New ecological habitat of Typhonium laoticum, T. orbifolium, and T. saraburiense were reported in this study.Keywords: ecology, limestone mountains, Lopburi and Saraburi provinces, species diversity, taxonomic character
Procedia PDF Downloads 239186 Experimenting with Clay 3D Printing Technology to Create an Undulating Facade
Authors: Naeimehsadat Hosseininam, Rui Wang, Dishita Shah
Abstract:
In recent years, new experimental approaches with the help of the new technology have bridged the gaps between the application of natural materials and creating unconventional forms. Clay has been one of the oldest building materials in all ancient civilizations. The availability and workability of clay have contributed to the widespread application of this material around the world. The aim of this experimental research is to apply the Clay 3D printing technology to create a load bearing and visually dynamic and undulating façade. Creation of different unique pieces is the most significant goal of this research which justifies the application of 3D printing technology instead of the conventional mass industrial production. This study provides an abbreviated overview of the similar cases which have used the Clay 3D printing to generate the corresponding prototypes. The study of these cases also helps in understanding the potential and flexibility of the material and 3D printing machine in developing different forms. In the next step, experimental research carried out by 3D printing of six various options which designed considering the properties of clay as well as the methodology of them being 3D printed. Here, the ratio of water to clay (W/C) has a significant role in the consistency of the material and the workability of the clay. Also, the size of the selected nozzle impacts the shape and the smoothness of the final surface. Moreover, the results of these experiments show the limitations of clay toward forming various slopes. The most notable consequence of having steep slopes in the prototype is an unpredicted collapse which is the result of internal tension in the material. From the six initial design ideas, the final prototype selected with the aim of creating a self-supported component with unique blocks that provides a possibility of installing the insulation system within the component. Apart from being an undulated façade, the presented prototype has the potential to be used as a fence and an interior partition (double-sided). The central shaft also provides a space to run services or insulation in different parts of the wall. In parallel to present the capability and potential of the clay 3D printing technology, this study illustrates the limitations of this system in some certain areas. There are inevitable parameters such as printing speed, temperature, drying speed that need to be considered while printing each piece. Clay 3D printing technology provides the opportunity to create variations and design parametric building components with the application of the most practiced material in the world.Keywords: clay 3D printing, material capability, undulating facade, load bearing facade
Procedia PDF Downloads 140185 The Morphological Changes of POV in Diabetic Patients and Its Correlation with Changes in Corneal Epithelium, Corneal Nerve, and the Fundus in Using Vivo Confocal Microscopy
Authors: Ji Jiazheng, Wang Jingrao, Jin Xin, Zhang Hong
Abstract:
Diabetes mellitus is a metabolic disease characterized by high blood sugar. A long-standing hyperglycemic state can lead to various tissue damage. Diabetic retinopathy is the most common and widely studied ocular complication and has become the leading cause of blindness in my country. At the same time, diabetes has profound clinically relevant effects on the cornea, leading to keratopathy and vision-threatening. The cornea is an avascular tissue and is sensitive to hyperglycemia, Keratopathy caused by diabetes is usually chronic, they are called diabetic keratopathy or diabetic neurotrophic keratopathy, leading to several diabetic corneal complications including delayed epithelial wound healing, recurrent erosions, neuropathy, loss of sensitivity. Corneal stem cell dysfunction in diabetic patients as an important influencing factor of diabetic keratopathy. The consequences of this condition are often underestimated. The limbus is located between the cornea and the sclera tissue. The limbal stroma consists of a series of radial elevations with fibrovascular centers known as palisades of Vogt (POV). Previous studies have shown that palisades of Vogt (POV), as the main site of limbal stem cells, plays an important role in the homeostasis of the corneal epithelium. Therefore, POV plays a vital role in the healing of corneal epithelial surgery and postoperative evaluation. IVCM can observe the condition of the corneal epithelium at the cellular level. It has profound significance and guidance for the evaluation of limbal and limbal stem cells. We have previously observed structural changes in POV in HSK and HZO patients on IVCM. At present, there have been reports involving limbal stem cell dysfunction in diabetic patients, but the specific pathogenesis is still unclear. However, there are no studies on POV morphological changes in patients with DM. Therefore, we performed statistics and compared the correlation between POV morphological changes and corneal epithelial basal cell density, corneal nerves, and length of disease in DM patients and normal humans using IVCM studies. At the same time, fundoscopy was used to observe the correlation between the thickness of RNFL and the thickness of GCC and POV in diabetic patients. And to observe the correlation between SVD, DVD and POV for research.Keywords: confocal microscopy, fundus, limbal stem cells, diabetes
Procedia PDF Downloads 81184 Software User Experience Enhancement through User-Centered Design and Co-design Approach
Authors: Shan Wang, Fahad Alhathal, Hari Subramanian
Abstract:
User-centered design skills play an important role in crafting a positive and intuitive user experience for software applications. Embracing a user-centric design approach involves understanding the needs, preferences, and behaviors of the end-users throughout the design process. This mindset not only enhances the usability of the software but also fosters a deeper connection between the digital product and its users. This paper encompasses a 6-month knowledge exchange collaboration project between an academic institution and an external industry in 2023 in the UK; it aims to improve the user experience of a digital platform utilized for a knowledge management tool, to understand users' preferences for features, identify sources of frustration, and pinpoint areas for enhancement. This research conducted one of the most effective methods to implement user-centered design through co-design workshops for testing user onboarding experiences that involve the active participation of users in the design process. More specifically, in January 2023, we organized eight co-design workshops with a diverse group of 11 individuals. Throughout these co-design workshops, we accumulated a total of 11 hours of qualitative data in both video and audio formats. Subsequently, we conducted an analysis of user journeys, identifying common issues and potential areas for improvement within three insights. This analysis was pivotal in guiding the knowledge management software in prioritizing feature enhancements and design improvements. Employing a user-centered design thinking process, we developed a series of graphic design solutions in collaboration with the software management tool company. These solutions were targeted at refining onboarding user experiences, workplace interfaces, and interactive design. Some of these design solutions were translated into tangible interfaces for the knowledge management tool. By actively involving users in the design process and valuing their input, developers can create products that are not only functional but also resonate with the end-users, ultimately leading to greater success in the competitive software landscape. In conclusion, this paper not only contributes insights into designing onboarding user experiences for software within a co-design approach but also presents key theories on leveraging the user-centered design process in software design to enhance overall user experiences.Keywords: user experiences design, user centered design, co-design approach, knowledge management tool
Procedia PDF Downloads 3183 Free-Standing Pd-Based Metallic Glass Membranes for MEMS Applications
Authors: Wei-Shan Wang, Klaus Vogel, Felix Gabler, Maik Wiemer, Thomas Gessner
Abstract:
Metallic glasses, which are free of grain boundaries, have superior properties including large elastic limits, high strength, and excellent wear and corrosion resistance. Therefore, bulk metallic glasses (BMG) and thin film metallic glasses (TFMG) have been widely developed and investigated. Among various kinds of metallic glasses, Pd-Cu-Si TFMG, which has lower elastic modulus and better resistance of oxidation and corrosions compared to Zr- and Fe-based TFMGs, can be a promising candidate for MEMS applications. However, the study of Pd-TFMG membrane is still limited. This paper presents free-standing Pd-based metallic glass membranes with large area fabricated on wafer level for the first time. Properties of Pd-Cu-Si thin film metallic glass (TFMG) with various deposition parameters are investigated first. When deposited at 25°C, compressive stress occurs in the Pd76Cu6Si18 thin film regardless of Ar pressure. When substrate temperature is increased to 275°C, the stress state changes from compressive to tensile. Thin film stresses are slightly decreased when Ar pressure is higher. To show the influence of temperature on Pd-TFMGs, thin films without and with post annealing below (275°C) and within (370°C) supercooled liquid region are investigated. Results of XRD and TEM analysis indicate that Pd-TFMGs remain amorphous structure with well-controlled parameters. After verification of amorphous structure of the Pd-TFMGs, free-standing Pd-Cu-Si membranes were fabricated by depositing Pd-Cu-Si thin films directly on 200nm-thick silicon nitride membranes, followed by post annealing and dry etching of silicon nitride layer. Post annealing before SiNx removal is used to further release internal stress of Pd-TFMGs. The edge length of the square membrane ranges from 5 to 8mm. The effect of post annealing on Pd-Cu-Si membranes are discussed as well. With annealing at 370°C for 5 min, Pd-MG membranes are fully distortion-free after removal of SiNx layer. Results show that, by introducing annealing process, the stress-relief, distortion-free Pd-TFMG membranes with large area can be a promising candidate for sensing applications such as pressure and gas sensors.Keywords: amorphous alloy, annealing, metallic glasses, TFMG membrane
Procedia PDF Downloads 350