Search results for: earthen architecture
671 Fault-Tolerant Configuration for T-Type Nested Neutral Point Clamped Converter
Authors: S. Masoud Barakati, Mohsen Rahmani Haredasht
Abstract:
Recently, the use of T-type nested neutral point clamped (T-NNPC) converter has increased in medium voltage applications. However, the T-NNPC converter architecture's reliability and continuous operation are at risk by including semiconductor switches. Semiconductor switches are a prone option for open-circuit faults. As a result, fault-tolerant converters are required to improve the system's reliability and continuous functioning. This study's primary goal is to provide a fault-tolerant T-NNPC converter configuration. In the proposed design utilizing the cold reservation approach, a redundant phase is considered, which replaces the faulty phase once the fault is diagnosed in each phase. The suggested fault-tolerant configuration can be easily implemented in practical applications due to the use of a simple PWM control mechanism. The performance evaluation of the proposed configuration under different scenarios in the MATLAB-Simulink environment proves its efficiency.Keywords: T-type nested neutral point clamped converter, reliability, continuous operation, open-circuit faults, fault-tolerant converters
Procedia PDF Downloads 120670 Applying Augmented Reality Technology for an E-Learning System
Authors: Fetoon K. Algarawi, Wejdan A. Alslamah, Ahlam A. Alhabib, Afnan S. Alfehaid, Dina M. Ibrahim
Abstract:
Over the past 20 years, technology was rapidly developed and no one expected what will come next. Advancements in technology open new opportunities for immersive learning environments. There is a need to transmit education to a level that makes it more effective for the student. Augmented reality is one of the most popular technologies these days. This paper is an experience of applying Augmented Reality (AR) technology using a marker-based approach in E-learning system to transmitting virtual objects into the real-world scenes. We present a marker-based approach for transmitting virtual objects into real-world scenes to explain information in a better way after we developed a mobile phone application. The mobile phone application was then tested on students to determine the extent to which it encouraged them to learn and understand the subjects. In this paper, we talk about how the beginnings of AR, the fields using AR, how AR is effective in education, the spread of AR these days and the architecture of our work. Therefore, the aim of this paper is to prove how creating an interactive e-learning system using AR technology will encourage students to learn more.Keywords: augmented reality, e-learning, marker-based, monitor-based
Procedia PDF Downloads 223669 Robust ResNets for Chemically Reacting Flows
Authors: Randy Price, Harbir Antil, Rainald Löhner, Fumiya Togashi
Abstract:
Chemically reacting flows are common in engineering applications such as hypersonic flow, combustion, explosions, manufacturing process, and environmental assessments. The number of reactions in combustion simulations can exceed 100, making a large number of flow and combustion problems beyond the capabilities of current supercomputers. Motivated by this, deep neural networks (DNNs) will be introduced with the goal of eventually replacing the existing chemistry software packages with DNNs. The DNNs used in this paper are motivated by the Residual Neural Network (ResNet) architecture. In the continuum limit, ResNets become an optimization problem constrained by an ODE. Such a feature allows the use of ODE control techniques to enhance the DNNs. In this work, DNNs are constructed, which update the species un at the nᵗʰ timestep to uⁿ⁺¹ at the n+1ᵗʰ timestep. Parallel DNNs are trained for each species, taking in uⁿ as input and outputting one component of uⁿ⁺¹. These DNNs are applied to multiple species and reactions common in chemically reacting flows such as H₂-O₂ reactions. Experimental results show that the DNNs are able to accurately replicate the dynamics in various situations and in the presence of errors.Keywords: chemical reacting flows, computational fluid dynamics, ODEs, residual neural networks, ResNets
Procedia PDF Downloads 119668 Fast Prediction Unit Partition Decision and Accelerating the Algorithm Using Cudafor Intra and Inter Prediction of HEVC
Authors: Qiang Zhang, Chun Yuan
Abstract:
Since the PU (Prediction Unit) decision process is the most time consuming part of the emerging HEVC (High Efficient Video Coding) standardin intra and inter frame coding, this paper proposes the fast PU decision algorithm and speed up the algorithm using CUDA (Compute Unified Device Architecture). In intra frame coding, the fast PU decision algorithm uses the texture features to skip intra-frame prediction or terminal the intra-frame prediction for smaller PU size. In inter frame coding of HEVC, the fast PU decision algorithm takes use of the similarity of its own two Nx2N size PU's motion vectors and the hierarchical structure of CU (Coding Unit) partition to skip some modes of PU partition, so as to reduce the motion estimation times. The accelerate algorithm using CUDA is based on the fast PU decision algorithm which uses the GPU to make the motion search and the gradient computation could be parallel computed. The proposed algorithm achieves up to 57% time saving compared to the HM 10.0 with little rate-distortion losses (0.043dB drop and 1.82% bitrate increase on average).Keywords: HEVC, PU decision, inter prediction, intra prediction, CUDA, parallel
Procedia PDF Downloads 399667 Facade Design Impact on the Urban Landscape
Authors: Seyyed Hossein Alavi, Soudabe Mehri Talarposhti
Abstract:
Passages urban landscape is made up of various components that the component parts of the whole and vice versa has relationships. In today’s cities, we have not seen a dual relationship and only one side of the equation which is the relationships of the component parts are considered. However, the effect of the component to whole is stronger and also longer. This means that every time the outer shell of the building was constructed instant impact on the viewers while it takes a long time to understand the impact of the building in its environment and basically, it seems city portrait has the sensory and untouchable effect on observer. Today, building facades are designated individually and in isolation from the context. Designers are familiar with the details of the facade, but they are not informed with the science of combination and its impact on portrait. The importance of city and also more important than that, the city portrait haven’t confirmed for those involved in the building and authorities and the construction been changed to a market for more glaring taste of designers and attracting more business and the city and its landscape has been forgotten. This essay is an attempt to collect a part of the principles and definitions needed on perspective issues and portrait, and it is hoped that it will open arena for more research and studies in this field and other related fields.Keywords: facade, urban housing, urban design, sustainable architecture
Procedia PDF Downloads 485666 Product Feature Modelling for Integrating Product Design and Assembly Process Planning
Authors: Baha Hasan, Jan Wikander
Abstract:
This paper describes a part of the integrating work between assembly design and assembly process planning domains (APP). The work is based, in its first stage, on modelling assembly features to support APP. A multi-layer architecture, based on feature-based modelling, is proposed to establish a dynamic and adaptable link between product design using CAD tools and APP. The proposed approach is based on deriving “specific function” features from the “generic” assembly and form features extracted from the CAD tools. A hierarchal structure from “generic” to “specific” and from “high level geometrical entities” to “low level geometrical entities” is proposed in order to integrate geometrical and assembly data extracted from geometrical and assembly modelers to the required processes and resources in APP. The feature concept, feature-based modelling, and feature recognition techniques are reviewed.Keywords: assembly feature, assembly process planning, feature, feature-based modelling, form feature, ontology
Procedia PDF Downloads 309665 Brief Guide to Cloud-Based AI Prototyping: Key Insights from Selected Case Studies Using Google Cloud Platform
Authors: Kamellia Reshadi, Pranav Ragji, Theodoros Soldatos
Abstract:
Recent advancements in cloud computing and storage, along with rapid progress in artificial intelligence (AI), have transformed approaches to developing efficient, scalable applications. However, integrating AI with cloud computing poses challenges as these fields are often disjointed, and many advancements remain difficult to access, obscured in complex documentation or scattered across research reports. For this reason, we share experiences from prototype projects combining these technologies. Specifically, we focus on Google Cloud Platform (GCP) functionalities and describe vision and speech activities applied to labeling, subtitling, and urban traffic flow tasks. We describe challenges, pricing, architecture, and other key features, considering the goal of real-time performance. We hope our demonstrations provide not only essential guidelines for using these functionalities but also enable more similar approaches.Keywords: artificial intelligence, cloud computing, real-time applications, case studies, knowledge management, research and development, text labeling, video annotation, urban traffic analysis, public safety, prototyping, Google Cloud Platform
Procedia PDF Downloads 9664 Ensemble of Deep CNN Architecture for Classifying the Source and Quality of Teff Cereal
Authors: Belayneh Matebie, Michael Melese
Abstract:
The study focuses on addressing the challenges in classifying and ensuring the quality of Eragrostis Teff, a small and round grain that is the smallest cereal grain. Employing a traditional classification method is challenging because of its small size and the similarity of its environmental characteristics. To overcome this, this study employs a machine learning approach to develop a source and quality classification system for Teff cereal. Data is collected from various production areas in the Amhara regions, considering two types of cereal (high and low quality) across eight classes. A total of 5,920 images are collected, with 740 images for each class. Image enhancement techniques, including scaling, data augmentation, histogram equalization, and noise removal, are applied to preprocess the data. Convolutional Neural Network (CNN) is then used to extract relevant features and reduce dimensionality. The dataset is split into 80% for training and 20% for testing. Different classifiers, including FVGG16, FINCV3, QSCTC, EMQSCTC, SVM, and RF, are employed for classification, achieving accuracy rates ranging from 86.91% to 97.72%. The ensemble of FVGG16, FINCV3, and QSCTC using the Max-Voting approach outperforms individual algorithms.Keywords: Teff, ensemble learning, max-voting, CNN, SVM, RF
Procedia PDF Downloads 53663 A Smart Contract Project: Peer-to-Peer Energy Trading with Price Forecasting in Microgrid
Authors: Şakir Bingöl, Abdullah Emre Aydemir, Abdullah Saado, Ahmet Akıl, Elif Canbaz, Feyza Nur Bulgurcu, Gizem Uzun, Günsu Bilge Dal, Muhammedcan Pirinççi
Abstract:
Smart contracts, which can be applied in many different areas, from financial applications to the internet of things, come to the fore with their security, low cost, and self-executing features. In this paper, it is focused on peer-to-peer (P2P) energy trading and the implementation of the smart contract on the Ethereum blockchain. It is assumed a microgrid consists of consumers and prosumers that can produce solar and wind energy. The proposed architecture is a system where the prosumer makes the purchase or sale request in the smart contract and the maximum price obtained through the distribution system operator (DSO) by forecasting. It is aimed to forecast the hourly maximum unit price of energy by using deep learning instead of a fixed pricing. In this way, it will make the system more reliable as there will be more dynamic and accurate pricing. For this purpose, Istanbul's energy generation, energy consumption and market clearing price data were used. The consistency of the available data and forecasting results is observed and discussed with graphs.Keywords: energy trading smart contract, deep learning, microgrid, forecasting, Ethereum, peer to peer
Procedia PDF Downloads 138662 High Performance Field Programmable Gate Array-Based Stochastic Low-Density Parity-Check Decoder Design for IEEE 802.3an Standard
Authors: Ghania Zerari, Abderrezak Guessoum, Rachid Beguenane
Abstract:
This paper introduces high-performance architecture for fully parallel stochastic Low-Density Parity-Check (LDPC) field programmable gate array (FPGA) based LDPC decoder. The new approach is designed to decrease the decoding latency and to reduce the FPGA logic utilisation. To accomplish the target logic utilisation reduction, the routing of the proposed sub-variable node (VN) internal memory is designed to utilize one slice distributed RAM. Furthermore, a VN initialization, using the channel input probability, is achieved to enhance the decoder convergence, without extra resources and without integrating the output saturated-counters. The Xilinx FPGA implementation, of IEEE 802.3an standard LDPC code, shows that the proposed decoding approach attain high performance along with reduction of FPGA logic utilisation.Keywords: low-density parity-check (LDPC) decoder, stochastic decoding, field programmable gate array (FPGA), IEEE 802.3an standard
Procedia PDF Downloads 297661 Enhancing the Effectiveness of Air Defense Systems through Simulation Analysis
Authors: F. Felipe
Abstract:
Air Defense Systems contain high-value assets that are expected to fulfill their mission for several years - in many cases, even decades - while operating in a fast-changing, technology-driven environment. Thus, it is paramount that decision-makers can assess how effective an Air Defense System is in the face of new developing threats, as well as to identify the bottlenecks that could jeopardize the security of the airspace of a country. Given the broad extent of activities and the great variety of assets necessary to achieve the strategic objectives, a systems approach was taken in order to delineate the core requirements and the physical architecture of an Air Defense System. Then, value-focused thinking helped in the definition of the measures of effectiveness. Furthermore, analytical methods were applied to create a formal structure that preliminarily assesses such measures. To validate the proposed methodology, a powerful simulation was also used to determine the measures of effectiveness, now in more complex environments that incorporate both uncertainty and multiple interactions of the entities. The results regarding the validity of this methodology suggest that the approach can support decisions aimed at enhancing the capabilities of Air Defense Systems. In conclusion, this paper sheds some light on how consolidated approaches of Systems Engineering and Operations Research can be used as valid techniques for solving problems regarding a complex and yet vital matter.Keywords: air defense, effectiveness, system, simulation, decision-support
Procedia PDF Downloads 156660 End-to-End Pyramid Based Method for Magnetic Resonance Imaging Reconstruction
Authors: Omer Cahana, Ofer Levi, Maya Herman
Abstract:
Magnetic Resonance Imaging (MRI) is a lengthy medical scan that stems from a long acquisition time. Its length is mainly due to the traditional sampling theorem, which defines a lower boundary for sampling. However, it is still possible to accelerate the scan by using a different approach such as Compress Sensing (CS) or Parallel Imaging (PI). These two complementary methods can be combined to achieve a faster scan with high-fidelity imaging. To achieve that, two conditions must be satisfied: i) the signal must be sparse under a known transform domain, and ii) the sampling method must be incoherent. In addition, a nonlinear reconstruction algorithm must be applied to recover the signal. While the rapid advances in Deep Learning (DL) have had tremendous successes in various computer vision tasks, the field of MRI reconstruction is still in its early stages. In this paper, we present an end-to-end method for MRI reconstruction from k-space to image. Our method contains two parts. The first is sensitivity map estimation (SME), which is a small yet effective network that can easily be extended to a variable number of coils. The second is reconstruction, which is a top-down architecture with lateral connections developed for building high-level refinement at all scales. Our method holds the state-of-art fastMRI benchmark, which is the largest, most diverse benchmark for MRI reconstruction.Keywords: magnetic resonance imaging, image reconstruction, pyramid network, deep learning
Procedia PDF Downloads 91659 Risk Based Building Information Modeling (BIM) for Urban Infrastructure Transportation Project
Authors: Debasis Sarkar
Abstract:
Building Information Modeling (BIM) is a holistic documentation process for operational visualization, design coordination, estimation and project scheduling. BIM software defines objects parametrically and it is a tool for virtual reality. Primary advantage of implementing BIM is the visual coordination of the building structure and systems such as Mechanical, Electrical and Plumbing (MEP) and it also identifies the possible conflicts between the building systems. This paper is an attempt to develop a risk based BIM model which would highlight the primary advantages of application of BIM pertaining to urban infrastructure transportation project. It has been observed that about 40% of the Architecture, Engineering and Construction (AEC) companies use BIM but primarily for their outsourced projects. Also, 65% of the respondents agree that BIM would be used quiet strongly for future construction projects in India. The 3D models developed with Revit 2015 software would reduce co-ordination problems amongst the architects, structural engineers, contractors and building service providers (MEP). Integration of risk management along with BIM would provide enhanced co-ordination, collaboration and high probability of successful completion of the complex infrastructure transportation project within stipulated time and cost frame.Keywords: building information modeling (BIM), infrastructure transportation, project risk management, underground metro rail
Procedia PDF Downloads 310658 Shaking Force Balancing of Mechanisms: An Overview
Authors: Vigen Arakelian
Abstract:
The balancing of mechanisms is a well-known problem in the field of mechanical engineering because the variable dynamic loads cause vibrations, as well as noise, wear and fatigue of the machines. A mechanical system with unbalance shaking force and shaking moment transmits substantial vibration to the frame. Therefore, the objective of the balancing is to cancel or reduce the variable dynamic reactions transmitted to the frame. The resolution of this problem consists in the balancing of the shaking force and shaking moment. It can be fully or partially, by internal mass redistribution via adding counterweights or by modification of the mechanism's architecture via adding auxiliary structures. The balancing problems are of continue interest to researchers. Several laboratories around the world are very active in this area and new results are published regularly. However, despite its ancient history, mechanism balancing theory continues to be developed and new approaches and solutions are constantly being reported. Various surveys have been published that disclose particularities of balancing methods. The author believes that this is an appropriate moment to present a state of the art of the shaking force balancing studies completed by new research results. This paper presents an overview of methods devoted to the shaking force balancing of mechanisms, as well as the historical aspects of the origins and the evolution of the balancing theory of mechanisms.Keywords: inertial forces, shaking forces, balancing, dynamics, mechanism design
Procedia PDF Downloads 127657 Investigating Methanol Interaction on Hexagonal Ceria-BTC Microrods
Authors: Jamshid Hussain, Kuen Song Lin
Abstract:
For prospective applications, chemists and materials scientists are particularly interested in creating 3D-micro/nanocomposite structures with shapes and unique characteristics. Ceria has recently been produced with a variety of morphologies, including one-dimensional structures (nanoparticles, nanorods, nanowires, and nanotubes). It is anticipated that this material can be used in different fields, such as catalysis, methanol decomposition, carbon monoxide oxidation, optical materials, and environmental protection. Distinct three-dimensional hydrated ceria-BTC (CeO₂-1,3,5-Benzenetricarboxylic-acid) microstructures were successfully synthesized via a hydrothermal route in an aqueous solution. FE-SEM and XRD patterns reveal that a ceria-BTC framework diameter and length are approximately 1.45–2.4 and 5.5–6.5 µm, respectively, at 130 oC and with pH 2 for 72 h. It was demonstrated that the reaction conditions affected the 3D ceria-BTC architecture. The hexagonal ceria-BTC microrod comprises organic linkers, which are transformed into hierarchical ceria microrod in the presences of air at 400 oC was confirmed by Fourier transform infrared spectroscopy. The Ce-O bonding of the hierarchical ceria microrod (HCMs) species has a bond distance and coordination number of 2.44 and 6.89, respectively, which attenuates the EXAFS spectra. Compared to the ceria powder, the HCMs produced more oxygen vacancies and Ce3+ as shown by the XPS and XANES/EXAFS analyses.Keywords: hierarchical ceria microrod, three-dimensional ceria, methanol decomposition, reaction mechanism, XANES/EXAFS
Procedia PDF Downloads 8656 Comparative Spatial Analysis of a Re-Arranged Hospital Building
Authors: Burak Köken, Hatice D. Arslan, Bilgehan Y. Çakmak
Abstract:
Analyzing the relation networks between the hospital buildings which have complex structure and distinctive spatial relationships is quite difficult. The hospital buildings which require specialty in spatial relationship solutions during design and self-innovation through the developing technology should survive and keep giving service even after the disasters such as earthquakes. In this study, a hospital building where the load-bearing system was strengthened because of the insufficient earthquake performance and the construction of an additional building was required to meet the increasing need for space was discussed and a comparative spatial evaluation of the hospital building was made with regard to its status before the change and after the change. For this reason, spatial organizations of the building before change and after the change were analyzed by means of Space Syntax method and the effects of the change on space organization parameters were searched by applying an analytical procedure. Using Depthmap UCL software, connectivity, visual mean depth, beta and visual integration analyses were conducted. Based on the data obtained after the analyses, it was seen that the relationships between spaces of the building increased after the change and the building has become more explicit and understandable for the occupants. Furthermore, it was determined according to findings of the analysis that the increase in depth causes difficulty in perceiving the spaces and the changes considering this problem generally ease spatial use.Keywords: architecture, hospital building, space syntax, strengthening
Procedia PDF Downloads 521655 Kelantan Malay Cultural Landscape: The Concept of Kota Bharu Islamic City
Authors: Mohammad Rusdi Mohd Nasir, Ismail Hafiz Salleh
Abstract:
Kota Bharu, as an Islamic City, represents a symbolic icon in the urban development of the Islamic state of Kelantan, Malaysia. This research seeks to provide a basis for new approaches to landscape planning that shows greater respect for the traditional vernacular landscape. In addition, this research also intends to distinguish the prospects for the future Kelantan Malay cultural landscape, building upon the multiple historical influences in the evolution of the cultural landscape using multiple methods including literature review, observation, document analysis and content analysis. The study of the Kelantan Malay cultural landscape is particularly important in view of its distinctive contribution to Malay heritage by identifying the elements, characteristics, history and their influences. As a result, this research recognizes the importance of incorporating the existing heritage alongside contemporary design as well as further research on the Kelantan Malay cultural landscape. Optimistically, there will be better landscape practices in the future to understand the past, the present and the future prospects of the vernacular tradition, in order to ensure that our architecture, landscape and urbanism practices express its values.Keywords: Malay culture, Malay heritage, cultural landscape, Islamic concept
Procedia PDF Downloads 439654 Proposing an Architecture for Drug Response Prediction by Integrating Multiomics Data and Utilizing Graph Transformers
Authors: Nishank Raisinghani
Abstract:
Efficiently predicting drug response remains a challenge in the realm of drug discovery. To address this issue, we propose four model architectures that combine graphical representation with varying positions of multiheaded self-attention mechanisms. By leveraging two types of multi-omics data, transcriptomics and genomics, we create a comprehensive representation of target cells and enable drug response prediction in precision medicine. A majority of our architectures utilize multiple transformer models, one with a graph attention mechanism and the other with a multiheaded self-attention mechanism, to generate latent representations of both drug and omics data, respectively. Our model architectures apply an attention mechanism to both drug and multiomics data, with the goal of procuring more comprehensive latent representations. The latent representations are then concatenated and input into a fully connected network to predict the IC-50 score, a measure of cell drug response. We experiment with all four of these architectures and extract results from all of them. Our study greatly contributes to the future of drug discovery and precision medicine by looking to optimize the time and accuracy of drug response prediction.Keywords: drug discovery, transformers, graph neural networks, multiomics
Procedia PDF Downloads 153653 Reaching to the Unreachable: Can Local Adaptation Plan of Action (LAPA) Overcome the Current Barriers to Reach to the Vulnerable?
Authors: Bimal Raj Regmi, Cassandra Star
Abstract:
Climate change adaptation is now the priority of many Least Developed Countries (LDCs). The country governments in LDCs are designing institutional and financing architecture to implement adaptation programmes. Nepal has introduced the concept of Local Adaptation Plan of Action (LAPA) to facilitate adaptation at the local level. However, there is lack of clarity and ambiguity on whether or not LAPA can be effective means to reach to the most vulnerable. This research paper aims to generate evidences to assess the applicability and significance of LAPA. The study used a case study approach and relied on data gathered from field studies carried out in Pyuthan and Nawalparasi district of Nepal. The findings show that LAPA has potentials to link the community based adaptation with national adaptation initiatives and thus act as middle range approach to adaptation planning. However, the current scale of LAPA and its approaches to planning and delivery are constraints by socio-economic and governance barriers. This research paper argue that the in order to address the constraints a more flexible and co-management approach to LAPA is needed.Keywords: community based adaptation, local adaptation, co-management, climate change
Procedia PDF Downloads 259652 Component Interface Formalization in Robotic Systems
Authors: Anton Hristozov, Eric Matson, Eric Dietz, Marcus Rogers
Abstract:
Components are heavily used in many software systems, including robotics systems. The growth of sophistication and diversity of new capabilities for robotic systems presents new challenges to their architectures. Their complexity is growing exponentially with the advent of AI, smart sensors, and the complex tasks they have to accomplish. Such complexity requires a more rigorous approach to the creation, use, and interoperability of software components. The issue is exacerbated because robotic systems are becoming more and more reliant on third-party components for certain functions. In order to achieve this kind of interoperability, including dynamic component replacement, we need a way to standardize their interfaces. A formal approach is desperately needed to specify what an interface of a robotic software component should contain. This study performs an analysis of the issue and presents a universal and generic approach to standardizing component interfaces for robotic systems. Our approach is inspired by well-established robotic architectures such as ROS, PX4, and Ardupilot. The study is also applicable to other software systems that share similar characteristics with robotic systems. We consider the use of JSON or Domain Specific Languages (DSL) development with tools such as Antlr and automatic code and configuration file generation for frameworks such as ROS and PX4. A case study with ROS2 is presented as a proof of concept for the proposed methodology.Keywords: CPS, robots, software architecture, interface, ROS, autopilot
Procedia PDF Downloads 92651 Masked Candlestick Model: A Pre-Trained Model for Trading Prediction
Authors: Ling Qi, Matloob Khushi, Josiah Poon
Abstract:
This paper introduces a pre-trained Masked Candlestick Model (MCM) for trading time-series data. The pre-trained model is based on three core designs. First, we convert trading price data at each data point as a set of normalized elements and produce embeddings of each element. Second, we generate a masked sequence of such embedded elements as inputs for self-supervised learning. Third, we use the encoder mechanism from the transformer to train the inputs. The masked model learns the contextual relations among the sequence of embedded elements, which can aid downstream classification tasks. To evaluate the performance of the pre-trained model, we fine-tune MCM for three different downstream classification tasks to predict future price trends. The fine-tuned models achieved better accuracy rates for all three tasks than the baseline models. To better analyze the effectiveness of MCM, we test the same architecture for three currency pairs, namely EUR/GBP, AUD/USD, and EUR/JPY. The experimentation results demonstrate MCM’s effectiveness on all three currency pairs and indicate the MCM’s capability for signal extraction from trading data.Keywords: masked language model, transformer, time series prediction, trading prediction, embedding, transfer learning, self-supervised learning
Procedia PDF Downloads 126650 Automatic Product Identification Based on Deep-Learning Theory in an Assembly Line
Authors: Fidel Lòpez Saca, Carlos Avilés-Cruz, Miguel Magos-Rivera, José Antonio Lara-Chávez
Abstract:
Automated object recognition and identification systems are widely used throughout the world, particularly in assembly lines, where they perform quality control and automatic part selection tasks. This article presents the design and implementation of an object recognition system in an assembly line. The proposed shapes-color recognition system is based on deep learning theory in a specially designed convolutional network architecture. The used methodology involve stages such as: image capturing, color filtering, location of object mass centers, horizontal and vertical object boundaries, and object clipping. Once the objects are cut out, they are sent to a convolutional neural network, which automatically identifies the type of figure. The identification system works in real-time. The implementation was done on a Raspberry Pi 3 system and on a Jetson-Nano device. The proposal is used in an assembly course of bachelor’s degree in industrial engineering. The results presented include studying the efficiency of the recognition and processing time.Keywords: deep-learning, image classification, image identification, industrial engineering.
Procedia PDF Downloads 160649 A Framework of Product Information Service System Using Mobile Image Retrieval and Text Mining Techniques
Authors: Mei-Yi Wu, Shang-Ming Huang
Abstract:
The online shoppers nowadays often search the product information on the Internet using some keywords of products. To use this kind of information searching model, shoppers should have a preliminary understanding about their interesting products and choose the correct keywords. However, if the products are first contact (for example, the worn clothes or backpack of passengers which you do not have any idea about the brands), these products cannot be retrieved due to insufficient information. In this paper, we discuss and study the applications in E-commerce using image retrieval and text mining techniques. We design a reasonable E-commerce application system containing three layers in the architecture to provide users product information. The system can automatically search and retrieval similar images and corresponding web pages on Internet according to the target pictures which taken by users. Then text mining techniques are applied to extract important keywords from these retrieval web pages and search the prices on different online shopping stores with these keywords using a web crawler. Finally, the users can obtain the product information including photos and prices of their favorite products. The experiments shows the efficiency of proposed system.Keywords: mobile image retrieval, text mining, product information service system, online marketing
Procedia PDF Downloads 359648 Perusing the Influence of a Visual Editor in Enabling PostgreSQL Query Learn-Ability
Authors: Manuela Nayantara Jeyaraj
Abstract:
PostgreSQL is an Object-Relational Database Management System (ORDBMS) with an architecture that ensures optimal quality data management. But due to the shading growth of similar ORDBMS, PostgreSQL has not been renowned among the database user community. Despite having its features and in-built functionalities shadowed, PostgreSQL renders a vast range of utilities for data manipulation and hence calling for it to be upheld more among users. But introducing PostgreSQL in order to stimulate its advantageous features among users, mandates endorsing learn-ability as an add-on as the target groups considered consist of both amateur as well as professional PostgreSQL users. The scope of this paper deliberates providing easy contemplation of query formulations and flows through a visual editor designed according to user interface principles that standby to support every aspect of making PostgreSQL learn-able by self-operation and creation of queries within the visual editor. This paper tends to scrutinize the importance of choosing PostgreSQL as the working database environment, the visual perspectives that influence human behaviour and ultimately learning, the modes in which learn-ability can be provided via visualization and the advantages reaped by the implementation of the proposed system features.Keywords: database, learn-ability, PostgreSQL, query, visual-editor
Procedia PDF Downloads 174647 Conceptual Design of a Residential House Based on IDEA 4E - Discussion of the Process of Interdisciplinary Pre-Project Research and Optimal Design Solutions Created as Part of Project-Based Learning
Authors: Dorota Winnicka-Jasłowska, Małgorzata Jastrzębska, Jan Kaczmarczyk, Beata Łaźniewska-Piekarczyk, Piotr Skóra, Beata Kobiałko, Agata Kołodziej, Błażej Mól, Ewelina Lasyk, Karolina Brzęczek, Michał Król
Abstract:
Creating economical, comfortable, and healthy buildings which respect the environment is a necessity resulting from legal regulations, but it is also a response to the expectations of a modern investor. Developing the concept of a residential house based on the 4E and the 2+2+(1) IDEAs is a complex process that requires specialist knowledge of many trades and requires adaptation of comprehensive solutions. IDEA 4E assumes the use of energy-saving, ecological, ergonomics, and economic solutions. In addition, IDEA 2+2+(1) assuming appropriate surface and functional-spatial solutions for a family at different stages of a building's life, i.e. 2, 4, or 5 members, enforces certain flexibility of the designed building, which may change with the number and age of its users. The building should therefore be easy to rearrange or expand. The task defined in this way was carried out by an interdisciplinary team of students of the Silesian University of Technology as part of PBL. The team consisted of 6 undergraduate and graduate students representing the following faculties: 3 students of architecture, 2 civil engineering students, and 1 student of environmental engineering. The work of the team was supported by 3 academic teachers representing the above-mentioned faculties and additional experts. The project was completed in one semester. The article presents the successive stages of the project. At first pre-design studies were carried out. They allowed to define the guidelines for the project. For this purpose, the "Model house" questionnaire was developed. The questions concerned determining the utility needs of a potential family that would live in a model house - specifying the types of rooms, their size, and equipment. A total of 114 people participated in the study. The answers to the questions in the survey helped to build the functional programme of the designed house. Other research consisted in the search for optimal technological and construction solutions and the most appropriate building materials based mainly on recycling. Appropriate HVAC systems responsible for the building's microclimate were also selected, i.e. low, temperature heating, mechanical ventilation, and the use of energy from renewable sources was planned so as to obtain a nearly zero-energy building. Additionally, rainwater retention and its local use were planned. The result of the project was a design of a model residential building that meets the presented assumptions. A 3D VR spatial model of the designed building and its surroundings was also made. The final result was the organization of an exhibition for students and the academic community. Participation in the interdisciplinary project allowed the project team members to better understand the consequences of the adopted solutions for achieving the assumed effect and the need to work out a compromise. The implementation of the project made all its participants aware of the importance of cooperation as well as systematic and clear communication. The need to define milestones and their consistent enforcement is an important element guaranteeing the achievement of the intended end result. The implementation of PBL enables students to the acquire competences important in their future professional work.Keywords: architecture and urban planning, civil engineering, environmental engineering, project-based learning, sustainable building
Procedia PDF Downloads 114646 Functional Poly(Hedral Oligomeric Silsesquioxane) Nano-Spacer to Boost Quantum Resistive Vapour Sensors’ Sensitivity and Selectivity
Authors: Jean-Francois Feller
Abstract:
The analysis of the volatolome emitted by the human body with a sensor array (e-nose) is a method for clinical applications full of promises to make an olfactive fingerprint characteristic of people's health state. But the amount of volatile organic compounds (VOC) to detect, being in the range of parts per billion (ppb), and their diversity (several hundred) justifies developing ever more sensitive and selective vapor sensors to improve the discrimination ability of the e-nose, is still of interest. Quantum resistive vapour sensors (vQRS) made with nanostructured conductive polymer nanocomposite transducers have shown a great versatility in both their fabrication and operation to detect volatiles of interest such as cancer biomarkers. However, it has been shown that their chemo-resistive response was highly dependent on the quality of the inter-particular junctions in the percolated architecture. The present work investigates the effectiveness of poly(hedral oligomeric silsesquioxane) acting as a nanospacer to amplify the disconnectability of the conducting network and thus maximize the vQRS's sensitivity to VOC.Keywords: volatolome, quantum resistive vapour sensor, nanostructured conductive polymer nanocomposites, olfactive diagnosis
Procedia PDF Downloads 20645 Tetra Butyl Ammonium Cyanate Mediated Selective Synthesis of Sulfonyltriuret and Their Investigation towards Trypsin Protease Modulation
Authors: Amarjyoti Das Mahapatra, Umesh Kumar, Bhaskar Datta
Abstract:
A pseudo peptide can mimic the biological or structural properties of natural peptides. They have become an increasing attention in medicinal chemistry because of their interesting advantages like more bioavailability and less biodegradation than compare to the physiologically active native peptides which increase their therapeutic applications. Many biologically active compounds contain urea as functional groups, and they have improved pharmacokinetic properties because of their bioavailability and metabolic stability. Recently we have reported a single-step synthesis of sulfonyl urea and sulfonyltriuret from sulfonyl chloride and sodium cyanate. But the yield of sulfonyltriuret was less around 40-60% because of the formation of other products like sulfonamide and sulfonylureas. In the present work, we mainly focused on the selective synthesis of sulfonyltriuret using tetrabutylammonium cyanate and sulfonyl chloride. More precisely, we are interested in the controlled synthesis of oligomeric urea mainly sulfonyltriuret as a new class of pseudo peptide and their application as protease modulators. The distinctive architecture of these molecules in the form of their pseudo-peptide backbone offers promise as a potential pharmacophore. The synthesized molecules have been screened on trypsin enzyme, and we observed that these molecules are the efficient modulator of trypsin enzyme.Keywords: pseudo peptide, pharmacophore, sulfonyltriuret, trypsin
Procedia PDF Downloads 166644 An Analysis of Uncoupled Designs in Chicken Egg
Authors: Pratap Sriram Sundar, Chandan Chowdhury, Sagar Kamarthi
Abstract:
Nature has perfected her designs over 3.5 billion years of evolution. Research fields such as biomimicry, biomimetics, bionics, bio-inspired computing, and nature-inspired designs have explored nature-made artifacts and systems to understand nature’s mechanisms and intelligence. Learning from nature, the researchers have generated sustainable designs and innovation in a variety of fields such as energy, architecture, agriculture, transportation, communication, and medicine. Axiomatic design offers a method to judge if a design is good. This paper analyzes design aspects of one of the nature’s amazing object: chicken egg. The functional requirements (FRs) of components of the object are tabulated and mapped on to nature-chosen design parameters (DPs). The ‘independence axiom’ of the axiomatic design methodology is applied to analyze couplings and to evaluate if eggs’ design is good (i.e., uncoupled design) or bad (i.e., coupled design). The analysis revealed that eggs design is a good design, i.e., uncoupled design. This approach can be applied to any nature’s artifacts to judge whether their design is a good or a bad. This methodology is valuable for biomimicry studies. This approach can also be a very useful teaching design consideration of biology and bio-inspired innovation.Keywords: uncoupled design, axiomatic design, nature design, design evaluation
Procedia PDF Downloads 173643 Fiber-Based 3D Cellular Reinforcing Structures for Mineral-Bonded Composites with Enhanced Structural Impact Tolerance
Authors: Duy M. P. Vo, Cornelia Sennewald, Gerald Hoffmann, Chokri Cherif
Abstract:
The development of solutions to improve the resistance of buildings to short-term dynamic loads, particularly impact load, is driven by the urgent demand worldwide on securing human life and critical infrastructures. The research training group GRK 2250/1 aims to develop mineral-bonded composites that allow the fabrication of thin-layered strengthening layers providing available concrete members with enhanced impact resistance. This paper presents the development of 3D woven wire cellular structures that can be used as innovative reinforcement for targeted composites. 3D woven wire cellular structures are truss-like architectures that can be fabricated in an automatized process with a great customization possibility. The specific architecture allows this kind of structures to have good load bearing capability and forming behavior, which is of great potential to give strength against impact loading. An appropriate combination of topology and material enables an optimal use of thin-layered reinforcement in concrete constructions.Keywords: 3D woven cellular structures, ductile behavior, energy absorption, fiber-based reinforced concrete, impact resistant
Procedia PDF Downloads 298642 A Case Study of Deep Learning for Disease Detection in Crops
Authors: Felipe A. Guth, Shane Ward, Kevin McDonnell
Abstract:
In the precision agriculture area, one of the main tasks is the automated detection of diseases in crops. Machine Learning algorithms have been studied in recent decades for such tasks in view of their potential for improving economic outcomes that automated disease detection may attain over crop fields. The latest generation of deep learning convolution neural networks has presented significant results in the area of image classification. In this way, this work has tested the implementation of an architecture of deep learning convolution neural network for the detection of diseases in different types of crops. A data augmentation strategy was used to meet the requirements of the algorithm implemented with a deep learning framework. Two test scenarios were deployed. The first scenario implemented a neural network under images extracted from a controlled environment while the second one took images both from the field and the controlled environment. The results evaluated the generalisation capacity of the neural networks in relation to the two types of images presented. Results yielded a general classification accuracy of 59% in scenario 1 and 96% in scenario 2.Keywords: convolutional neural networks, deep learning, disease detection, precision agriculture
Procedia PDF Downloads 259