Search results for: stability and performance
4049 Alignment between Understanding and Assessment Practice among Secondary School Teachers
Authors: Eftah Bte Moh, Hj Abdullah Izazol Binti Idris, Abd. Aziz Bin Abd. Shukor
Abstract:
This study aimed to identify the alignment of understanding and assessment practices among secondary school teachers. The study was carried out using quantitative descriptive study. The sample consisted of 164 teachers who taught Form 1 and 2 from 11 secondary schools in the district of North Kinta, Perak, Malaysia. Data were obtained from 164 respondents who answered Expectation Alignment Understanding and Practices of School Assessment (PEKDAPS) questionnaire. The data were analysed using SPSS 17.0 +. The Cronbach alpha value obtained through PEKDAPS questionnaire pilot study was 0.86. The results showed that teachers' performance in PEKDAPS based on the mean value was less than 3, which means that perfect alignment does not occur between the understanding and practices of school assessment. Two major PEKDAPS sub-constructs of articulation across grade and age and usability of the system were higher than the moderate alignment of the understanding and practices of school assessment (Min=2.0). The content was focused on PEKDAPs sub-constructs which showed lower than the moderate alignment of the understanding and practices of school assessment (Min=2.0). Another two PEKDAPS sub-constructs of transparency and fairness and the pedagogical implications showed moderate alignment (2.0). The implications of the study is that teachers need to fully understand the importance of alignment among components of assessment, learning and teaching and learning objectives as strategies to achieve quality assessment process.Keywords: school based assessment, alignment, understanding, assessment practices
Procedia PDF Downloads 4654048 Preparation and in vitro Bactericidal and Fungicidal Efficiency of NanoSilver/Methylcellulose Hydrogel
Authors: A. Panacek, M. Kilianova, R. Prucek, V. Husickova, R. Vecerova, M. Kolar, L. Kvitek, R. Zboril
Abstract:
In this work we describe the preparation of NanoSilver/methylcellulose hydrogel containing silver nanoparticles (NPs) for topical bactericidal applications. Highly concentrated dispersion of silver NPs as high as of 5g/L of silver with diameter of 10nm was prepared by reduction of AgNO3 via strong reducing agent NaBH4. Silver NPs were stabilized by addition of sodium polyacrylate in order to prevent their aggregation at such high concentration. This way synthesized silver NPs were subsequently incorporated into methylcellulose suspension at elevated temperature resulting in formation of NanoSilver/methylcellulose hydrogel when temperature cooled down to laboratory conditions. In vitro antibacterial activity assay proved high bactericidal and fungicidal efficiency of silver NPs alone in the form of dispersion as well as in the form of hydrogel against broad spectrum of bacteria and yeasts including highly multiresistant strains such as methicillin-resistant Staphylococcus aureus. A very low concentrations of silver as low as 0.84mg/L Ag in as-prepared dispersion gave antibacterial performance. NanoSilver/methylcellulose hydrogel showed antibacterial action at the lowest used silver concentration equal to 25mg/L. Such prepared NanoSilver/methylcellulose hydrogel represent promising topical antimicrobial formulation for treatment of burns and wounds.Keywords: antimicrobial, burn, hydrogel, silver NPs
Procedia PDF Downloads 4564047 A Novel Upregulated circ_0032746 on Sponging with MIR4270 Promotes the Proliferation and Migration of Esophageal Squamous Cell Carcinoma
Authors: Sachin Mulmi Shrestha, Xin Fang, Hui Ye, Lihua Ren, Qinghua Ji, Ruihua Shi
Abstract:
Background: Esophageal squamous cell carcinoma (ESCC) is a tumor arising from esophageal epithelial cells and is one of the major disease subtype in Asian countries, including China. Esophageal cancer is the 7th highest incidence based on the 2020 data of GLOBOCAN. The pathogenesis of cancer is still not well understood as many molecular and genetic basis of esophageal carcinogenesis has yet to be clearly elucidated. Circular RNAs are RNA molecules that are formed by back-splicing covalently joined 3′- and 5′-endsrather than canonical splicing, and recent data suggest circular RNAs could sponge miRNAs and are enriched with functional miRNA binding sites. Hence, we studied the mechanism of circular RNA, its biological function, and the relationship between microRNA in the carcinogenesis of ESCC. Methods: 4 pairs of normal and esophageal cancer tissues were collected in Zhongda hospital, affiliated to Southeast University, and high-throughput RNA sequencing was done. The result revealed that circ_0032746 was upregulated, and thus we selected circ_0032746 for further study. The backsplice junction of circRNA was validated by sanger sequence, and stability was determined by RNASE R assay. The binding site of circRNA and microRNA was predicted by circinteractome,mirandaand RNAhybrid database. Furthermore, circRNA was silenced by siRNA and then by lentivirus. The regulatory axis of circ0032746/miR4270 was validated by shRNA, mimic, and inhibitor transfection. Then, in vitro experiments were performed to assess the role of circ0032746 on proliferation (CCK-8 assay and colon formation assay), migration and invasion (Transewell assay), and apoptosis of ESCC. Results: The upregulated circ0032746 was validated in 9 pairs of tissues and 5 types of cell lines by qPCR, which showed high expression and was statistically significant (P<0.005) ). Upregulated circ0032746 was silenced by shRNA, which showed significant knockdown in KYSE 30 and TE-1 cell lines expression compared to control. Nuclear and cytoplasmic mRNA fraction experiment displayed the cytoplasmic location of circ0032746. The sponging of miR4270 was validated by co-transfection of sh-circ0032746 and mimic or inhibitor. Transfection with mimic showed the decreased expression of circ_0032746, whereas inhibitor inhibited the result. In vitro experiments showed that silencing of circ_0032746 inhibited the proliferation, migration, and invasion compared to the negative control group. The apoptosis was seen higher in a knockdown group than in the control group. Furthermore, 11 common mircoRNA target mRNAs were predicted by Targetscan, MirTarbase, and miRanda database, which may further play role in the pathogenesis. Conclusion: Our results showed that novel circ_0032746 is upregulated in ESCC and plays role in itsoncogenicity. Silencing of circ_0032746 inhibits the proliferation and migration of ESCC whereas increases the apoptosis of cancer cells. Hence, circ0032746 acts as an oncogene in ESCC by sponging with miR4270 and could be a potential biomarker in the diagnosis of ESCC in the future.Keywords: circRNA, esophageal squamous cell carcinoma, microRNA, upregulated
Procedia PDF Downloads 1174046 Building Information Modelling Implementation in the Lifecycle of Sustainable Buildings
Authors: Scarlet Alejandra Romano, Joni Kareco
Abstract:
The three pillars of sustainability (social, economic and environmental) are relevant concepts to the Architecture, Engineering, and Construction (AEC) industry because of the increase of international agreements and guidelines related to this topic during the last years. Considering these three pillars, the AEC industry faces important challenges, for instance, to decrease the carbon emissions (environmental challenge), design sustainable spaces for people (social challenge), and improve the technology of this field to reduce costs and environmental problems (economic and environmental challenge). One alternative to overcome these challenges is Building Information Modelling program (BIM) because according to several authors, this technology improves the performance of the sustainable buildings in all their lifecycle phases. The main objective of this paper is to explore and analyse the current advantages and disadvantages of the BIM implementation in the life-cycle of sustainable buildings considering the three pillars of sustainability as analysis parameters. The methodology established to achieve this objective is exploratory-descriptive with the literature review technique. The partial results illustrate that despite the BIM disadvantages and the lack of information about its social sustainability advantages, this software represents a significant opportunity to improve the three sustainable pillars of the sustainable buildings.Keywords: building information modelling, building lifecycle analysis, sustainability, sustainable buildings
Procedia PDF Downloads 1904045 A Cloud Computing System Using Virtual Hyperbolic Coordinates for Services Distribution
Authors: Telesphore Tiendrebeogo, Oumarou Sié
Abstract:
Cloud computing technologies have attracted considerable interest in recent years. Thus, these latters have become more important for many existing database applications. It provides a new mode of use and of offer of IT resources in general. Such resources can be used “on demand” by anybody who has access to the internet. Particularly, the Cloud platform provides an ease to use interface between providers and users, allow providers to develop and provide software and databases for users over locations. Currently, there are many Cloud platform providers support large scale database services. However, most of these only support simple keyword-based queries and can’t response complex query efficiently due to lack of efficient in multi-attribute index techniques. Existing Cloud platform providers seek to improve performance of indexing techniques for complex queries. In this paper, we define a new cloud computing architecture based on a Distributed Hash Table (DHT) and design a prototype system. Next, we perform and evaluate our cloud computing indexing structure based on a hyperbolic tree using virtual coordinates taken in the hyperbolic plane. We show through our experimental results that we compare with others clouds systems to show our solution ensures consistence and scalability for Cloud platform.Keywords: virtual coordinates, cloud, hyperbolic plane, storage, scalability, consistency
Procedia PDF Downloads 4294044 Speech Perception by Monolingual and Bilingual Dravidian Speakers under Adverse Listening Conditions
Authors: S. B. Rathna Kumar, Sale Kranthi, Sandya K. Varudhini
Abstract:
The precise perception of spoken language is influenced by several variables, including the listeners’ native language, distance between speaker and listener, reverberation and background noise. When noise is present in an acoustic environment, it masks the speech signal resulting in reduction in the redundancy of the acoustic and linguistic cues of speech. There is strong evidence that bilinguals face difficulty in speech perception for their second language compared with monolingual speakers under adverse listening conditions such as presence of background noise. This difficulty persists even for speakers who are highly proficient in their second language and is greater in those who have learned the second language later in life. The present study aimed to assess the performance of monolingual (Telugu speaking) and bilingual (Tamil as first language and Telugu as second language) speakers on Telugu speech perception task under quiet and noisy environments. The results indicated that both the groups performed similar in both quiet and noisy environments. The findings of the present study are not in accordance with the findings of previous studies which strongly report poorer speech perception in adverse listening conditions such as noise with bilingual speakers for their second language compared with monolinguals.Keywords: monolingual, bilingual, second language, speech perception, quiet, noise
Procedia PDF Downloads 3894043 Elaboration and Characterization of Self-Compacting Mortar Based Biopolymer
Authors: I. Djefour, M. Saidi, I. Tlemsani, S. Toubal
Abstract:
Lignin is a molecule derived from wood and also generated as waste from the paper industry. With a view to its valorization and protection of the environment, we are interested in its use as a superplasticizer-type adjuvant in mortars and concretes to improve their mechanical strengths. The additives of the concrete have a very strong influence on the properties of the fresh and / or hardened concrete. This study examines the development and use of industrial waste and lignin extracted from a renewable natural source (wood) in cementitious materials. The use of these resources is known at present as a definite resurgence of interest in the development of building materials. Physicomechanical characteristics of mortars are determined by optimization quantity of the natural superplasticizer. The results show that the mechanical strengths of mortars based on natural adjuvant have improved by 20% (64 MPa) for a W/C ratio = 0.4, and the amount of natural adjuvant of dry extract needed is 40 times smaller than commercial adjuvant. This study has a scientific impact (improving the performance of the mortar with an increase in compactness and reduction of the quantity of water), ecological use of the lignin waste generated by the paper industry) and economic reduction of the cost price necessary to elaboration of self-compacting mortars and concretes).Keywords: biopolymer (lignin), industrial waste, mechanical resistances, self compacting mortars (SCM)
Procedia PDF Downloads 1684042 Mechanical Behavior of Geosynthetics vs the Combining Effect of Aging, Temperature and Internal Structure
Authors: Jaime Carpio-García, Elena Blanco-Fernández, Jorge Rodríguez-Hernández, Daniel Castro-Fresno
Abstract:
Geosynthetic mechanical behavior vs temperature or vs aging has been widely studied independently during the last years, both in laboratory and in outdoor conditions. This paper studies this behavior deeper, considering that geosynthetics have to perform adequately at different outdoor temperatures once they have been subjected to a certain degree of aging, and also considering the different geosynthetic structures made of the same material. This combining effect has been not considered so far, and it is important to ensure the performance of geosynthetics, especially where high temperatures are expected. In order to fill this gap, six commercial geosynthetics with different internal structures made of polypropylene (PP), high density polyethylene (HDPE), bitumen and polyvinyl chloride (PVC), or even a combination of some of them have been mechanically tested at mild temperature (20ºC or 23ºC) and at warm temperature (45ºC) before and after specific exposition to air at standardized high temperature in order to simulate 25 years of aging due to oxidation. Besides, for 45ºC tests, an innovative heating system during test for high deformable specimens is proposed. The influence of the combining effect of aging, structure and temperature in the product behavior have been analyzed and discussed, concluding that internal structure is more influential than aging in the mechanical behavior of a geosynthetic versus temperature.Keywords: geosynthetics, mechanical behavior, temperature, aging, internal structure
Procedia PDF Downloads 754041 An Image Enhancement Method Based on Curvelet Transform for CBCT-Images
Authors: Shahriar Farzam, Maryam Rastgarpour
Abstract:
Image denoising plays extremely important role in digital image processing. Enhancement of clinical image research based on Curvelet has been developed rapidly in recent years. In this paper, we present a method for image contrast enhancement for cone beam CT (CBCT) images based on fast discrete curvelet transforms (FDCT) that work through Unequally Spaced Fast Fourier Transform (USFFT). These transforms return a table of Curvelet transform coefficients indexed by a scale parameter, an orientation and a spatial location. Accordingly, the coefficients obtained from FDCT-USFFT can be modified in order to enhance contrast in an image. Our proposed method first uses a two-dimensional mathematical transform, namely the FDCT through unequal-space fast Fourier transform on input image and then applies thresholding on coefficients of Curvelet to enhance the CBCT images. Consequently, applying unequal-space fast Fourier Transform leads to an accurate reconstruction of the image with high resolution. The experimental results indicate the performance of the proposed method is superior to the existing ones in terms of Peak Signal to Noise Ratio (PSNR) and Effective Measure of Enhancement (EME).Keywords: curvelet transform, CBCT, image enhancement, image denoising
Procedia PDF Downloads 3034040 Data-Driven Approach to Predict Inpatient's Estimated Discharge Date
Authors: Ayliana Dharmawan, Heng Yong Sheng, Zhang Xiaojin, Tan Thai Lian
Abstract:
To facilitate discharge planning, doctors are presently required to assign an Estimated Discharge Date (EDD) for each patient admitted to the hospital. This assignment of the EDD is largely based on the doctor’s judgment. This can be difficult for cases which are complex or relatively new to the doctor. It is hypothesized that a data-driven approach would be able to facilitate the doctors to make accurate estimations of the discharge date. Making use of routinely collected data on inpatient discharges between January 2013 and May 2016, a predictive model was developed using machine learning techniques to predict the Length of Stay (and hence the EDD) of inpatients, at the point of admission. The predictive performance of the model was compared to that of the clinicians using accuracy measures. Overall, the best performing model was found to be able to predict EDD with an accuracy improvement in Average Squared Error (ASE) by -38% as compared to the first EDD determined by the present method. It was found that important predictors of the EDD include the provisional diagnosis code, patient’s age, attending doctor at admission, medical specialty at admission, accommodation type, and the mean length of stay of the patient in the past year. The predictive model can be used as a tool to accurately predict the EDD.Keywords: inpatient, estimated discharge date, EDD, prediction, data-driven
Procedia PDF Downloads 1764039 Self Tuning Controller for Reducing Cycle to Cycle Variations in SI Engine
Authors: Alirıza Kaleli, M. Akif Ceviz, Erdoğan Güner, Köksal Erentürk
Abstract:
The cyclic variations in spark ignition engines occurring especially under specific engine operating conditions make the maximum pressure variable for successive in-cylinder pressure cycles. Minimization of cyclic variations has a great importance in effectively operating near to lean limit, or at low speed and load. The cyclic variations may reduce the power output of the engine, lead to operational instabilities, and result in undesirable engine vibrations and noise. In this study, spark timing is controlled in order to reduce the cyclic variations in spark ignition engines. Firstly, an ARMAX model has developed between spark timing and maximum pressure using system identification techniques. By using this model, the maximum pressure of the next cycle has been predicted. Then, self-tuning minimum variance controller has been designed to change the spark timing for consecutive cycles of the first cylinder of test engine to regulate the in-cylinder maximum pressure. The performance of the proposed controller is illustrated in real time and experimental results show that the controller has a reliable effect on cycle to cycle variations of maximum cylinder pressure when the engine works under low speed conditions.Keywords: cyclic variations, cylinder pressure, SI engines, self tuning controller
Procedia PDF Downloads 4834038 Effects and Mechanization of a High Gradient Magnetic Separation Process for Particulate and Microbe Removal from Ballast Water
Authors: Zhijun Ren, Zhang Lin, Zhao Ye, Zuo Xiangyu, Mei Dongxing
Abstract:
As a pretreatment process of ballast water treatment, the performance of high gradient magnetic separation (HGMS) technology for the removal of particulates and microorganisms was studied. The results showed that HGMS process could effectively remove suspended particles larger than 5 µm and had ability to resist impact load. Microorganism could also be effectively removed by HGMS process, and the removal effect increased with increasing magnetic field strength. The maximum removal rates for Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) were 4016.1% and 9675.3% higher, respectively, than without the magnetic field. In addition, the superoxide dismutase (SOD) activity of the microbes decreased by 32.2% when the magnetic field strength was 15.4 mT for 72 min. The microstructure of the stainless steel wool was investigated, and the results showed that particle removal by HGMS has common function by the magnetic force of the high-strength, high-gradient magnetic field on weakly magnetic particles in the water, and on the stainless steel wool.Keywords: HGMS, particulates, superoxide dismutase (SOD) activity, steel wool magnetic medium
Procedia PDF Downloads 4554037 Efficacy of a Wiener Filter Based Technique for Speech Enhancement in Hearing Aids
Authors: Ajish K. Abraham
Abstract:
Hearing aid is the most fundamental technology employed towards rehabilitation of persons with sensory neural hearing impairment. Hearing in noise is still a matter of major concern for many hearing aid users and thus continues to be a challenging issue for the hearing aid designers. Several techniques are being currently used to enhance the speech at the hearing aid output. Most of these techniques, when implemented, result in reduction of intelligibility of the speech signal. Thus the dissatisfaction of the hearing aid user towards comprehending the desired speech amidst noise is prevailing. Multichannel Wiener Filter is widely implemented in binaural hearing aid technology for noise reduction. In this study, Wiener filter based noise reduction approach is experimented for a single microphone based hearing aid set up. This method checks the status of the input speech signal in each frequency band and then selects the relevant noise reduction procedure. Results showed that the Wiener filter based algorithm is capable of enhancing speech even when the input acoustic signal has a very low Signal to Noise Ratio (SNR). Performance of the algorithm was compared with other similar algorithms on the basis of improvement in intelligibility and SNR of the output, at different SNR levels of the input speech. Wiener filter based algorithm provided significant improvement in SNR and intelligibility compared to other techniques.Keywords: hearing aid output speech, noise reduction, SNR improvement, Wiener filter, speech enhancement
Procedia PDF Downloads 2494036 Modeling and Energy Analysis of Limestone Decomposition with Microwave Heating
Authors: Sofia N. Gonçalves, Duarte M. S. Albuquerque, José C. F. Pereira
Abstract:
The energy transition is spurred by structural changes in energy demand, supply, and prices. Microwave technology was first proposed as a faster alternative for cooking food. It was found that food heated instantly when interacting with high-frequency electromagnetic waves. The dielectric properties account for a material’s ability to absorb electromagnetic energy and dissipate this energy in the form of heat. Many energy-intense industries could benefit from electromagnetic heating since many of the raw materials are dielectric at high temperatures. Limestone sedimentary rock is a dielectric material intensively used in the cement industry to produce unslaked lime. A numerical 3D model was implemented in COMSOL Multiphysics to study the limestone continuous processing under microwave heating. The model solves the two-way coupling between the Energy equation and Maxwell’s equations as well as the coupling between heat transfer and chemical interfaces. Complementary, a controller was implemented to optimize the overall heating efficiency and control the numerical model stability. This was done by continuously matching the cavity impedance and predicting the required energy for the system, avoiding energy inefficiencies. This controller was developed in MATLAB and successfully fulfilled all these goals. The limestone load influence on thermal decomposition and overall process efficiency was the main object of this study. The procedure considered the Verification and Validation of the chemical kinetics model separately from the coupled model. The chemical model was found to correctly describe the chosen kinetic equation, and the coupled model successfully solved the equations describing the numerical model. The interaction between flow of material and electric field Poynting vector revealed to influence limestone decomposition, as a result from the low dielectric properties of limestone. The numerical model considered this effect and took advantage from this interaction. The model was demonstrated to be highly unstable when solving non-linear temperature distributions. Limestone has a dielectric loss response that increases with temperature and has low thermal conductivity. For this reason, limestone is prone to produce thermal runaway under electromagnetic heating, as well as numerical model instabilities. Five different scenarios were tested by considering a material fill ratio of 30%, 50%, 65%, 80%, and 100%. Simulating the tube rotation for mixing enhancement was proven to be beneficial and crucial for all loads considered. When uniform temperature distribution is accomplished, the electromagnetic field and material interaction is facilitated. The results pointed out the inefficient development of the electric field within the bed for 30% fill ratio. The thermal efficiency showed the propensity to stabilize around 90%for loads higher than 50%. The process accomplished a maximum microwave efficiency of 75% for the 80% fill ratio, sustaining that the tube has an optimal fill of material. Electric field peak detachment was observed for the case with 100% fill ratio, justifying the lower efficiencies compared to 80%. Microwave technology has been demonstrated to be an important ally for the decarbonization of the cement industry.Keywords: CFD numerical simulations, efficiency optimization, electromagnetic heating, impedance matching, limestone continuous processing
Procedia PDF Downloads 1794035 Hybrid Algorithm for Non-Negative Matrix Factorization Based on Symmetric Kullback-Leibler Divergence for Signal Dependent Noise: A Case Study
Authors: Ana Serafimovic, Karthik Devarajan
Abstract:
Non-negative matrix factorization approximates a high dimensional non-negative matrix V as the product of two non-negative matrices, W and H, and allows only additive linear combinations of data, enabling it to learn parts with representations in reality. It has been successfully applied in the analysis and interpretation of high dimensional data arising in neuroscience, computational biology, and natural language processing, to name a few. The objective of this paper is to assess a hybrid algorithm for non-negative matrix factorization with multiplicative updates. The method aims to minimize the symmetric version of Kullback-Leibler divergence known as intrinsic information and assumes that the noise is signal-dependent and that it originates from an arbitrary distribution from the exponential family. It is a generalization of currently available algorithms for Gaussian, Poisson, gamma and inverse Gaussian noise. We demonstrate the potential usefulness of the new generalized algorithm by comparing its performance to the baseline methods which also aim to minimize symmetric divergence measures.Keywords: non-negative matrix factorization, dimension reduction, clustering, intrinsic information, symmetric information divergence, signal-dependent noise, exponential family, generalized Kullback-Leibler divergence, dual divergence
Procedia PDF Downloads 2484034 Data Science-Based Key Factor Analysis and Risk Prediction of Diabetic
Authors: Fei Gao, Rodolfo C. Raga Jr.
Abstract:
This research proposal will ascertain the major risk factors for diabetes and to design a predictive model for risk assessment. The project aims to improve diabetes early detection and management by utilizing data science techniques, which may improve patient outcomes and healthcare efficiency. The phase relation values of each attribute were used to analyze and choose the attributes that might influence the examiner's survival probability using Diabetes Health Indicators Dataset from Kaggle’s data as the research data. We compare and evaluate eight machine learning algorithms. Our investigation begins with comprehensive data preprocessing, including feature engineering and dimensionality reduction, aimed at enhancing data quality. The dataset, comprising health indicators and medical data, serves as a foundation for training and testing these algorithms. A rigorous cross-validation process is applied, and we assess their performance using five key metrics like accuracy, precision, recall, F1-score, and area under the receiver operating characteristic curve (AUC-ROC). After analyzing the data characteristics, investigate their impact on the likelihood of diabetes and develop corresponding risk indicators.Keywords: diabetes, risk factors, predictive model, risk assessment, data science techniques, early detection, data analysis, Kaggle
Procedia PDF Downloads 814033 Developing a Web-Based Workflow Management System in Cloud Computing Platforms
Authors: Wang Shuen-Tai, Lin Yu-Ching, Chang Hsi-Ya
Abstract:
Cloud computing is the innovative and leading information technology model for enabling convenient, on-demand network access to a shared pool of configurable computing resources that can be rapidly provisioned and released with minimal management effort. In this paper, we aim at the development of workflow management system for cloud computing platforms based on our previous research on the dynamic allocation of the cloud computing resources and its workflow process. We took advantage of the HTML 5 technology and developed web-based workflow interface. In order to enable the combination of many tasks running on the cloud platform in sequence, we designed a mechanism and developed an execution engine for workflow management on clouds. We also established a prediction model which was integrated with job queuing system to estimate the waiting time and cost of the individual tasks on different computing nodes, therefore helping users achieve maximum performance at lowest payment. This proposed effort has the potential to positively provide an efficient, resilience and elastic environment for cloud computing platform. This development also helps boost user productivity by promoting a flexible workflow interface that lets users design and control their tasks' flow from anywhere.Keywords: web-based, workflow, HTML5, Cloud Computing, Queuing System
Procedia PDF Downloads 3114032 The Impact of Democratic Leadership on Job Satisfaction Among Teachers in South Hebron Directorate Schools
Authors: Mohammad Mahmoud Rjoob
Abstract:
This study aimed to explore the impact of democratic leadership on job satisfaction among teachers in the South Hebron Directorate schools. The study was applied to a random sample representing the study population of teachers in the South Hebron Directorate of Education, with a sample size of 301 teachers from 12 schools. The researcher adopted the descriptive approach as it is the most suitable for the nature of this study, and a questionnaire was used as a tool for data collection and measuring various variables. The study recommended the importance of enhancing the concept of democratic leadership in schools to boost teachers' morale and improve the quality of the educational process. It also encouraged the adoption of democratic leadership styles by administrations, educational areas, and new principals due to their positive and effective impact on job performance. Additionally, the study suggested providing training courses for school principals and new teachers on how to apply the principles of democratic leadership that contribute to creating a positive educational environment and enhance the spirit of cooperation to achieve the school's goals. Finally, the study called for granting school principals more authority and powers to increase their ability to effectively deal with challenges and problems, which contributes to improving the educational process and enhances teachers' job satisfaction.Keywords: democratic leadership, job satisfaction, teachers, South Hebron Directorate Schools
Procedia PDF Downloads 184031 Continuous Dyeing of Graphene and Polyaniline on Textiles for Electromagnetic interference Shielding: An Application of Intelligent Fabrics
Authors: Mourad Makhlouf Sabrina Bouriche, Zoubir Benmaamar, Didier Villemin
Abstract:
Background: The increasing presence of electromagnetic interference (EMI) requires the development of effective protection solutions. Intelligent textiles offer a promising approach due to their wear ability and the possibility of integration into everyday clothing. In this study, the use of graphene and polyaniline for EMI shielding on cotton fabrics was examined. Methods: In this study, the continuous dyeing of recycled graphite-derived graphene and polyaniline was examined. Bottom-reforming technology was adopted to improve adhesion and achieve uniform distribution of conductive material on the fiber surface. The effect of material weight ratio on fabric performance and X-band EMI shielding effectiveness (SE) was evaluated. Significant Findings: The dyed cotton fabrics incorporating graphene, polyaniline, and their combination exhibited improved conductivity. Notably, these fabrics achieved EMI SE values ranging from 9 to 16 dB within the X-band frequency range (8-9 GHz). These findings demonstrate the potential of this approach for developing intelligent textiles with effective EMI shielding capabilities. Additionally, the utilization of recycled materials contributes to a more sustainable shielding solution.Keywords: Intelligent textiles, graphene, polyaniline, electromagnetic shielding, conductivity, recycling
Procedia PDF Downloads 514030 Reclamation of Molding Sand: A Chemical Approach to Recycle Waste Foundry Sand
Authors: Mohd Moiz Khan, S. M. Mahajani, G. N. Jadhav
Abstract:
Waste foundry sand (total clay content 15%) contains toxic heavy metals and particulate matter which make dumping of waste sand an environmental and health hazard. Disposal of waste foundry sand (WFS) remains one of the substantial challenges faced by Indian foundries nowadays. To cope up with this issue, the chemical method was used to reclaim WFS. A stirrer tank reactor was used for chemical reclamation. Experiments were performed to reduce the total clay content from 15% to as low as 0.9% in chemical reclamation. This method, although found to be effective for WFS reclamation, it may face a challenge due to the possibly high operating cost. Reclaimed sand was found to be satisfactory in terms of sand qualities such as total clay (0.9%), active clay (0.3%), acid demand value (ADV) (2.6%), loss on igniting (LOI) (3 %), grain fineness number (GFN) (56), and compressive strength (60 kPa). The experimental data generated on chemical reactor under different conditions is further used to optimize the design and operating parameters (rotation speed, sand to acidic solution ratio, acid concentration, temperature and time) for the best performance. The use of reclaimed sand within the foundry would improve the economics and efficiency of the process and reduce environmental concerns.Keywords: chemical reclamation, clay content, environmental concerns, recycle, waste foundry sand
Procedia PDF Downloads 1514029 Advances in Artificial intelligence Using Speech Recognition
Authors: Khaled M. Alhawiti
Abstract:
This research study aims to present a retrospective study about speech recognition systems and artificial intelligence. Speech recognition has become one of the widely used technologies, as it offers great opportunity to interact and communicate with automated machines. Precisely, it can be affirmed that speech recognition facilitates its users and helps them to perform their daily routine tasks, in a more convenient and effective manner. This research intends to present the illustration of recent technological advancements, which are associated with artificial intelligence. Recent researches have revealed the fact that speech recognition is found to be the utmost issue, which affects the decoding of speech. In order to overcome these issues, different statistical models were developed by the researchers. Some of the most prominent statistical models include acoustic model (AM), language model (LM), lexicon model, and hidden Markov models (HMM). The research will help in understanding all of these statistical models of speech recognition. Researchers have also formulated different decoding methods, which are being utilized for realistic decoding tasks and constrained artificial languages. These decoding methods include pattern recognition, acoustic phonetic, and artificial intelligence. It has been recognized that artificial intelligence is the most efficient and reliable methods, which are being used in speech recognition.Keywords: speech recognition, acoustic phonetic, artificial intelligence, hidden markov models (HMM), statistical models of speech recognition, human machine performance
Procedia PDF Downloads 4804028 Dual-Channel Multi-Band Spectral Subtraction Algorithm Dedicated to a Bilateral Cochlear Implant
Authors: Fathi Kallel, Ahmed Ben Hamida, Christian Berger-Vachon
Abstract:
In this paper, a Speech Enhancement Algorithm based on Multi-Band Spectral Subtraction (MBSS) principle is evaluated for Bilateral Cochlear Implant (BCI) users. Specifically, dual-channel noise power spectral estimation algorithm using Power Spectral Densities (PSD) and Cross Power Spectral Densities (CPSD) of the observed signals is studied. The enhanced speech signal is obtained using Dual-Channel Multi-Band Spectral Subtraction ‘DC-MBSS’ algorithm. For performance evaluation, objective speech assessment test relying on Perceptual Evaluation of Speech Quality (PESQ) score is performed to fix the optimal number of frequency bands needed in DC-MBSS algorithm. In order to evaluate the speech intelligibility, subjective listening tests are assessed with 3 deafened BCI patients. Experimental results obtained using French Lafon database corrupted by an additive babble noise at different Signal-to-Noise Ratios (SNR) showed that DC-MBSS algorithm improves speech understanding for single and multiple interfering noise sources.Keywords: speech enhancement, spectral substracion, noise estimation, cochlear impalnt
Procedia PDF Downloads 5534027 Assessment of Material Type, Diameter, Orientation and Closeness of Fibers in Vulcanized Reinforced Rubbers
Authors: Ali Osman Güney, Bahattin Kanber
Abstract:
In this work, the effect of material type, diameter, orientation and closeness of fibers on the general performance of reinforced vulcanized rubbers are investigated using finite element method with experimental verification. Various fiber materials such as hemp, nylon, polyester are used for different fiber diameters, orientations and closeness. 3D finite element models are developed by considering bonded contact elements between fiber and rubber sheet interfaces. The fibers are assumed as linear elastic, while vulcanized rubber is considered as hyper-elastic. After an experimental verification of finite element results, the developed models are analyzed under prescribed displacement that causes tension. The normal stresses in fibers and shear stresses between fibers and rubber sheet are investigated in all models. Large deformation of reinforced rubber sheet also represented with various fiber conditions under incremental loading. A general assessment is achieved about best fiber properties of reinforced rubber sheets for tension-load conditions.Keywords: reinforced vulcanized rubbers, fiber properties, out of plane loading, finite element method
Procedia PDF Downloads 3504026 Multi Tier Data Collection and Estimation, Utilizing Queue Model in Wireless Sensor Networks
Authors: Amirhossein Mohajerzadeh, Abolghasem Mohajerzadeh
Abstract:
In this paper, target parameter is estimated with desirable precision in hierarchical wireless sensor networks (WSN) while the proposed algorithm also tries to prolong network lifetime as much as possible, using efficient data collecting algorithm. Target parameter distribution function is considered unknown. Sensor nodes sense the environment and send the data to the base station called fusion center (FC) using hierarchical data collecting algorithm. FC builds underlying phenomena based on collected data. Considering the aggregation level, x, the goal is providing the essential infrastructure to find the best value for aggregation level in order to prolong network lifetime as much as possible, while desirable accuracy is guaranteed (required sample size is fully depended on desirable precision). First, the sample size calculation algorithm is discussed, second, the average queue length based on M/M[x]/1/K queue model is determined and it is used for energy consumption calculation. Nodes can decrease transmission cost by aggregating incoming data. Furthermore, the performance of the new algorithm is evaluated in terms of lifetime and estimation accuracy.Keywords: aggregation, estimation, queuing, wireless sensor network
Procedia PDF Downloads 1894025 Analysis of the Extreme Hydrometeorological Events in the Theorical Hydraulic Potential and Streamflow Forecast
Authors: Sara Patricia Ibarra-Zavaleta, Rabindranarth Romero-Lopez, Rosario Langrave, Annie Poulin, Gerald Corzo, Mathias Glaus, Ricardo Vega-Azamar, Norma Angelica Oropeza
Abstract:
The progressive change in climatic conditions worldwide has increased frequency and severity of extreme hydrometeorological events (EHE). Mexico is an example; this has been affected by the presence of EHE leaving economic, social and environmental losses. The objective of this research was to apply a Canadian distributed hydrological model (DHM) to tropical conditions and to evaluate its capacity to predict flows in a basin in the central Gulf of Mexico. In addition, the DHM (once calibrated and validated) was used to calculate the theoretical hydraulic power and the performance to predict streamflow before the presence of an EHE. The results of the DHM show that the goodness of fit indicators between the observed and simulated flows in the calibration process (NSE=0.83, RSR=0.021 and BIAS=-4.3) and validation: temporal was assessed at two points: point one (NSE=0.78, RSR=0.113 and BIAS=0.054) and point two (NSE=0.825, RSR=0.103 and BIAS=0.063) are satisfactory. The DHM showed its applicability in tropical environments and its ability to characterize the rainfall-runoff relationship in the study area. This work can serve as a tool for identifying vulnerabilities before floods and for the rational and sustainable management of water resources.Keywords: HYDROTEL, hydraulic power, extreme hydrometeorological events, streamflow
Procedia PDF Downloads 3454024 Identifying the Barriers Facing Chinese Small and Medium-Sized Enterprises and Evaluating the Effectiveness of Public Supports
Authors: A. Yongsheng Guo, B. Obedat. Abdulazeez, C. Xiaoxian Zhu
Abstract:
This study aimed to identify the barriers to the development of small and medium-sized enterprises (SMEs) in China and build a theoretical framework to evaluate the support provided by the authorities and institutions. A grounded theory approach was adopted to collect and analyze data. 32 interviews were conducted with SME managers, and open, axial and selective coding was utilized to develop themes. Based on institutional theory, grounded theory models were used to present findings. The findings showed that the main barriers in the business environment were defaulting on contracts, bureaucracy in procedures, lack of financial and legal support, limited intermediaries and channels, and poor quality of products and services. This study found that many programs were provided to support SMEs. A theoretical framework was developed to evaluate the performance of the programs from the managers’ perspective. The concepts of economy, efficiency and effectiveness were used to evaluate the perceived value of the programs. This study suggests that specialized programs are needed to suit sector-specific requirements, and creative packages are helpful in supporting SMEs' growth.Keywords: business support, public economics, public programme, SME
Procedia PDF Downloads 644023 Constructing a Physics Guided Machine Learning Neural Network to Predict Tonal Noise Emitted by a Propeller
Authors: Arthur D. Wiedemann, Christopher Fuller, Kyle A. Pascioni
Abstract:
With the introduction of electric motors, small unmanned aerial vehicle designers have to consider trade-offs between acoustic noise and thrust generated. Currently, there are few low-computational tools available for predicting acoustic noise emitted by a propeller into the far-field. Artificial neural networks offer a highly non-linear and adaptive model for predicting isolated and interactive tonal noise. But neural networks require large data sets, exceeding practical considerations in modeling experimental results. A methodology known as physics guided machine learning has been applied in this study to reduce the required data set to train the network. After building and evaluating several neural networks, the best model is investigated to determine how the network successfully predicts the acoustic waveform. Lastly, a post-network transfer function is developed to remove discontinuity from the predicted waveform. Overall, methodologies from physics guided machine learning show a notable improvement in prediction performance, but additional loss functions are necessary for constructing predictive networks on small datasets.Keywords: aeroacoustics, machine learning, propeller, rotor, neural network, physics guided machine learning
Procedia PDF Downloads 2344022 Readiness Assessment to Implement Net-Zero Energy Building Program of Government Buildings in the Philippines
Authors: Patrick T. Aquino, Jimwel B. Balunday, Cephas Olivier V. Cabatit, Mary Grace Q. Razonable
Abstract:
In 2023, the Philippine Department of Energy (PDOE) published the National Energy Efficiency and Conservation Plan (NEECP) and Roadmap 2023-2050 to be the basis of a comprehensive program for the efficient supply and economical use of energy. The building sector, as one of the most energy-intensive sectors, shall conform to the energy-conserving design to reduce the use of energy. The concept of Net-Zero Energy Building (NZEB), and its definitions promote to improve energy efficiency of the buildings. The PDOE partnered with Meralco Power Academy to survey and conduct focus group discussions to establish the readiness into NZE-aspiring buildings of government entities. This paper outlines important NZEB principles, best practices from other countries, issues and gaps relating to energy management program, and the recommendations on the development of a framework for NZEB under government building in the Philippines. Results revealed the limitation on specific data to establish a baseline building energy efficiency performance index and significant energy uses; the need to update the Guidelines for Energy Conservation Design of Buildings, including NZEB definition and requirements; appropriate enabling infrastructures and programs to transition government buildings into NZE-aspiring buildings to Nearly Zero Energy Buildings by 2050.Keywords: NZEB, energy efficiency, buildings, Philippines
Procedia PDF Downloads 964021 Identification System for Grading Banana in Food Processing Industry
Authors: Ebenezer O. Olaniyi, Oyebade K. Oyedotun, Khashman Adnan
Abstract:
In the food industry high quality production is required within a limited time to meet up with the demand in the society. In this research work, we have developed a model which can be used to replace the human operator due to their low output in production and slow in making decisions as a result of an individual differences in deciding the defective and healthy banana. This model can perform the vision attributes of human operators in deciding if the banana is defective or healthy for food production based. This research work is divided into two phase, the first phase is the image processing where several image processing techniques such as colour conversion, edge detection, thresholding and morphological operation were employed to extract features for training and testing the network in the second phase. These features extracted in the first phase were used in the second phase; the classification system phase where the multilayer perceptron using backpropagation neural network was employed to train the network. After the network has learned and converges, the network was tested with feedforward neural network to determine the performance of the network. From this experiment, a recognition rate of 97% was obtained and the time taken for this experiment was limited which makes the system accurate for use in the food industry.Keywords: banana, food processing, identification system, neural network
Procedia PDF Downloads 4744020 Ambiguity Resolution for Ground-based Pulse Doppler Radars Using Multiple Medium Pulse Repetition Frequency
Authors: Khue Nguyen Dinh, Loi Nguyen Van, Thanh Nguyen Nhu
Abstract:
In this paper, we propose an adaptive method to resolve ambiguities and a ghost target removal process to extract targets detected by a ground-based pulse-Doppler radar using medium pulse repetition frequency (PRF) waveforms. The ambiguity resolution method is an adaptive implementation of the coincidence algorithm, which is implemented on a two-dimensional (2D) range-velocity matrix to resolve range and velocity ambiguities simultaneously, with a proposed clustering filter to enhance the anti-error ability of the system. Here we consider the scenario of multiple target environments. The ghost target removal process, which is based on the power after Doppler processing, is proposed to mitigate ghosting detections to enhance the performance of ground-based radars using a short PRF schedule in multiple target environments. Simulation results on a ground-based pulsed Doppler radar model will be presented to show the effectiveness of the proposed approach.Keywords: ambiguity resolution, coincidence algorithm, medium PRF, ghosting removal
Procedia PDF Downloads 157