Search results for: cumulative normal distribution function
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11757

Search results for: cumulative normal distribution function

327 DNA Barcoding for Identification of Dengue Vectors from Assam and Arunachal Pradesh: North-Eastern States in India

Authors: Monika Soni, Shovonlal Bhowmick, Chandra Bhattacharya, Jitendra Sharma, Prafulla Dutta, Jagadish Mahanta

Abstract:

Aedes aegypti and Aedes albopictus are considered as two major vectors to transmit dengue virus. In North-east India, two states viz. Assam and Arunachal Pradesh are known to be high endemic zone for dengue and Chikungunya viral infection. The taxonomical classification of medically important vectors are important for mapping of actual evolutionary trends and epidemiological studies. However, misidentification of mosquito species in field-collected mosquito specimens could have a negative impact which may affect vector-borne disease control policy. DNA barcoding is a prominent method to record available species, differentiate from new addition and change of population structure. In this study, a combined approach of a morphological and molecular technique of DNA barcoding was adopted to explore sequence variation in mitochondrial cytochrome c oxidase subunit I (COI) gene within dengue vectors. The study has revealed the map distribution of the dengue vector from two states i.e. Assam and Arunachal Pradesh, India. Approximate five hundred mosquito specimens were collected from different parts of two states, and their morphological features were compared with the taxonomic keys. The analysis of detailed taxonomic study revealed identification of two species Aedes aegypti and Aedes albopictus. The species aegypti comprised of 66.6% of the specimen and represented as dominant dengue vector species. The sequences obtained through standard DNA barcoding protocol were compared with public databases, viz. GenBank and BOLD. The sequences of all Aedes albopictus have shown 100% similarity whereas sequence of Aedes aegypti has shown 99.77 - 100% similarity of COI gene with that of different geographically located same species based on BOLD database search. From dengue prevalent different geographical regions fifty-nine sequences were retrieved from NCBI and BOLD databases of the same and related taxa to determine the evolutionary distance model based on the phylogenetic analysis. Neighbor-Joining (NJ) and Maximum Likelihood (ML) phylogenetic tree was constructed in MEGA6.06 software with 1000 bootstrap replicates using Kimura-2-Parameter model. Data were analyzed for sequence divergence and found that intraspecific divergence ranged from 0.0 to 2.0% and interspecific divergence ranged from 11.0 to 12.0%. The transitional and transversional substitutions were tested individually. The sequences were deposited in NCBI: GenBank database. This observation claimed the first DNA barcoding analysis of Aedes mosquitoes from North-eastern states in India and also confirmed the range expansion of two important mosquito species. Overall, this study insight into the molecular ecology of the dengue vectors from North-eastern India which will enhance the understanding to improve the existing entomological surveillance and vector incrimination program.

Keywords: COI, dengue vectors, DNA barcoding, molecular identification, North-east India, phylogenetics

Procedia PDF Downloads 273
326 Intraspecific Biochemical Diversity of Dalmatian Pyrethrum Across the Different Bioclimatic Regions of Its Natural Distribution Area

Authors: Martina Grdiša, Filip Varga, Nina Jeran, Ante Turudić, Zlatko Šatović

Abstract:

Dalmatian pyrethrum (Tanacetum cinerariifolium (Trevir.) Sch. Bip.) is a plant species that occurs naturally in the eastern Mediterranean. It is of immense economic importance as it synthesizes and accumulates the phytochemical compound pyrethrin. Pyrethrin consists of several monoterpene esters (pyrethrin I and II, cinerin I and II and jasmolin I and II), which have insecticidal and repellent activity through their synergistic action. In this study, 15 natural Dalmatian pyrethrum populations were sampled along their natural range in Croatia, Bosnia and Herzegovina and Montenegro to characterize and compare their pyrethrin profiles and to define the bioclimatic factors associated with the accumulation of each pyrethrin compound. Pyrethrins were extracted from the dried flower heads of Dalmatian pyrethrum using ultrasound-assisted extraction and the amount of each compound was quantified using high-performance liquid chromatography coupled to DAD-UV /VIS. The biochemical data were subjected to analysis of variance, correlation analysis and multivariate analysis. Quantitative variability within and among populations was found, with population P15 Vranjske Njive, Podgorica having the significantly highest pyrethrin I content (66.47% of total pyrethrin content), while the highest levels of total pyrethrin were found in P14 Budva (1.27% of dry flower weight; DW), followed by P08 Korčula (1.15% DW). Based on the environmental conditions at the sampling sites of the populations, five bioclimatic groups were distinguished, referred to as A, B, C, D, and E, each with rare chemical profile. The first group (A) consisted of the northern Adriatic population P01 Vrbnik, Krk and the population P06 Sevid - the coastal population of the central Adriatic, and generally differed significantly from the other bioclimatic groups by higher average jasmolin II values (2.13% of total pyrethrin). The second group (B) consisted of two central Adriatic island populations (P02 Telašćica, Dugi otok and P03 Žman, Dugi otok), while the remaining central Adriatic island populations were grouped in bioclimatic group C, which was characterized by the significantly highest average pyrethrin II (48.52% of total pyrethrin) and cinerin II (5.31% DW) content. The South Adriatic inland populations P10 Srđ and P11 Trebinje (Bosnia and Herzegovina), and the populations from Montenegro (P12 Grahovo, P13 Lovćen, P14 Budva and P15 Vranjske Njive, Podgorica) formed bioclimatic group E. This bioclimatic group was characterized by the highest average values for pyrethrin I (53.07 % of total pyrethrin), total pyrethrin content (1.06 % DW) and the ratio of pyrethrin I and II (1.85). Slightly lower values (although not significant) for the latter traits were detected in bioclimatic group D (southern Adriatic island populations P07 Vis, P08 Korčula and P09 Mljet). A weak but significant correlation was found between the levels of some pyrethrin compounds and bioclimatic variables (e.g., BIO03 Isothermality and BIO04 Temperature Seasonality), which explains part of the variability observed in the populations studied. This suggests the interconnection between bioclimatic variables and biochemical profiles either through the selection of adapted genotypes or through the ability of species to alter the expression of biochemical traits in response to environmental changes.

Keywords: biopesticides, biochemical variability, pyrethrin, Tanacetum cinerariifolium

Procedia PDF Downloads 122
325 Reading and Writing Memories in Artificial and Human Reasoning

Authors: Ian O'Loughlin

Abstract:

Memory networks aim to integrate some of the recent successes in machine learning with a dynamic memory base that can be updated and deployed in artificial reasoning tasks. These models involve training networks to identify, update, and operate over stored elements in a large memory array in order, for example, to ably perform question and answer tasks parsing real-world and simulated discourses. This family of approaches still faces numerous challenges: the performance of these network models in simulated domains remains considerably better than in open, real-world domains, wide-context cues remain elusive in parsing words and sentences, and even moderately complex sentence structures remain problematic. This innovation, employing an array of stored and updatable ‘memory’ elements over which the system operates as it parses text input and develops responses to questions, is a compelling one for at least two reasons: first, it addresses one of the difficulties that standard machine learning techniques face, by providing a way to store a large bank of facts, offering a way forward for the kinds of long-term reasoning that, for example, recurrent neural networks trained on a corpus have difficulty performing. Second, the addition of a stored long-term memory component in artificial reasoning seems psychologically plausible; human reasoning appears replete with invocations of long-term memory, and the stored but dynamic elements in the arrays of memory networks are deeply reminiscent of the way that human memory is readily and often characterized. However, this apparent psychological plausibility is belied by a recent turn in the study of human memory in cognitive science. In recent years, the very notion that there is a stored element which enables remembering, however dynamic or reconstructive it may be, has come under deep suspicion. In the wake of constructive memory studies, amnesia and impairment studies, and studies of implicit memory—as well as following considerations from the cognitive neuroscience of memory and conceptual analyses from the philosophy of mind and cognitive science—researchers are now rejecting storage and retrieval, even in principle, and instead seeking and developing models of human memory wherein plasticity and dynamics are the rule rather than the exception. In these models, storage is entirely avoided by modeling memory using a recurrent neural network designed to fit a preconceived energy function that attains zero values only for desired memory patterns, so that these patterns are the sole stable equilibrium points in the attractor network. So although the array of long-term memory elements in memory networks seem psychologically appropriate for reasoning systems, they may actually be incurring difficulties that are theoretically analogous to those that older, storage-based models of human memory have demonstrated. The kind of emergent stability found in the attractor network models more closely fits our best understanding of human long-term memory than do the memory network arrays, despite appearances to the contrary.

Keywords: artificial reasoning, human memory, machine learning, neural networks

Procedia PDF Downloads 240
324 The Role of Two Macrophyte Species in Mineral Nutrient Cycling in Human-Impacted Water Reservoirs

Authors: Ludmila Polechonska, Agnieszka Klink

Abstract:

The biogeochemical studies of macrophytes shed light on elements bioavailability, transfer through the food webs and their possible effects on the biota, and provide a basis for their practical application in aquatic monitoring and remediation. Measuring the accumulation of elements in plants can provide time-integrated information about the presence of chemicals in aquatic ecosystems. The aim of the study was to determine and compare the contents of micro- and macroelements in two cosmopolitan macrophytes, submerged Ceratophyllum demersum (hornworth) and free-floating Hydrocharis morsus-ranae (European frog-bit), in order to assess their bioaccumulation potential, elements stock accumulated in each plant and their role in nutrients cycling in small water reservoirs. Sampling sites were designated in 25 oxbow lakes in urban areas in Lower Silesia (SW Poland). In each sampling site, fresh whole plants of C. demersum and H. morsus-ranae were collected from squares of 1x1 meters each where the species coexisted. European frog-bit was separated into leaves, stems and roots. For biomass measurement all plants growing on 1 square meter were collected, dried and weighed. At the same time, water samples were collected from each reservoir and their pH and EC were determined. Water samples were filtered and acidified and plant samples were digested in concentrated nitric acid. Next, the content of Ca, Cu, Fe, K, Mg, Mn, Ni and Zn was determined using atomic absorption method (AAS). Statistical analysis showed that C. demersum and organs of H. morsus-ranae differed significantly in respect of metals content (Kruskal-Wallis Anova, p<0.05). Contents of Cu, Mn, Ni and Zn were higher in hornwort, while European frog-bit contained more Ca, Fe, K, Mg. Bioaccumulation Factors (BCF=content in plant/concentration in water) showed similar pattern of metal bioaccumulation – microelements were more intensively accumulated by hornwort and macroelements by frog-bit. Based on BCF values both species may be positively evaluated as good accumulators of Cu, Fe, Mn, Ni and Zn. However, the distribution of metals in H. morsus-ranae was uneven – the majority of studied elements were retained in roots, which may indicate to existence of physiological barriers developed for dealing with toxicity. Some percent of Ca and K was actively transported to stems, but to leaves Mg only. Although the biomass of C. demersum was two times greater than biomass of H. morsus-ranae, the element off-take was greater only for Cu, Mn, Ni and Zn. Nevertheless, it can be stated that despite a relatively small biomass, compared to other macrophytes, both species may have an influence on the removal of trace elements from aquatic ecosystems and, as they serve as food for some animals, also on the incorporation of toxic elements into food chains. There was a significant positive correlation between content of Mn and Fe in water and roots of H. morus-ranae (R=0.51 and R=0.60, respectively) as well as between Cu concentration in water and in C. demersum (R=0.41) (Spearman rank correlation, p<0.05). High bioaccumulation rates and correlation between plants and water elements concentrations point to their possible use as passive biomonitors of aquatic pollution.

Keywords: aquatic plants, bioaccumulation, biomonitoring, macroelements, phytoremediation, trace metals

Procedia PDF Downloads 157
323 Improvement of Greenhouse Gases Bio-Fixation by Microalgae Using a “Plasmon-Enhanced Photobioreactor”

Authors: Francisco Pereira, António Augusto Vicente, Filipe Vaz, Joel Borges, Pedro Geada

Abstract:

Light is a growth-limiting factor in microalgae cultivation, where factors like spectral components, intensity, and duration, often characterized by its wavelength, are well-reported to have a substantial impact on cell growth rates and, consequently, photosynthetic performance and mitigation of CO2, one of the most significant greenhouse gases (GHGs). Photobioreactors (PBRs) are commonly used to grow microalgae under controlled conditions, but they often fail to provide an even light distribution to the cultures. For this reason, there is a pressing need for innovations aiming at enhancing the efficient utilization of light. So, one potential approach to address this issue is by implementing plasmonic films, such as the localized surface plasmon resonance (LSPR). LSPR is an optical phenomenon connected to the interaction of light with metallic nanostructures. LSPR excitation is characterized by the oscillation of unbound conduction electrons of the nanoparticles coupled with the electromagnetic field from incident light. As a result of this excitation, highly energetic electrons and a strong electromagnetic field are generated. These effects lead to an amplification of light scattering, absorption, and extinction of specific wavelengths, contingent on the nature of the employed nanoparticle. Thus, microalgae might benefit from this biotechnology as it enables the selective filtration of inhibitory wavelengths and harnesses the electromagnetic fields produced, which could lead to enhancements in both biomass and metabolite productivity. This study aimed at implementing and evaluating a “plasmon-enhanced PBR”. The goal was to utilize LSPR thin films to enhance the growth and CO2 bio-fixation rate of Chlorella vulgaris. The internal/external walls of the PBRs were coated with a TiO2 matrix containing different nanoparticles (Au, Ag, and Au-Ag) in order to evaluate the impact of this approach on microalgae’s performance. Plasmonic films with distinct compositions resulted in different Chlorella vulgaris growth, ranging from 4.85 to 6.13 g.L-1. The highest cell concentrations were obtained with the metallic Ag films, demonstrating a 14% increase compared to the control condition. Moreover, it appeared to be no differences in growth between PBRs with inner and outer wall coatings. In terms of CO2 bio-fixation, distinct rates were obtained depending on the coating applied, ranging from 0.42 to 0.53 gCO2L-1d-1. Ag coating was demonstrated to be the most effective condition for carbon fixation by C. vulgaris. The impact of LSPR films on the biochemical characteristics of biomass (e.g., proteins, lipids, pigments) was analysed as well. Interestingly, Au coating yielded the most significant enhancements in protein content and total pigments, with increments of 15 % and 173 %, respectively, when compared to the PBR without any coating (control condition). Overall, the incorporation of plasmonic films in PBRs seems to have the potential to improve the performance and efficiency of microalgae cultivation, thereby representing an interesting approach to increase both biomass production and GHGs bio-mitigation.

Keywords: CO₂ bio-fixation, plasmonic effect, photobioreactor, photosynthetic microalgae

Procedia PDF Downloads 52
322 Effect of Toxic Metals Exposure on Rat Behavior and Brain Morphology: Arsenic, Manganese

Authors: Tamar Bikashvili, Tamar Lordkipanidze, Ilia Lazrishvili

Abstract:

Heavy metals remain one of serious environmental problems due to their toxic effects. The effect of arsenic and manganese compounds on rat behavior and neuromorphology was studied. Wistar rats were assigned to four groups: rats in control group were given regular water, while rats in other groups drank water with final manganese concentration of 10 mg/L (group A), 20 mg/L (group B) and final arsenic concentration 68 mg/L (group C), respectively, for a month. To study exploratory and anxiety behavior and also to evaluate aggressive performance in “home cage” rats were tested in “Open Field” and to estimate learning and memory status multi-branched maze was used. Statistically significant increase of motor and oriental-searching activity in experimental groups was revealed by an open field test, which was expressed in increase of number of lines crossed, rearing and hole reflexes. Obtained results indicated the suppression of fear in rats exposed to manganese. Specifically, this was estimated by the frequency of getting to the central part of the open field. Experiments revealed that 30-day exposure to 10 mg/ml manganese did not stimulate aggressive behavior in rats, while exposure to the higher dose (20 mg/ml), 37% of initially non-aggressive animals manifested aggressive behavior. Furthermore, 25% of rats were extremely aggressive. Obtained data support the hypothesis that excess manganese in the body is one of the immediate causes of enhancement of interspecific predatory aggressive and violent behavior in rats. It was also discovered that manganese intoxication produces non-reversible severe learning disability and insignificant, reversible memory disturbances. Studies of rodents exposed to arsenic also revealed changes in the learning process. As it is known, the distribution of metal ions differs in various brain regions. The principle manganese accumulation was observed in the hippocampus and in the neocortex, while arsenic was predominantly accumulated in nucleus accumbens, striatum, and cortex. These brain regions play an important role in the regulation of emotional state and motor activity. Histopathological analyzes of brain sections illustrated two morphologically distinct altered phenotypes of neurons: (1) shrunk cells with indications of apoptosis - nucleus and cytoplasm were very difficult to be distinguished, the integrity of neuronal cytoplasm was not disturbed; and (2) swollen cells - with indications of necrosis. Pyknotic nucleus, plasma membrane disruption and cytoplasmic vacuoles were observed in swollen neurons and they were surrounded by activated gliocytes. It’s worth to mention that in the cortex the majority of damaged neurons were apoptotic while in subcortical nuclei –neurons were mainly necrotic. Ultrastructural analyses demonstrated that all cell types in the cortex and the nucleus caudatus represent destructed mitochondria, widened neurons’ vacuolar system profiles, increased number of lysosomes and degeneration of axonal endings.

Keywords: arsenic, manganese, behavior, learning, neuron

Procedia PDF Downloads 333
321 Multiparticulate SR Formulation of Dexketoprofen Trometamol by Wurster Coating Technique

Authors: Bhupendra G. Prajapati, Alpesh R. Patel

Abstract:

The aim of this research work is to develop sustained release multi-particulates dosage form of Dexketoprofen trometamol, which is the pharmacologically active isomer of ketoprofen. The objective is to utilization of active enantiomer with minimal dose and administration frequency, extended release multi-particulates dosage form development for better patience compliance was explored. Drug loaded and sustained release coated pellets were prepared by fluidized bed coating principle by wurster coater. Microcrystalline cellulose as core pellets, povidone as binder and talc as anti-tacking agents were selected during drug loading while Kollicoat SR 30D as sustained release polymer, triethyl citrate as plasticizer and micronized talc as an anti-adherent were used in sustained release coating. Binder optimization trial in drug loading showed that there was increase in process efficiency with increase in the binder concentration. 5 and 7.5%w/w concentration of Povidone K30 with respect to drug amount gave more than 90% process efficiency while higher amount of rejects (agglomerates) were observed for drug layering trial batch taken with 7.5% binder. So for drug loading, optimum Povidone concentration was selected as 5% of drug substance quantity since this trial had good process feasibility and good adhesion of the drug onto the MCC pellets. 2% w/w concentration of talc with respect to total drug layering solid mass shows better anti-tacking property to remove unnecessary static charge as well as agglomeration generation during spraying process. Optimized drug loaded pellets were coated for sustained release coating from 16 to 28% w/w coating to get desired drug release profile and results suggested that 22% w/w coating weight gain is necessary to get the required drug release profile. Three critical process parameters of Wurster coating for sustained release were further statistically optimized for desired quality target product profile attributes like agglomerates formation, process efficiency, and drug release profile using central composite design (CCD) by Minitab software. Results show that derived design space consisting 1.0 to 1.2 bar atomization air pressure, 7.8 to 10.0 gm/min spray rate and 29-34°C product bed temperature gave pre-defined drug product quality attributes. Scanning Image microscopy study results were also dictate that optimized batch pellets had very narrow particle size distribution and smooth surface which were ideal properties for reproducible drug release profile. The study also focused on optimized dexketoprofen trometamol pellets formulation retain its quality attributes while administering with common vehicle, a liquid (water) or semisolid food (apple sauce). Conclusion: Sustained release multi-particulates were successfully developed for dexketoprofen trometamol which may be useful to improve acceptability and palatability of a dosage form for better patient compliance.

Keywords: dexketoprofen trometamol, pellets, fluid bed technology, central composite design

Procedia PDF Downloads 112
320 The Use of Social Media Sarcasm as a Response to Media-Coverage of Iran’s Unprecedented Attack on Israel

Authors: Afif J Arabi

Abstract:

On April 15, 2024, Iran announced its unprecedented military attack by sending waves of more than 300 drones and ballistic missiles toward Israel. The Attack lasted approximately five hours and was a widely covered, distributed, and followed media event. Iran’s military action against Israel was a long-awaited action across the Middle East since the early days of the October 7th war on Gaza and after a long history of verbal threats. While people in many Arab countries stayed up past midnight in anticipation of watching the disastrous results of this unprecedented attack, voices on traditional and social media alike started to question the timed public announcement of the attack, which gave Israel at least a two-hour notice to prepare its defenses. When live news coverage started showing that nearly all the drones and missiles were intercepted by Israel – with help from the U.S. and other countries – and no deaths were reported, the social media response to this media event turned toward sarcasm, mockery, irony, and humor. Social media users posted sarcastic pictures, jokes, and comments mocking the Iranian offensive. This research examines this unique media event and the sarcastic response it generated on social media. The study aims to investigate the causes leading to media sarcasm in militarized political conflict, the social function of such generated sarcasm, and the role of social media as a platform for consuming frustration, dissatisfaction, and outrage passively through various media products. The study compares the serious traditional media coverage of the event with the humorous social media response among Arab countries. The research uses an eclectic theoretical approach using framing theory as a paradigm for understanding and investigating communication social functionalism theory in media studies to examine sarcasm. Social functionalism theory is a sociological perspective that views society as a complex system whose parts work together to promote solidarity and stability. In the context of media and sarcasm, this theory would suggest that sarcasm serves specific functions within society, such as reinforcing social norms, providing a means for social critique, or functioning as a safety valve for expressing social tension.; and a qualitative analysis of specific examples including responses of SM commentators to such manifestations of political criticism. The preliminary findings of this study point to a heightened dramatization of the televised event and a widespread belief that this attack was a staged show incongruent with Iran’s official enmity and death threats toward Israel. The social media sarcasm reinforces Arab’s view of Iran and Israel as mutual threats. This belief stems from the complex dynamics, historical context, and regional conflict surrounding these three nations: Iran, Israel, and Arabs.

Keywords: social functionalism, social media sarcasm, Television news framing, live militarized conflict coverage, iran, israel, communication theory

Procedia PDF Downloads 10
319 Immersive and Non-Immersive Virtual Reality Applied to the Cervical Spine Assessment

Authors: Pawel Kiper, Alfonc Baba, Mahmoud Alhelou, Giorgia Pregnolato, Michela Agostini, Andrea Turolla

Abstract:

Impairment of cervical spine mobility is often related to pain triggered by musculoskeletal disorders or direct traumatic injuries of the spine. To date, these disorders are assessed with goniometers and inclinometers, which are the most popular devices used in clinical settings. Nevertheless, these technologies usually allow measurement of no more than two-dimensional range of motion (ROM) quotes in static conditions. Conversely, the wide use of motion tracking systems able to measure 3 to 6 degrees of freedom dynamically, while performing standard ROM assessment, are limited due to technical complexities in preparing the setup and high costs. Thus, motion tracking systems are primarily used in research. These systems are an integral part of virtual reality (VR) technologies, which can be used for measuring spine mobility. To our knowledge, the accuracy of VR measure has not yet been studied within virtual environments. Thus, the aim of this study was to test the reliability of a protocol for the assessment of sensorimotor function of the cervical spine in a population of healthy subjects and to compare whether using immersive or non-immersive VR for visualization affects the performance. Both VR assessments consisted of the same five exercises and random sequence determined which of the environments (i.e. immersive or non-immersive) was used as first assessment. Subjects were asked to perform head rotation (right and left), flexion, extension and lateral flexion (right and left side bending). Each movement was executed five times. Moreover, the participants were invited to perform head reaching movements i.e. head movements toward 8 targets placed along a circular perimeter each 45°, visualized one-by-one in random order. Finally, head repositioning movement was obtained by head movement toward the same 8 targets as for reaching and following reposition to the start point. Thus, each participant performed 46 tasks during assessment. Main measures were: ROM of rotation, flexion, extension, lateral flexion and complete kinematics of the cervical spine (i.e. number of completed targets, time of execution (seconds), spatial length (cm), angle distance (°), jerk). Thirty-five healthy participants (i.e. 14 males and 21 females, mean age 28.4±6.47) were recruited for the cervical spine assessment with immersive and non-immersive VR environments. Comparison analysis demonstrated that: head right rotation (p=0.027), extension (p=0.047), flexion (p=0.000), time (p=0.001), spatial length (p=0.004), jerk target (p=0.032), trajectory repositioning (p=0.003), and jerk target repositioning (p=0.007) were significantly better in immersive than non-immersive VR. A regression model showed that assessment in immersive VR was influenced by height, trajectory repositioning (p<0.05), and handedness (p<0.05), whereas in non-immersive VR performance was influenced by height, jerk target (p=0.002), head extension, jerk target repositioning (p=0.002), and by age, head flex/ext, trajectory repositioning, and weight (p=0.040). The results of this study showed higher accuracy of cervical spine assessment when executed in immersive VR. The assessment of ROM and kinematics of the cervical spine can be affected by independent and dependent variables in both immersive and non-immersive VR settings.

Keywords: virtual reality, cervical spine, motion analysis, range of motion, measurement validity

Procedia PDF Downloads 136
318 Multiscale Modelization of Multilayered Bi-Dimensional Soils

Authors: I. Hosni, L. Bennaceur Farah, N. Saber, R Bennaceur

Abstract:

Soil moisture content is a key variable in many environmental sciences. Even though it represents a small proportion of the liquid freshwater on Earth, it modulates interactions between the land surface and the atmosphere, thereby influencing climate and weather. Accurate modeling of the above processes depends on the ability to provide a proper spatial characterization of soil moisture. The measurement of soil moisture content allows assessment of soil water resources in the field of hydrology and agronomy. The second parameter in interaction with the radar signal is the geometric structure of the soil. Most traditional electromagnetic models consider natural surfaces as single scale zero mean stationary Gaussian random processes. Roughness behavior is characterized by statistical parameters like the Root Mean Square (RMS) height and the correlation length. Then, the main problem is that the agreement between experimental measurements and theoretical values is usually poor due to the large variability of the correlation function, and as a consequence, backscattering models have often failed to predict correctly backscattering. In this study, surfaces are considered as band-limited fractal random processes corresponding to a superposition of a finite number of one-dimensional Gaussian process each one having a spatial scale. Multiscale roughness is characterized by two parameters, the first one is proportional to the RMS height, and the other one is related to the fractal dimension. Soil moisture is related to the complex dielectric constant. This multiscale description has been adapted to two-dimensional profiles using the bi-dimensional wavelet transform and the Mallat algorithm to describe more correctly natural surfaces. We characterize the soil surfaces and sub-surfaces by a three layers geo-electrical model. The upper layer is described by its dielectric constant, thickness, a multiscale bi-dimensional surface roughness model by using the wavelet transform and the Mallat algorithm, and volume scattering parameters. The lower layer is divided into three fictive layers separated by an assumed plane interface. These three layers were modeled by an effective medium characterized by an apparent effective dielectric constant taking into account the presence of air pockets in the soil. We have adopted the 2D multiscale three layers small perturbations model including, firstly air pockets in the soil sub-structure, and then a vegetable canopy in the soil surface structure, that is to simulate the radar backscattering. A sensitivity analysis of backscattering coefficient dependence on multiscale roughness and new soil moisture has been performed. Later, we proposed to change the dielectric constant of the multilayer medium because it takes into account the different moisture values of each layer in the soil. A sensitivity analysis of the backscattering coefficient, including the air pockets in the volume structure with respect to the multiscale roughness parameters and the apparent dielectric constant, was carried out. Finally, we proposed to study the behavior of the backscattering coefficient of the radar on a soil having a vegetable layer in its surface structure.

Keywords: multiscale, bidimensional, wavelets, backscattering, multilayer, SPM, air pockets

Procedia PDF Downloads 102
317 A Geographic Information System Mapping Method for Creating Improved Satellite Solar Radiation Dataset Over Qatar

Authors: Sachin Jain, Daniel Perez-Astudillo, Dunia A. Bachour, Antonio P. Sanfilippo

Abstract:

The future of solar energy in Qatar is evolving steadily. Hence, high-quality spatial solar radiation data is of the uttermost requirement for any planning and commissioning of solar technology. Generally, two types of solar radiation data are available: satellite data and ground observations. Satellite solar radiation data is developed by the physical and statistical model. Ground data is collected by solar radiation measurement stations. The ground data is of high quality. However, they are limited to distributed point locations with the high cost of installation and maintenance for the ground stations. On the other hand, satellite solar radiation data is continuous and available throughout geographical locations, but they are relatively less accurate than ground data. To utilize the advantage of both data, a product has been developed here which provides spatial continuity and higher accuracy than any of the data alone. The popular satellite databases: National Solar radiation Data Base, NSRDB (PSM V3 model, spatial resolution: 4 km) is chosen here for merging with ground-measured solar radiation measurement in Qatar. The spatial distribution of ground solar radiation measurement stations is comprehensive in Qatar, with a network of 13 ground stations. The monthly average of the daily total Global Horizontal Irradiation (GHI) component from ground and satellite data is used for error analysis. The normalized root means square error (NRMSE) values of 3.31%, 6.53%, and 6.63% for October, November, and December 2019 were observed respectively when comparing in-situ and NSRDB data. The method is based on the Empirical Bayesian Kriging Regression Prediction model available in ArcGIS, ESRI. The workflow of the algorithm is based on the combination of regression and kriging methods. A regression model (OLS, ordinary least square) is fitted between the ground and NSBRD data points. A semi-variogram is fitted into the experimental semi-variogram obtained from the residuals. The kriging residuals obtained after fitting the semi-variogram model were added to NSRBD data predicted values obtained from the regression model to obtain the final predicted values. The NRMSE values obtained after merging are respectively 1.84%, 1.28%, and 1.81% for October, November, and December 2019. One more explanatory variable, that is the ground elevation, has been incorporated in the regression and kriging methods to reduce the error and to provide higher spatial resolution (30 m). The final GHI maps have been created after merging, and NRMSE values of 1.24%, 1.28%, and 1.28% have been observed for October, November, and December 2019, respectively. The proposed merging method has proven as a highly accurate method. An additional method is also proposed here to generate calibrated maps by using regression and kriging model and further to use the calibrated model to generate solar radiation maps from the explanatory variable only when not enough historical ground data is available for long-term analysis. The NRMSE values obtained after the comparison of the calibrated maps with ground data are 5.60% and 5.31% for November and December 2019 month respectively.

Keywords: global horizontal irradiation, GIS, empirical bayesian kriging regression prediction, NSRDB

Procedia PDF Downloads 66
316 Review of Carbon Materials: Application in Alternative Energy Sources and Catalysis

Authors: Marita Pigłowska, Beata Kurc, Maciej Galiński

Abstract:

The application of carbon materials in the branches of the electrochemical industry shows an increasing tendency each year due to the many interesting properties they possess. These are, among others, a well-developed specific surface, porosity, high sorption capacity, good adsorption properties, low bulk density, electrical conductivity and chemical resistance. All these properties allow for their effective use, among others in supercapacitors, which can store electric charges of the order of 100 F due to carbon electrodes constituting the capacitor plates. Coals (including expanded graphite, carbon black, graphite carbon fibers, activated carbon) are commonly used in electrochemical methods of removing oil derivatives from water after tanker disasters, e.g. phenols and their derivatives by their electrochemical anodic oxidation. Phenol can occupy practically the entire surface of carbon material and leave the water clean of hydrophobic impurities. Regeneration of such electrodes is also not complicated, it is carried out by electrochemical methods consisting in unblocking the pores and reducing resistances, and thus their reactivation for subsequent adsorption processes. Graphite is commonly used as an anode material in lithium-ion cells, while due to the limited capacity it offers (372 mAh g-1), new solutions are sought that meet both capacitive, efficiency and economic criteria. Increasingly, biodegradable materials, green materials, biomass, waste (including agricultural waste) are used in order to reuse them and reduce greenhouse effects and, above all, to meet the biodegradability criterion necessary for the production of lithium-ion cells as chemical power sources. The most common of these materials are cellulose, starch, wheat, rice, and corn waste, e.g. from agricultural, paper and pharmaceutical production. Such products are subjected to appropriate treatments depending on the desired application (including chemical, thermal, electrochemical). Starch is a biodegradable polysaccharide that consists of polymeric units such as amylose and amylopectin that build an ordered (linear) and amorphous (branched) structure of the polymer. Carbon is also used as a catalyst. Elemental carbon has become available in many nano-structured forms representing the hybridization combinations found in the primary carbon allotropes, and the materials can be enriched with a large number of surface functional groups. There are many examples of catalytic applications of coal in the literature, but the development of this field has been hampered by the lack of a conceptual approach combining structure and function and a lack of understanding of material synthesis. In the context of catalytic applications, the integrity of carbon environmental management properties and parameters such as metal conductivity range and bond sequence management should be characterized. Such data, along with surface and textured information, can form the basis for the provision of network support services.

Keywords: carbon materials, catalysis, BET, capacitors, lithium ion cell

Procedia PDF Downloads 143
315 Destruction of History and the Syrian Conflict: Upholding the Cultural Integrity of Dura Europos

Authors: Justine A. Lloyd

Abstract:

Since the onset of the Syrian Civil War in 2011, the ancient city of Dura-Europos has faced widespread destruction and looting. The site is one of many places in the country the terrorist group ISIS has specifically targeted, allegedly due to its particular representations of Syrian history and culture. However, looted art and artifacts are the extremist group’s second largest source of income, only after oil. The protection of this site is important to both academics and the millions who have called Syria a home, as it aids in the nation’s sense of identity, reveals developments in the arts, and contributes to humanity’s collective history. At a time when Syria’s culture is being flattened, this sense of cultural expression is especially important to maintain. Creating an awareness of the magnitude of the issue at hand begins with an examination of the rich history of the ancient fortress city. Located on the western bank of the Euphrates River, Dura-Europos contains artifacts dating back to the Hellenistic, Parthian, and Roman periods. Though a great deal of the art and artifacts have remained safe in institutions such as the National Museum of Damascus and the Yale University Art Gallery, hundreds of looting pits and use of heavy machinery on the site has severely set back the investigative progress made by archaeologists over the last century, as well as the prospect of future excavation. Further research draws on the current destruction of the site by both ISIS and opportunists involved with the black market. Because Dura-Europos is located in a war stricken region, the acquisition of data and possibility of immediate action is particularly challenging. Resources gained from local reports, in addition to technology such as satellite imagery, however, have provided a firm starting point for the evaluation of the state of the site. The Syrian Ministry of Culture, UNESCO, and numerous Syrian and global organizations provide insight into the historic city’s past, present issues, and future plans to ensure that the cultural integrity of the site is upheld. Though over seventy percent of Dura-Europos has been completely decimated, this research challenges the notion that physically destroyed sites are lost forever. This paper assesses preventative measures that can take place to ensure the preservation of the site’s art and architecture, including examining possible solutions to the damage, such as digital reconstruction, replication, and distribution of information through exhibitions and other forms of publically accessible information. In order to investigate any possible retribution, research also includes the necessary information pertaining the global laws and regulations dealing with cultural heritage, as it directly affects the ways in which this situation can be dealt with. With the countless experts and citizens dedicated to the importance of cultural heritage, the prospect of honoring and valuing elements of Dura-Europos is possible—whether physically preserved or otherwise.

Keywords: antiquities law, archaeological sites, restitution, Syrian Civil War

Procedia PDF Downloads 143
314 Changes in Physicochemical Characteristics of a Serpentine Soil and in Root Architecture of a Hyperaccumulating Plant Cropped with a Legume

Authors: Ramez F. Saad, Ahmad Kobaissi, Bernard Amiaud, Julien Ruelle, Emile Benizri

Abstract:

Agromining is a new technology that establishes agricultural systems on ultramafic soils in order to produce valuable metal compounds such as nickel (Ni), with the final aim of restoring a soil's agricultural functions. But ultramafic soils are characterized by low fertility levels and this can limit yields of hyperaccumulators and metal phytoextraction. The objectives of the present work were to test if the association of a hyperaccumulating plant (Alyssum murale) and a Fabaceae (Vicia sativa var. Prontivesa) could induce changes in physicochemical characteristics of a serpentine soil and in root architecture of a hyperaccumulating plant then lead to efficient agromining practices through soil quality improvement. Based on standard agricultural systems, consisting in the association of legumes and another crop such as wheat or rape, a three-month rhizobox experiment was carried out to study the effect of the co-cropping (Co) or rotation (Ro) of a hyperaccumulating plant (Alyssum murale) with a legume (Vicia sativa) and incorporating legume biomass to soil, in comparison with mineral fertilization (FMo), on the structure and physicochemical properties of an ultramafic soil and on root architecture. All parameters measured (biomass, C and N contents, and taken-up Ni) on Alyssum murale conducted in co-cropping system showed the highest values followed by the mineral fertilization and rotation (Co > FMo > Ro), except for root nickel yield for which rotation was better than the mineral fertilization (Ro > FMo). The rhizosphere soil of Alyssum murale in co-cropping had larger soil particles size and better aggregates stability than other treatments. Using geostatistics, co-cropped Alyssum murale showed a greater root surface area spatial distribution. Moreover, co-cropping and rotation-induced lower soil DTPA-extractable nickel concentrations than other treatments, but higher pH values. Alyssum murale co-cropped with a legume showed a higher biomass production, improved soil physical characteristics and enhanced nickel phytoextraction. This study showed that the introduction of a legume into Ni agromining systems could improve yields of dry biomass of the hyperaccumulating plant used and consequently, the yields of Ni. Our strategy can decrease the need to apply fertilizers and thus minimizes the risk of nitrogen leaching and underground water pollution. Co-cropping of Alyssum murale with the legume showed a clear tendency to increase nickel phytoextraction and plant biomass in comparison to rotation treatment and fertilized mono-culture. In addition, co-cropping improved soil physical characteristics and soil structure through larger and more stabilized aggregates. It is, therefore, reasonable to conclude that the use of legumes in Ni-agromining systems could be a good strategy to reduce chemical inputs and to restore soil agricultural functions. Improving the agromining system by the replacement of inorganic fertilizers could simultaneously be a safe way of rehabilitating degraded soils and a method to restore soil quality and functions leading to the recovery of ecosystem services.

Keywords: plant association, legumes, hyperaccumulating plants, ultramafic soil physicochemical properties

Procedia PDF Downloads 145
313 Polycyclic Aromatic Hydrocarbons: Pollution and Ecological Risk Assessment in Surface Soil of the Tezpur Town, on the North Bank of the Brahmaputra River, Assam, India

Authors: Kali Prasad Sarma, Nibedita Baul, Jinu Deka

Abstract:

In the present study, pollution level of polycyclic aromatic hydrocarbon (PAH) in surface soil of historic Tezpur town located in the north bank of the River Brahmaputra were evaluated. In order to determine the seasonal distribution and concentration level of 16 USEPA priority PAHs surface soil samples were collected from 12 different sampling sites with various land use type. The total concentrations of 16 PAHs (∑16 PAHs) varied from 242.68µgkg-1to 7901.89µgkg-1. Concentration of total probable carcinogenic PAH ranged between 7.285µgkg-1 and 479.184 µgkg-1 in different seasons. However, the concentration of BaP, the most carcinogenic PAH, was found in the range of BDL to 50.01 µgkg-1. The composition profiles of PAHs in 3 different seasons were characterized by following two different types of ring: (1) 4-ring PAHs, contributed to highest percentage of total PAHs (43.75%) (2) while in pre- and post- monsoon season 3- ring compounds dominated the PAH profile, contributing 65.58% and 74.41% respectively. A high PAHs concentration with significant seasonality and high abundance of LMWPAHs was observed in Tezpur town. Soil PAHs toxicity was evaluated taking toxic equivalency factors (TEFs), which quantify the carcinogenic potential of other PAHs relative to BaP and estimate benzo[a]pyrene-equivalent concentration (BaPeq). The calculated BaPeq value signifies considerable risk to contact with soil PAHs. We applied cluster analysis and principal component analysis (PCA) with multivariate linear regression (MLR) to apportion sources of polycyclic aromatic hydrocarbons (PAHs) in surface soil of Tezpur town, based on the measured PAH concentrations. The results indicate that petrogenic and pyrogenic sources are the important sources of PAHs. A combination of chemometric and molecular indices were used to identify the sources of PAHs, which could be attributed to vehicle emissions, a mixed source input, natural gas combustion, wood or biomass burning and coal combustion. Source apportionment using absolute principle component scores–multiple linear regression showed that the main sources of PAHs are 22.3% mix sources comprising of diesel and biomass combustion and petroleum spill,13.55% from vehicle emission, 9.15% from diesel and natural gas burning, 38.05% from wood and biomass burning and 16.95% contribute coal combustion. Pyrogenic input was found to dominate source of PAHs origin with more contribution from vehicular exhaust. PAHs have often been found to co-emit with other environmental pollutants like heavy metals due to similar source of origin. A positive correlation was observed between PAH with Cr and Pb (r2 = 0.54 and 0.55 respectively) in monsoon season and PAH with Cd and Pb (r2 = 0.54 and 0.61 respectively) indicating their common source. Strong correlation was observed between PAH and OC during pre- and post- monsoon (r2=0.46 and r2=0.65 respectively) whereas during monsoon season no significant correlation was observed (r2=0.24).

Keywords: polycyclic aromatic hydrocarbon, Tezpur town, chemometric analysis, ecological risk assessment, pollution

Procedia PDF Downloads 190
312 Effects of Temperature and Mechanical Abrasion on Microplastics

Authors: N. Singh, G. K. Darbha

Abstract:

Since the last decade, a wave of research has begun to study the prevalence and impact of ever-increasing plastic pollution in the environment. The wide application and ubiquitous distribution of plastic have become a global concern due to its persistent nature. The disposal of plastics has emerged as one of the major challenges for waste management landfills. Microplastics (MPs) have found its existence in almost every environment, from the high altitude mountain lake to the deep sea sediments, polar icebergs, coral reefs, estuaries, beaches, and river, etc. Microplastics are fragments of plastics with size less than 5 mm. Microplastics can be classified as primary microplastics and secondary microplastics. Primary microplastics includes purposefully introduced microplastics into the end products for consumers (microbeads used in facial cleansers, personal care product, etc.), pellets (used in manufacturing industries) or fibres (from textile industries) which finally enters into the environment. Secondary microplastics are formed by disintegration of larger fragments under the exposure of sunlight, mechanical abrasive forces by rain, waves, wind and/or water. A number of factors affect the quantity of microplastic present in freshwater environments. In addition to physical forces, human population density proximal to the water body, proximity to urban centres, water residence time, and size of the water body also affects plastic properties. With time, other complex processes in nature such as physical, chemical and biological break down plastics by interfering with its structural integrity. Several studies demonstrate that microplastics found in wastewater sludge being used as manure for agricultural fields, thus having the tendency to alter the soil environment condition influencing the microbial population as well. Inadequate data are available on the fate and transport of microplastics under varying environmental conditions that are required to supplement important information for further research. In addition, microplastics have the tendency to absorb heavy metals and hydrophobic organic contaminants such as PAHs and PCBs from its surroundings and thus acting as carriers for these contaminants in the environment system. In this study, three kinds of microplastics (polyethylene, polypropylene and expanded polystyrene) of different densities were chosen. Plastic samples were placed in sand with different aqueous media (distilled water, surface water, groundwater and marine water). It was incubated at varying temperatures (25, 35 and 40 °C) and agitation levels (rpm). The results show that the number of plastic fragments enhanced with increase in temperature and agitation speed. Moreover, the rate of disintegration of expanded polystyrene is high compared to other plastics. These results demonstrate that temperature, salinity, and mechanical abrasion plays a major role in degradation of plastics. Since weathered microplastics are more harmful as compared to the virgin microplastics, long-term studies involving other environmental factors are needed to have a better understanding of degradation of plastics.

Keywords: environmental contamination, fragmentation, microplastics, temperature, weathering

Procedia PDF Downloads 137
311 Bio-Functionalized Silk Nanofibers for Peripheral Nerve Regeneration

Authors: Kayla Belanger, Pascale Vigneron, Guy Schlatter, Bernard Devauchelle, Christophe Egles

Abstract:

A severe injury to a peripheral nerve leads to its degeneration and the loss of sensory and motor function. To this day, there still lacks a more effective alternative to the autograft which has long been considered the gold standard for nerve repair. In order to overcome the numerous drawbacks of the autograft, tissue engineered biomaterials may be effective alternatives. Silk fibroin is a favorable biomaterial due to its many advantageous properties such as its biocompatibility, its biodegradability, and its robust mechanical properties. In this study, bio-mimicking multi-channeled nerve guidance conduits made of aligned nanofibers achieved by electrospinning were functionalized with signaling biomolecules and were tested in vitro and in vivo for nerve regeneration support. Silk fibroin (SF) extracted directly from silkworm cocoons was put in solution at a concentration of 10wt%. Poly(ethylene oxide) (PEO) was added to the resulting SF solution to increase solution viscosity and the following three electrospinning solutions were made: (1) SF/PEO solution, (2) SF/PEO solution with nerve growth factor and ciliary neurotrophic factor, and (3) SF/PEO solution with nerve growth factor and neurotrophin-3. Each of these solutions was electrospun into a multi-layer architecture to obtain mechanically optimized aligned nanofibrous mats. For in vitro studies, aligned fibers were treated to induce β-sheet formation and thoroughly rinsed to eliminate presence of PEO. Each material was tested using rat embryo neuron cultures to evaluate neurite extension and the interaction with bio-functionalized or non-functionalized aligned fibers. For in vivo studies, the mats were rolled into 5mm long multi-, micro-channeled conduits then treated and thoroughly rinsed. The conduits were each subsequently implanted between a severed rat sciatic nerve. The effectiveness of nerve repair over a period of 8 months was extensively evaluated by cross-referencing electrophysiological, histological, and movement analysis results to comprehensively evaluate the progression of nerve repair. In vitro results show a more favorable interaction between growing neurons and bio-functionalized silk fibers compared to pure silk fibers. Neurites can also be seen having extended unidirectionally along the alignment of the nanofibers which confirms a guidance factor for the electrospun material. The in vivo study has produced positive results for the regeneration of the sciatic nerve over the length of the study, showing contrasts between the bio-functionalized material and the non-functionalized material along with comparisons to the experimental control. Nerve regeneration has been evaluated not only by histological analysis, but also by electrophysiological assessment and motion analysis of two separate natural movements. By studying these three components in parallel, the most comprehensive evaluation of nerve repair for the conduit designs can be made which can, therefore, more accurately depict their overall effectiveness. This work was supported by La Région Picardie and FEDER.

Keywords: electrospinning, nerve guidance conduit, peripheral nerve regeneration, silk fibroin

Procedia PDF Downloads 222
310 Machine Learning Analysis of Eating Disorders Risk, Physical Activity and Psychological Factors in Adolescents: A Community Sample Study

Authors: Marc Toutain, Pascale Leconte, Antoine Gauthier

Abstract:

Introduction: Eating Disorders (ED), such as anorexia, bulimia, and binge eating, are psychiatric illnesses that mostly affect young people. The main symptoms concern eating (restriction, excessive food intake) and weight control behaviors (laxatives, vomiting). Psychological comorbidities (depression, executive function disorders, etc.) and problematic behaviors toward physical activity (PA) are commonly associated with ED. Acquaintances on ED risk factors are still lacking, and more community sample studies are needed to improve prevention and early detection. To our knowledge, studies are needed to specifically investigate the link between ED risk level, PA, and psychological risk factors in a community sample of adolescents. The aim of this study is to assess the relation between ED risk level, exercise (type, frequency, and motivations for engaging in exercise), and psychological factors based on the Jacobi risk factors model. We suppose that a high risk of ED will be associated with the practice of high caloric cost PA, motivations oriented to weight and shape control, and psychological disturbances. Method: An online survey destined for students has been sent to several middle schools and colleges in northwest France. This survey combined several questionnaires, the Eating Attitude Test-26 assessing ED risk; the Exercise Motivation Inventory–2 assessing motivations toward PA; the Hospital Anxiety and Depression Scale assessing anxiety and depression, the Contour Drawing Rating Scale; and the Body Esteem Scale assessing body dissatisfaction, Rosenberg Self-esteem Scale assessing self-esteem, the Exercise Dependence Scale-Revised assessing PA dependence, the Multidimensional Assessment of Interoceptive Awareness assessing interoceptive awareness and the Frost Multidimensional Perfectionism Scale assessing perfectionism. Machine learning analysis will be performed in order to constitute groups with a tree-based model clustering method, extract risk profile(s) with a bootstrap method comparison, and predict ED risk with a prediction method based on a decision tree-based model. Expected results: 1044 complete records have already been collected, and the survey will be closed at the end of May 2022. Records will be analyzed with a clustering method and a bootstrap method in order to reveal risk profile(s). Furthermore, a predictive tree decision method will be done to extract an accurate predictive model of ED risk. This analysis will confirm typical main risk factors and will give more data on presumed strong risk factors such as exercise motivations and interoceptive deficit. Furthermore, it will enlighten particular risk profiles with a strong level of proof and greatly contribute to improving the early detection of ED and contribute to a better understanding of ED risk factors.

Keywords: eating disorders, risk factors, physical activity, machine learning

Procedia PDF Downloads 63
309 The Development of Home-Based Long Term Care Model among Thai Elderly Dependent

Authors: N. Uaphongsathorn, C. Worawong, S. Thaewpia

Abstract:

Background and significance: The population is aging in Thai society, the elderly dependent is at great risk of various functional, psychological, and socio-economic problems as well as less access to health care. They may require long term care at home to maximize their functional abilities and activities of daily living and to improve their quality of life during their own age. Therefore, there is a need to develop a home-based long term care to meet the long term care needs of elders dependent. Methods: The research purpose was to develop long term care model among the elderly dependent in Chaiyaphum province in Northeast region of Thailand. Action Research which is composing of planning, action, observation, and reflection phases was used. Research was carried out for 12 months in all sub-districts of 6 districts in Chaiyaphum province. Participants (N = 1,010) participating in the processes of model development were comprised of 3 groups: a) a total of 110 health care professionals, b) a total of 600 health volunteers and family caregivers and c) a total of 300 the elderly dependent with chronically medical illnesses or disabilities. Descriptive statistics and content analysis were used to analyze data. Findings: Results have shown that the most common health problems among elders dependent with physical disabilities to function independently were cardiovascular disease, dementia, and traffic injuries. The development of home-based long term care model among elders dependent in Chaiyaphum province was composed of six key steps. They are: a) initiating policies supporting formal and informal caregivers for the elder dependent in all sub-districts, b) building network and multidisciplinary team, c) developing 3-day care manager training program and 3-day care provider training program d) training case managers and care providers for the elderly dependent through team and action learning, e) assessing, planning and providing care based on care individual’s needs of the elderly dependent, and f) sharing experiences for good practice and innovation for long term care at homes in district urban and rural areas. Among all care managers and care providers, the satisfaction level for training programs was high with a mean score of 3.98 out of 5. The elders dependent and family caregivers addressed that long term care at home could contribute to improving life’s daily activities, family relationship, health status, and quality of life. Family caregivers and volunteers have feeling a sense of personal satisfaction and experiencing providing meaningful care and support for elders dependent. Conclusion: In conclusion, a home-based long term care is important to Thai elders dependent. Care managers and care providers play a large role and responsibility to provide appropriate care to meet the elders’ needs in both urban and rural areas in Thai society. Further research could be rigorously studied with a larger group of populations in similar socio-economic and cultural contexts.

Keywords: elderly people, care manager, care provider, long term care

Procedia PDF Downloads 280
308 Destructive and Nondestructive Characterization of Advanced High Strength Steels DP1000/1200

Authors: Carla M. Machado, André A. Silva, Armando Bastos, Telmo G. Santos, J. Pamies Teixeira

Abstract:

Advanced high-strength steels (AHSS) are increasingly being used in automotive components. The use of AHSS sheets plays an important role in reducing weight, as well as increasing the resistance to impact in vehicle components. However, the large-scale use of these sheets becomes more difficult due to the limitations during the forming process. Such limitations are due to the elastically driven change of shape of a metal sheet during unloading and following forming, known as the springback effect. As the magnitude of the springback tends to increase with the strength of the material, it is among the most worrisome problems in the use of AHSS steels. The prediction of strain hardening, especially under non-proportional loading conditions, is very limited due to the lack of constitutive models and mainly due to very limited experimental tests. It is very clear from the literature that in experimental terms there is not much work to evaluate deformation behavior under real conditions, which implies a very limited and scarce development of mathematical models for these conditions. The Bauschinger effect is also fundamental to the difference between kinematic and isotropic hardening models used to predict springback in sheet metal forming. It is of major importance to deepen the phenomenological knowledge of the mechanical and microstructural behavior of the materials, in order to be able to reproduce with high fidelity the behavior of extension of the materials by means of computational simulation. For this, a multi phenomenological analysis and characterization are necessary to understand the various aspects involved in plastic deformation, namely the stress-strain relations and also the variations of electrical conductivity and magnetic permeability associated with the metallurgical changes due to plastic deformation. Aiming a complete mechanical-microstructural characterization, uniaxial tensile tests involving successive cycles of loading and unloading were performed, as well as biaxial tests such as the Erichsen test. Also, nondestructive evaluation comprising eddy currents to verify microstructural changes due to plastic deformation and ultrasonic tests to evaluate the local variations of thickness were made. The material parameters for the stable yield function and the monotonic strain hardening were obtained using uniaxial tension tests in different material directions and balanced biaxial tests. Both the decrease of the modulus of elasticity and Bauschinger effect were determined through the load-unload tensile tests. By means of the eddy currents tests, it was possible to verify changes in the magnetic permeability of the material according to the different plastically deformed areas. The ultrasonic tests were an important aid to quantify the local plastic extension. With these data, it is possible to parameterize the different models of kinematic hardening to better approximate the results obtained by simulation with the experimental results, which are fundamental for the springback prediction of the stamped parts.

Keywords: advanced high strength steel, Bauschinger effect, sheet metal forming, springback

Procedia PDF Downloads 208
307 Sex Differences in Age-Related AMPK-Sirt1 Axis Alteration in Human Heart

Authors: Maria Luisa Barcena De Arellano, Sofya Pozdniakova, Pavelas Karkacas, Anja Kuhl, Istvan Baczko, Yury Ladilov, Vera Regitz-Zagrosek

Abstract:

Introduction: Aging is associated with deterioration of the physiological function, leading to systemic inflammation and mitochondrial dysfunction that promote the development of cardiovascular diseases. Sex differences in aging-related cardiovascular diseases have been postulated. However, their precise mechanisms remain unclear. In the current study, we aimed to investigate the sex difference in the age-related alteration in Sirt1-AMPK signaling and its relation to the mitochondrial biogenesis and inflammation. Methods: Male and female human non-disease lateral left ventricular wall tissue (young (17–40 years; n= 7 male and 7 female) and old (50–68 years; n= 9 male and 8 female)) were used. qRT-PCR, western blot and immunohistochemistry assays were performed for expression analyses of Sirt1, AMPK, pAMPK, ac-Ku70, TFAM, PGC-1α, Sirt3, SOD2 and catalase. CD68 was used as a marker for macrophages and the ratio of IL-12:IL10 (pro-inflammatory phenotype (high IL-12/low IL-10) and anti-inflammatory phenotype (low IL-12/high IL-10) was used to examine the inflammatory stage in the heart. Results: Sirt1 expression was significantly higher in young females compared to young males, whereas in aged hearts Sirt1 expression was significantly downregulated in females, but not in males. In line with the Sirt1 downregulation in aged females, acetylation of nuclear Ku70, a direct target of Sirt1, in aged female hearts was significantly elevated. The activity of AMPK was significantly decreased in aged individuals, however no sex differences in the AMPK expression or activity were found in young or old individuals. The expression of mitochondrial proteins TOM40, SOD2 and Sirt3 was significantly higher in young females compared to young males, while in aged female hearts SOD2 and TOM40 were downregulated. In addition, the expression of catalase, a key cytosolic and mitochondrial anti-oxidative enzyme was significantly higher in young females and this female sex benefit was lost in aged hearts. In addition, the number of cardiac macrophages was significantly increased in old female, but not in male hearts. Consistently, the pro-inflammatory shift in old females was further confirmed by differences in the IL12/IL10 ratio in young female cardiac tissue in a favour of the anti-inflammatory mediator IL-10 (ratio 1:4) compared to young males (ratio 1:1). The anti-inflammatory environment in the heart was lost in aged females (ratio 1:1). Conclusion: Aging leads to the significant downregulation of Sirt1 expression and elevated acetylation of Ku70 in female, but not in male hearts. Furthermore, a beneficial upregulation of mitochondrial and anti-oxidative proteins in young females is lost with aging. Moreover, the malfunctions in the expression of Sirt1 and mitochondrial proteins in aged female hearts is accompanied by a significant pro-inflammatory shift. The study provides a molecular basis for the increased incidence of cardiovascular diseases in old women.

Keywords: inflammation, mitochondrial dysfunction, aging, Sirt1-AMPK axis

Procedia PDF Downloads 238
306 Longitudinal impact on Empowerment for Ugandan Women with Post-Primary Education

Authors: Shelley Jones

Abstract:

Assumptions abound that education for girls will, as a matter of course, lead to their economic empowerment as women; yet. little is known about the ways in which schooling for girls, who traditionally/historically would not have had opportunities for post-primary, or perhaps even primary education – such as the participants in this study based in rural Uganda - in reality, impacts their economic situations. There is a need forlongitudinal studies in which women share experiences, understandings, and reflections of their lives that can inform our knowledge of this. In response, this paper reports on stage four of a longitudinal case study (2004-2018) focused on education and empowerment for girls and women in rural Uganda, in which 13 of the 15 participants from the original study participated. This paper understands empowerment as not simply increased opportunities (e.g., employment) but also real gains in power, freedoms that enable agentive action, and authentic and viable choices/alternatives that offer ‘exit options’ from unsatisfactory situations. As with the other stages, this study used a critical, postmodernist, global feminist ethnographic methodology, multimodal and qualitative data collection. Participants participated in interviews, focus group discussions, and a two-day workshop, which explored their understandings of how/if they understood post-primary education to have contributed to their economic empowerment. A constructivist grounded theory approach was used for data analysis to capture major themes. Findings indicate that although all participants believe that post-primary education provided them with economic opportunities they would not have had otherwise, the parameters of their economic empowerment were severely constrained by historic and extant sociocultural, economic, political, and institutional structures that continue to disempower girls and women, as well as additional financial responsibilities that they assumed to support others. Even though the participants had post-primary education, and they were able to obtain employment or operate their own businesses that they would not likely have been able to do without post-primary education, the majority of the participants’ incomes were not sufficient to elevate them financially above the extreme poverty level, especially as many were single mothers and the sole income earners in their households. Furthermore, most deemed their working conditions unsatisfactory and their positions precarious; they also experienced sexual harassment and abuse in the labour force. Additionally, employment for the participants resulted in a double work burden: long days at work, surrounded by many hours of domestic work at home (which, even if they had spousal partners, still fell almost exclusively to women). In conclusion, although the participants seem to have experienced some increase in economic empowerment, largely due to skills, knowledge, and qualifications gained at the post-primary level, numerous barriers prevented them from maximizing their capabilities and making significant gains in empowerment. There is need, in addition to providing education (primary, secondary, and tertiary) to girls, to address systemic gender inequalities that mitigate against women’s empowerment, as well as opportunities and freedom for women to come together and demand fair pay, reasonable working conditions, and benefits, freedom from gender-based harassment and assault in the workplace, as well as advocate for equal distribution of domestic work as a cultural change.

Keywords: girls' post-primary education, women's empowerment, uganda, employment

Procedia PDF Downloads 121
305 Numerical Optimization of Cooling System Parameters for Multilayer Lithium Ion Cell and Battery Packs

Authors: Mohammad Alipour, Ekin Esen, Riza Kizilel

Abstract:

Lithium-ion batteries are a commonly used type of rechargeable batteries because of their high specific energy and specific power. With the growing popularity of electric vehicles and hybrid electric vehicles, increasing attentions have been paid to rechargeable Lithium-ion batteries. However, safety problems, high cost and poor performance in low ambient temperatures and high current rates, are big obstacles for commercial utilization of these batteries. By proper thermal management, most of the mentioned limitations could be eliminated. Temperature profile of the Li-ion cells has a significant role in the performance, safety, and cycle life of the battery. That is why little temperature gradient can lead to great loss in the performances of the battery packs. In recent years, numerous researchers are working on new techniques to imply a better thermal management on Li-ion batteries. Keeping the battery cells within an optimum range is the main objective of battery thermal management. Commercial Li-ion cells are composed of several electrochemical layers each consisting negative-current collector, negative electrode, separator, positive electrode, and positive current collector. However, many researchers have adopted a single-layer cell to save in computing time. Their hypothesis is that thermal conductivity of the layer elements is so high and heat transfer rate is so fast. Therefore, instead of several thin layers, they model the cell as one thick layer unit. In previous work, we showed that single-layer model is insufficient to simulate the thermal behavior and temperature nonuniformity of the high-capacity Li-ion cells. We also studied the effects of the number of layers on thermal behavior of the Li-ion batteries. In this work, first thermal and electrochemical behavior of the LiFePO₄ battery is modeled with 3D multilayer cell. The model is validated with the experimental measurements at different current rates and ambient temperatures. Real time heat generation rate is also studied at different discharge rates. Results showed non-uniform temperature distribution along the cell which requires thermal management system. Therefore, aluminum plates with mini-channel system were designed to control the temperature uniformity. Design parameters such as channel number and widths, inlet flow rate, and cooling fluids are optimized. As cooling fluids, water and air are compared. Pressure drop and velocity profiles inside the channels are illustrated. Both surface and internal temperature profiles of single cell and battery packs are investigated with and without cooling systems. Our results show that using optimized Mini-channel cooling plates effectively controls the temperature rise and uniformity of the single cells and battery packs. With increasing the inlet flow rate, cooling efficiency could be reached up to 60%.

Keywords: lithium ion battery, 3D multilayer model, mini-channel cooling plates, thermal management

Procedia PDF Downloads 136
304 A Brief Review on Doping in Sports and Performance-Enhancing Drugs

Authors: Zahra Mohajer, Afsaneh Soltani

Abstract:

Doping is a major issue in competitive sports and is favored by vast groups of athletes. The feeling of being higher-ranking than others and gaining fame has caused many athletes to misuse drugs. The definition of doping is to use prohibited substances and/or methods that help physical or mental performances or both. Doping counts as the illegal use of chemical substances or drugs, excessive amounts of physiological substances to increase the performance at or out of competition or even the use of inappropriate medications to treat an injury to gain the ability to participate in a competition. The International Olympic Committee (IOC) and World Anti-Doping Agency (WADA) have forbidden these substances to ensure fair and equal competition and also the health of the competitors. As of 2004 WADA has published an international list of illegal substances used for doping, which is updated annually. In the process of the Genome Project scientists have gained the ability to treat numerous diseases by gene therapy, which may result in bodily performance increase and therefore a potential opportunity to misuse by some athletes. Gene doping is defined as the non-therapeutic direct and indirect genetic modifications using genetic materials that can improve the performances in sports events. Biosynthetic drugs are a form of indirect genetic engineering. The method can be performed in three ways such as injecting the DNA directly into the muscle, inserting the genetically engineered cells, or transferring the DNA using a virus as a vector. Erythropoietin is a hormone majorly released by the kidney and in small amounts by the liver. Its function is to stimulate the erythropoiesis and therefore the more production of red blood cells (RBC) which causes an increase in Hemoglobin (Hb). During this process, the oxygen delivery to muscles will increase, which will improve athletic performance and postpone exhaustion. There are ways to increase the oxygen transferred to muscles such as blood transfusion, stimulating the production of red blood cells by using Erythropoietin (EPO), and also using allosteric effectors of Hemoglobin. EPO can either be injected as a protein or can be inserted into the cells as the gene which encodes EPO. Adeno-associated viruses have been employed to deliver the EPO gene to the cells. Employing the genes that naturally exist in the human body such as the EPO gene can reduce the risk of detecting gene doping. The first research about blood doping was conducted in 1947. The study has shown that an increase in hematocrit (HCT) up to 55% following homologous transfusion makes it more unchallenging for the body to perform the exercise at the altitude. Thereafter athletes’ attraction to blood infusion escalated. Also, a study has demonstrated that by reinfusing their own blood 4 weeks after being drawn, three men have shown a rise in Hb level which improved the oxygen uptake, and a delay in exhaustion. The list of performance-enhancing drugs is published by WADA annually and includes the following drugs: anabolic agents, hormones, Beta-2 agonists, Beta-blockers, Diuretics, Stimulants, narcotics, cannabinoids, and corticosteroids.

Keywords: doping, PEDs, sports, WADA

Procedia PDF Downloads 86
303 Seismic Response Control of Multi-Span Bridge Using Magnetorheological Dampers

Authors: B. Neethu, Diptesh Das

Abstract:

The present study investigates the performance of a semi-active controller using magneto-rheological dampers (MR) for seismic response reduction of a multi-span bridge. The application of structural control to the structures during earthquake excitation involves numerous challenges such as proper formulation and selection of the control strategy, mathematical modeling of the system, uncertainty in system parameters and noisy measurements. These problems, however, need to be tackled in order to design and develop controllers which will efficiently perform in such complex systems. A control algorithm, which can accommodate un-certainty and imprecision compared to all the other algorithms mentioned so far, due to its inherent robustness and ability to cope with the parameter uncertainties and imprecisions, is the sliding mode algorithm. A sliding mode control algorithm is adopted in the present study due to its inherent stability and distinguished robustness to system parameter variation and external disturbances. In general a semi-active control scheme using an MR damper requires two nested controllers: (i) an overall system controller, which derives the control force required to be applied to the structure and (ii) an MR damper voltage controller which determines the voltage required to be supplied to the damper in order to generate the desired control force. In the present study a sliding mode algorithm is used to determine the desired optimal force. The function of the voltage controller is to command the damper to produce the desired force. The clipped optimal algorithm is used to find the command voltage supplied to the MR damper which is regulated by a semi active control law based on sliding mode algorithm. The main objective of the study is to propose a robust semi active control which can effectively control the responses of the bridge under real earthquake ground motions. Lumped mass model of the bridge is developed and time history analysis is carried out by solving the governing equations of motion in the state space form. The effectiveness of MR dampers is studied by analytical simulations by subjecting the bridge to real earthquake records. In this regard, it may also be noted that the performance of controllers depends, to a great extent, on the characteristics of the input ground motions. Therefore, in order to study the robustness of the controller in the present study, the performance of the controllers have been investigated for fourteen different earthquake ground motion records. The earthquakes are chosen in such a way that all possible characteristic variations can be accommodated. Out of these fourteen earthquakes, seven are near-field and seven are far-field. Also, these earthquakes are divided into different frequency contents, viz, low-frequency, medium-frequency, and high-frequency earthquakes. The responses of the controlled bridge are compared with the responses of the corresponding uncontrolled bridge (i.e., the bridge without any control devices). The results of the numerical study show that the sliding mode based semi-active control strategy can substantially reduce the seismic responses of the bridge showing a stable and robust performance for all the earthquakes.

Keywords: bridge, semi active control, sliding mode control, MR damper

Procedia PDF Downloads 109
302 Rumen Epithelium Development of Bovine Fetuses and Newborn Calves

Authors: Juliana Shimara Pires Ferrão, Letícia Palmeira Pinto, Francisco Palma Rennó, Francisco Javier Hernandez Blazquez

Abstract:

The ruminant stomach is a complex and multi-chambered organ. Although the true stomach (abomasum) is fully differentiated and functional at birth, the same does not occur with the rumen chamber. At this moment, rumen papillae are small or nonexistent. The papillae only fully develop after weaning and during calf growth. Papillae development and ruminal epithelium specialization during the fetus growth and at birth must be two interdependent processes that will prepare the rumen to adapt to ruminant adult feeding. The microscopic study of rumen epithelium at these early phases of life is important to understand how this structure prepares the rumen to deal with the following weaning processes and its functional activation. Samples of ruminal mucosa of bovine fetuses (110- and 150 day-old) and newborn calves were collected (dorsal and ventral portions) and processed for light and electron microscopy and immunohistochemistry. The basal cell layer of the stratified pavimentous epithelium present in different ruminal portions of the fetuses was thicker than the same portions of newborn calves. The superficial and intermediate epithelial layers of 150 day-old fetuses were thicker than those found in the other 2 studied ages. At this age (150 days), dermal papillae begin to invade the intermediate epithelial layer which gradually disappears in newborn calves. At birth, the ruminal papillae project from the epithelial surface, probably by regression of the epithelial cells (transitory cells) surrounding the dermal papillae. The PCNA cell proliferation index (%) was calculated for all epithelial samples. Fetuses 150 day-old showed increased cell proliferation in basal cell layer (Dorsal Portion: 84.2%; Ventral Portion: 89.8%) compared to other ages studied. Newborn calves showed an intermediate index (Dorsal Portion: 65.1%; Ventral Portion: 48.9%), whereas 110 day-old fetuses had the lowest proliferation index (Dorsal Portion: 57.2%; Ventral Portion: 20.6%). Regarding the transitory epithelium, 110 day-old fetuses showed the lowest proliferation index (Dorsal Portion: 44.6%; Ventral Portion: 20.1%), 150 day-old fetuses showed an intermediate proliferation index (Dorsal Portion: 57.5%; Ventral Portion: 71.1%) and newborn calves presented a higher proliferation index (Dorsal Portion: 75.1%; Ventral Portion: 19.6%). Under TEM, the 110- and 150 day-old fetuses presented thicker and poorly organized basal cell layer, with large nuclei and dense cytoplasm. In newborn calves, the basal cell layer was more organized and with fewer layers, but typically similar in both regions of the rumen. For the transitory epithelium, fetuses displayed larger cells than those found in newborn calves with less electrondense cytoplasm than that found in the basal cells. The ruminal dorsal portion has an overall higher cell proliferation rate than the ventral portion. Thus we can infer that the dorsal portion may have a higher cell activity than the ventral portion during ruminal development. Moreover, the basal cell layer is thicker in the 110- and 150 day-old fetuses than in the newborn calves. The transitory epithelium, which is much reduced, at birth may have a structural support function of the developing dermal papillae. When it regresses or is sheared off, the papillae are “carved out” from the surrounding epithelial layer.

Keywords: bovine, calf, epithelium, fetus, hematoxylin-eosin, immunohistochemistry, TEM, Rumen

Procedia PDF Downloads 357
301 Assessment of Physical Learning Environments in ECE: Interdisciplinary and Multivocal Innovation for Chilean Kindergartens

Authors: Cynthia Adlerstein

Abstract:

Physical learning environment (PLE) has been considered, after family and educators, as the third teacher. There have been conflicting and converging viewpoints on the role of the physical dimensions of places to learn, in facilitating educational innovation and quality. Despite the different approaches, PLE has been widely recognized as a key factor in the quality of the learning experience , and in the levels of learning achievement in ECE . The conceptual frameworks of the field assume that PLE consists of a complex web of factors that shape the overall conditions for learning, and that much more interdisciplinary and complementary methodologies of research and development are required. Although the relevance of PLE attracts a broad international consensus, in Chile it remains under-researched and weakly regulated by public policy. Gaining deeper contextual understanding and more thoughtfully-designed recommendations require the use of innovative assessment tools that cross cultural and disciplinary boundaries to produce new hybrid approaches and improvements. When considering a PLE-based change process for ECE improvement, a central question is what dimensions, variables and indicators could allow a comprehensive assessment of PLE in Chilean kindergartens? Based on a grounded theory social justice inquiry, we adopted a mixed method design, that enabled a multivocal and interdisciplinary construction of data. By using in-depth interviews, discussion groups, questionnaires, and documental analysis, we elicited the PLE discourses of politicians, early childhood practitioners, experts in architectural design and ergonomics, ECE stakeholders, and 3 to 5 year olds. A constant comparison method enabled the construction of the dimensions, variables and indicators through which PLE assessment is possible. Subsequently, the instrument was applied in a sample of 125 early childhood classrooms, to test reliability (internal consistency) and validity (content and construct). As a result, an interdisciplinary and multivocal tool for assessing physical learning environments was constructed and validated, for Chilean kindergartens. The tool is structured upon 7 dimensions (wellbeing, flexible, empowerment, inclusiveness, symbolically meaningful, pedagogically intentioned, institutional management) 19 variables and 105 indicators that are assessed through observation and registration on a mobile app. The overall reliability of the instrument is .938 while the consistency of each dimension varies between .773 (inclusive) and .946 (symbolically meaningful). The validation process through expert opinion and factorial analysis (chi-square test) has shown that the dimensions of the assessment tool reflect the factors of physical learning environments. The constructed assessment tool for kindergartens highlights the significance of the physical environment in early childhood educational settings. The relevance of the instrument relies in its interdisciplinary approach to PLE and in its capability to guide innovative learning environments, based on educational habitability. Though further analysis are required for concurrent validation and standardization, the tool has been considered by practitioners and ECE stakeholders as an intuitive, accessible and remarkable instrument to arise awareness on PLE and on equitable distribution of learning opportunities.

Keywords: Chilean kindergartens, early childhood education, physical learning environment, third teacher

Procedia PDF Downloads 331
300 An Interoperability Concept for Detect and Avoid and Collision Avoidance Systems: Results from a Human-In-The-Loop Simulation

Authors: Robert Rorie, Lisa Fern

Abstract:

The integration of Unmanned Aircraft Systems (UAS) into the National Airspace System (NAS) poses a variety of technical challenges to UAS developers and aviation regulators. In response to growing demand for access to civil airspace in the United States, the Federal Aviation Administration (FAA) has produced a roadmap identifying key areas requiring further research and development. One such technical challenge is the development of a ‘detect and avoid’ system (DAA; previously referred to as ‘sense and avoid’) to replace the ‘see and avoid’ requirement in manned aviation. The purpose of the DAA system is to support the pilot, situated at a ground control station (GCS) rather than in the cockpit of the aircraft, in maintaining ‘well clear’ of nearby aircraft through the use of GCS displays and alerts. In addition to its primary function of aiding the pilot in maintaining well clear, the DAA system must also safely interoperate with existing NAS systems and operations, such as the airspace management procedures of air traffic controllers (ATC) and collision avoidance (CA) systems currently in use by manned aircraft, namely the Traffic alert and Collision Avoidance System (TCAS) II. It is anticipated that many UAS architectures will integrate both a DAA system and a TCAS II. It is therefore necessary to explicitly study the integration of DAA and TCAS II alerting structures and maneuver guidance formats to ensure that pilots understand the appropriate type and urgency of their response to the various alerts. This paper presents a concept of interoperability for the two systems. The concept was developed with the goal of avoiding any negative impact on the performance level of TCAS II (understanding that TCAS II must largely be left as-is) while retaining a DAA system that still effectively enables pilots to maintain well clear, and, as a result, successfully reduces the frequency of collision hazards. The interoperability concept described in the paper focuses primarily on facilitating the transition from a late-stage DAA encounter (where a loss of well clear is imminent) to a TCAS II corrective Resolution Advisory (RA), which requires pilot compliance with the directive RA guidance (e.g., climb, descend) within five seconds of its issuance. The interoperability concept was presented to 10 participants (6 active UAS pilots and 4 active commercial pilots) in a medium-fidelity, human-in-the-loop simulation designed to stress different aspects of the DAA and TCAS II systems. Pilot response times, compliance rates and subjective assessments were recorded. Results indicated that pilots exhibited comprehension of, and appropriate prioritization within, the DAA-TCAS II combined alert structure. Pilots demonstrated a high rate of compliance with TCAS II RAs and were also seen to respond to corrective RAs within the five second requirement established for manned aircraft. The DAA system presented under test was also shown to be effective in supporting pilots’ ability to maintain well clear in the overwhelming majority of cases in which pilots had sufficient time to respond. The paper ends with a discussion of next steps for research on integrating UAS into civil airspace.

Keywords: detect and avoid, interoperability, traffic alert and collision avoidance system (TCAS II), unmanned aircraft systems

Procedia PDF Downloads 246
299 Study of Nucleation and Growth Processes of Ettringite in Supersaturated Diluted Solutions

Authors: E. Poupelloz, S. Gauffinet

Abstract:

Ettringite Ca₆Al₂(SO₄)₃(OH)₁₂26H₂O is one of the major hydrates formed during cement hydration. Ettringite forms in Portland cement from the reaction between tricalcium aluminate Ca₃Al₂O₆ and calcium sulfate. Ettringite is also present in calcium sulfoaluminate cement in which it is the major hydrate, formed by the reaction between yeelimite Ca₄(AlO₂)₆SO₄ and calcium sulfate. About the formation of ettringite, numerous results are available in the literature even if some issues are still under discussion. However, almost all published work about ettringite was done on cementitious systems. Yet in cement, hydration reactions are very complex, the result of dissolution-precipitation processes and are submitted to various interactions. Understanding the formation process of a phase alone, here ettringite, is the first step to later understand the much more complex reactions happening in cement. This study is crucial for the comprehension of early cement hydration and physical behavior. Indeed formation of hydrates, in particular, ettringite, will have an influence on the rheological properties of the cement paste and on the need for admixtures. To make progress toward the understanding of existing phenomena, a specific study of nucleation and growth processes of ettringite was conducted. First ettringite nucleation was studied in ionic aqueous solutions, with controlled but different experimental conditions, as different supersaturation degrees (β), different pH or presence of exogenous ions. Through induction time measurements, interfacial ettringite crystals solution energies (γ) were determined. Growth of ettringite in supersaturated solutions was also studied through chain crystallization reactions. Specific BET surface area measurements and Scanning Electron Microscopy observations seemed to prove that growth process is favored over the nucleation process when ettringite crystals are initially present in a solution with a low supersaturation degree. The influence of stirring on ettringite formation was also investigated. Observation was made that intensity and nature of stirring have a high influence on the size of ettringite needles formed. Needle sizes vary from less than 10µm long depending on the stirring to almost 100µm long without any stirring. During all previously mentioned experiments, initially present ions are consumed to form ettringite in such a way that the supersaturation degree with regard to ettringite is decreasing over time. To avoid this phenomenon a device compensating the drop of ion concentrations by adding some more solutions, and therefore always have constant ionic concentrations, was used. This constant β recreates the conditions of the beginning of cement paste hydration, when the dissolution of solid reagents compensates the consumption of ions to form hydrates. This device allowed the determination of the ettringite precipitation rate as a function of the supersaturation degree β. Taking samples at different time during ettringite precipitation and doing BET measurements allowed the determination of the interfacial growth rate of ettringite in m²/s. This work will lead to a better understanding and control of ettringite formation alone and thus during cements hydration. This study will also ultimately define the impact of ettringite formation process on the rheology of cement pastes at early age, which is a crucial parameter from a practical point of view.

Keywords: cement hydration, ettringite, morphology of crystals, nucleation-growth process

Procedia PDF Downloads 108
298 Climate Change Scenario Phenomenon in Malaysia: A Case Study in MADA Area

Authors: Shaidatul Azdawiyah Abdul Talib, Wan Mohd Razi Idris, Liew Ju Neng, Tukimat Lihan, Muhammad Zamir Abdul Rasid

Abstract:

Climate change has received great attention worldwide due to the impact of weather causing extreme events. Rainfall and temperature are crucial weather components associated with climate change. In Malaysia, increasing temperatures and changes in rainfall distribution patterns lead to drought and flood events involving agricultural areas, especially rice fields. Muda Agricultural Development Authority (MADA) is the largest rice growing area among the 10 granary areas in Malaysia and has faced floods and droughts in the past due to changing climate. Changes in rainfall and temperature patter affect rice yield. Therefore, trend analysis is important to identify changes in temperature and rainfall patterns as it gives an initial overview for further analysis. Six locations across the MADA area were selected based on the availability of meteorological station (MetMalaysia) data. Historical data (1991 to 2020) collected from MetMalaysia and future climate projection by multi-model ensemble of climate model from CMIP5 (CNRM-CM5, GFDL-CM3, MRI-CGCM3, NorESM1-M and IPSL-CM5A-LR) have been analyzed using Mann-Kendall test to detect the time series trend, together with standardized precipitation anomaly, rainfall anomaly index, precipitation concentration index and temperature anomaly. Future projection data were analyzed based on 3 different periods; early century (2020 – 2046), middle century (2047 – 2073) and late-century (2074 – 2099). Results indicate that the MADA area does encounter extremely wet and dry conditions, leading to drought and flood events in the past. The Mann-Kendall (MK) trend analysis test discovered a significant increasing trend (p < 0.05) in annual rainfall (z = 0.40; s = 15.12) and temperature (z = 0.61; s = 0.04) during the historical period. Similarly, for both RCP 4.5 and RCP 8.5 scenarios, a significant increasing trend (p < 0.05) was found for rainfall (RCP 4.5: z = 0.15; s = 2.55; RCP 8.5: z = 0.41; s = 8.05;) and temperature (RCP 4.5: z = 0.84; s = 0.02; RCP 8.5: z = 0.94; s = 0.05). Under the RCP 4.5 scenario, the average temperature is projected to increase up to 1.6 °C in early century, 2.0 °C in the middle century and 2.4 °C in the late century. In contrast, under RCP 8.5 scenario, the average temperature is projected to increase up to 1.8 °C in the early century, 3.1 °C in the middle century and 4.3 °C in late century. Drought is projected to occur in 2038 and 2043 (early century); 2052 and 2069 (middle century); and 2095, 2097 to 2099 (late century) under RCP 4.5 scenario. As for RCP 8.5 scenario, drought is projected to occur in 2021, 2031 and 2034 (early century); and 2069 (middle century). No drought is projected to occur in the late century under the RCP 8.5 scenario. Thus, this information can be used for the analysis of the impact of climate change scenarios on rice growth and yield besides other crops found in MADA area. Additionally, this study, it would be helpful for researchers and decision-makers in developing applicable adaptation and mitigation strategies to reduce the impact of climate change.

Keywords: climate projection, drought, flood, rainfall, RCP 4.5, RCP 8.5, temperature

Procedia PDF Downloads 54