Search results for: supersonic cross flow
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8329

Search results for: supersonic cross flow

7249 Numerical Erosion Investigation of Standalone Screen (Wire-Wrapped) Due to the Impact of Sand Particles Entrained in a Single-Phase Flow (Water Flow)

Authors: Ahmed Alghurabi, Mysara Mohyaldinn, Shiferaw Jufar, Obai Younis, Abdullah Abduljabbar

Abstract:

Erosion modeling equations were typically acquired from regulated experimental trials for solid particles entrained in single-phase or multi-phase flows. Evidently, those equations were later employed to predict the erosion damage caused by the continuous impacts of solid particles entrained in streamflow. It is also well-known that the particle impact angle and velocity do not change drastically in gas-sand flow erosion prediction; hence an accurate prediction of erosion can be projected. On the contrary, high-density fluid flows, such as water flow, through complex geometries, such as sand screens, greatly affect the sand particles’ trajectories/tracks and consequently impact the erosion rate predictions. Particle tracking models and erosion equations are frequently applied simultaneously as a method to improve erosion visualization and estimation. In the present work, computational fluid dynamic (CFD)-based erosion modeling was performed using a commercially available software; ANSYS Fluent. The continuous phase (water flow) behavior was simulated using the realizable K-epsilon model, and the secondary phase (solid particles), having a 5% flow concentration, was tracked with the help of the discrete phase model (DPM). To accomplish a successful erosion modeling, three erosion equations from the literature were utilized and introduced to the ANSYS Fluent software to predict the screen wire-slot velocity surge and estimate the maximum erosion rates on the screen surface. Results of turbulent kinetic energy, turbulence intensity, dissipation rate, the total pressure on the screen, screen wall shear stress, and flow velocity vectors were presented and discussed. Moreover, the particle tracks and path-lines were also demonstrated based on their residence time, velocity magnitude, and flow turbulence. On one hand, results from the utilized erosion equations have shown similarities in screen erosion patterns, locations, and DPM concentrations. On the other hand, the model equations estimated slightly different values of maximum erosion rates of the wire-wrapped screen. This is solely based on the fact that the utilized erosion equations were developed with some assumptions that are controlled by the experimental lab conditions.

Keywords: CFD simulation, erosion rate prediction, material loss due to erosion, water-sand flow

Procedia PDF Downloads 145
7248 Experimental Investigation of Counter-Flow Ranque–Hilsch Vortex Tube Using Humid Air

Authors: Hussein M. Maghrabie, M. Attalla, Hany. A. Mohamed, M. Salem, E. Specht

Abstract:

An experimental investigation is carried out on counter-flow Ranque–Hilsch vortex tube (RHVT). The present work is carried out to study the effect of nozzle aspect ratio, tube length and the inlet pressure (P_i) on the coefficient of performance and energy separation of a RHVT. Further, the effect of moist air with different relative humidity (RH) 40, 60, 80 % is also achieved. The air relative humidity is adjusted using air humidification/dehumidification unit. The experimental study accomplished for number of nozzle N=6, with inner diameter D=7.5 mm., and length of the vortex tube (L) 75, 97.5, and 112.5 mm. The results show that the relative humidity has a significant effect on coefficient of performance and energy separation of a RHVT.

Keywords: COP, counter-flow Ranque–Hilsch vortex tube, energy separation, humid air

Procedia PDF Downloads 502
7247 Numerical Simulation of High Strength Steel Hot-Finished Elliptical Hollow Section Subjected to Uniaxial Eccentric Compression

Authors: Zhengyi Kong, Xueqing Wang, Quang-Viet Vu

Abstract:

In this study, the structural behavior of high strength steel (HSS) hot-finished elliptical hollow section (EHS) subjected to uniaxial eccentric compression is investigated. A finite element method for predicting the cross-section resistance of HSS hot-finished EHS is developed using ABAQUS software, which is then verified by comparison with previous experiments. The validated finite element method is employed to carry out parametric studies for investigating the structural behavior of HSS hot-finished EHS under uniaxial eccentric compression and evaluate the current design guidance for HSS hot-finished EHS. Different parameters, such as the radius of the larger and smaller outer diameter of EHS, thickness of EHS, eccentricity, and material property, are considered. The resulting data from 84 finite element models are used to obtain the relationship between the cross-section resistance of HSS hot-finished EHS and cross-section slenderness. It is concluded that current design provisions, such as EN 1993-1-1, BS 5950-1, AS4100, and Gardner et al., are conservative for predicting the HSS hot-finished EHS under uniaxial eccentric compression.

Keywords: hot-finished, elliptical hollow section, uniaxial eccentric compression, finite element method

Procedia PDF Downloads 126
7246 Numerical Investigation of Wastewater ‎Rheological Characteristics on Flow Field ‎Inside a Sewage Network

Authors: Seyed-Mohammad-Kazem Emami, Behrang Saki, Majid Mohammadian

Abstract:

The wastewater flow field inside a sewage network including pipe and ‎manhole was investigated using a Computational Fluid Dynamics ‎‎(CFD) model. The numerical model is developed by incorporating a ‎rheological model to calculate the viscosity of wastewater fluid by ‎means of open source toolbox OpenFOAM. The rheological ‎properties of prepared wastewater fluid suspensions are first measured ‎using a BrookField LVDVII Pro+ viscometer with an enhanced UL ‎adapter and then correlated the suitable rheological viscosity model ‎values from the measured rheological properties. The results show the ‎significant effects of rheological characteristics of wastewater fluid on ‎the flow domain of sewer system. Results were compared and ‎discussed with the commonly used Newtonian model to evaluate the ‎differences for velocity profile, pressure and shear stress. ‎

Keywords: Non-Newtonian flows, Wastewater, Numerical simulation, Rheology, Sewage Network

Procedia PDF Downloads 114
7245 Natural Convection in Wavy-Wall Cavities Filled with Power-Law Fluid

Authors: Cha’o-Kuang Chen, Ching-Chang Cho

Abstract:

This paper investigates the natural convection heat transfer performance in a complex-wavy-wall cavity filled with power-law fluid. In performing the simulations, the continuity, Cauchy momentum and energy equations are solved subject to the Boussinesq approximation using a finite volume method. The simulations focus specifically on the effects of the flow behavior index in the power-law model and the Rayleigh number on the flow streamlines, isothermal contours and mean Nusselt number within the cavity. The results show that pseudoplastic fluids have a better heat transfer performance than Newtonian or dilatant fluids. Moreover, it is shown that for Rayleigh numbers greater than Ra=103, the mean Nusselt number has a significantly increase as the flow behavior index is decreased.

Keywords: non-Newtonian fluid, power-law fluid, natural convection, heat transfer enhancement, cavity, wavy wall

Procedia PDF Downloads 248
7244 Changes in Pulmonary Functions in Diabetes Mellitus Type 2

Authors: N. Anand, P. S. Nayyer, V. Rana, S. Verma

Abstract:

Background: Diabetes mellitus is a group of disorders characterized by hyperglycemia and associated with microvascular and macrovascular complications. Among the lesser known complications is the involvement of respiratory system. Changes in pulmonary volume, diffusion and elastic properties of lungs as well as the performance of the respiratory muscles lead to a restrictive pattern in lung functions. The present study was aimed to determine the changes in various parameters of pulmonary function tests amongst patients with Type 2 Diabetes Mellitus and also try to study the effect of duration of Diabetes Mellitus on pulmonary function tests. Methods: It was a cross sectional study performed at Dr Baba Saheb Ambedkar Hospital and Medical College in, Delhi, A Tertiary care referral centre which included 200 patients divided into 2 groups. The first group included diagnosed patients with diabetes and the second group included controls. Cases and controls symptomatic for any acute or chronic Respiratory or Cardiovascular illness or a history of smoking were excluded. Both the groups were subjected to spirometry to evaluate for the pulmonary function tests. Result: The mean Forced Vital Capacity (FVC), Forced Expiratory Volume in first second (FEV1), Peak Expiratory Flow Rate(PEFR) was found to be significantly decreased ((P < 0.001) as compared to controls while the mean ratio of Forced Expiratory Volume in First second to Forced Vital Capacity was not significantly decreased( p>0.005). There was no correlation seen with duration of the disease. Conclusion: Forced Vital Capacity (FVC), Forced Expiratory Volume in first second (FEV1), Peak Expiratory Flow Rate(PEFR) were found to be significantly decreased in patients of Diabetes mellitus while ratio of Forced Expiratory Volume in First second to Forced Vital Capacity (FEV1/FVC) was not significantly decreased. The duration of Diabetes mellitus was not found to have any statistically significant effect on Pulmonary function tests (p > 0.005).

Keywords: diabetes mellitus, pulmonary function tests, forced vital capacity, forced expiratory volume in first second

Procedia PDF Downloads 351
7243 Variation of Streamwise and Vertical Turbulence Intensity in a Smooth and Rough Bed Open Channel Flow

Authors: M. Abdullah Al Faruque, Ram Balachandar

Abstract:

An experimental study with four different types of bed conditions was carried out to understand the effect of roughness in open channel flow at two different Reynolds numbers. The bed conditions include a smooth surface and three different roughness conditions which were generated using sand grains with a median diameter of 2.46 mm. The three rough conditions include a surface with distributed roughness, a surface with continuously distributed roughness and a sand bed with a permeable interface. A commercial two-component fibre-optic LDA system was used to conduct the velocity measurements. The variables of interest include the mean velocity, turbulence intensity, the correlation between the streamwise and the wall normal turbulence, Reynolds shear stress and velocity triple products. Quadrant decomposition was used to extract the magnitude of the Reynolds shear stress of the turbulent bursting events. The effect of roughness was evident throughout the flow depth. The results show that distributed roughness has the greatest roughness effect followed by the sand bed and the continuous roughness. Compared to the smooth bed, the streamwise turbulence intensity reduces but the vertical turbulence intensity increases at a location very close to the bed due to the introduction of roughness. Although the same sand grain is used to create the three different rough bed conditions, the difference in the turbulence intensity is an indication that the specific geometry of the roughness has an influence on turbulence structure.

Keywords: open channel flow, smooth and rough bed, Reynolds number, turbulence

Procedia PDF Downloads 309
7242 Study on Ecological Water Demand Evaluation of Typical Mountainous Rivers in Zhejiang Province: Taking Kaihua River as an Example

Authors: Kaiping Xu, Aiju You, Lei Hua

Abstract:

In view of the ecological environmental problems and protection needs of mountainous rivers in Zhejiang province, a suitable ecological water demand evaluation system was established based on investigation and monitoring. Taking the Kaihua river as an example, the research on ecological water demand and the current situation evaluation were carried out. The main types of ecological water demand in Majin River are basic ecological flow and lake wetland outside the river, and instream flow and water demands for water quality in Zhongcun river. In the wet season, each ecological water demand is 18.05m3/s and 2.56m3 / s, and in the dry season is 3.00m3/s and 0.61m3/s. Three indexes of flow, duration and occurrence time are used to evaluate the ecological water demand. The degree of ecological water demand in the past three years is low level of satisfaction. Meanwhile, the existing problems are analyzed, and put forward reasonable and operable safeguards and suggestions.

Keywords: Zhejiang province, mountainous river, ecological water demand, Kaihua river, evaluation

Procedia PDF Downloads 204
7241 Using Flow Line Modelling, Remote Sensing for Reconstructing Glacier Volume Loss Model for Athabasca Glacier, Canadian Rockies

Authors: Rituparna Nath, Shawn J. Marshall

Abstract:

Glaciers are one of the main sensitive climatic indicators, as they respond strongly to small climatic shifts. We develop a flow line model of glacier dynamics to simulate the past and future extent of glaciers in the Canadian Rocky Mountains, with the aim of coupling this model within larger scale regional climate models of glacier response to climate change. This paper will focus on glacier-climate modeling and reconstructions of glacier volume from the Little Ice Age (LIA) to present for Athabasca Glacier, Alberta, Canada. Glacier thickness, volume and mass change will be constructed using flow line modelling and examination of different climate scenarios that are able to give good reconstructions of LIA ice extent. With the availability of SPOT 5 imagery, Digital elevation models and GIS Arc Hydro tool, ice catchment properties-glacier width and LIA moraines have been extracted using automated procedures. Simulation of glacier mass change will inform estimates of meltwater run off over the historical period and model calibration from the LIA reconstruction will aid in future projections of the effects of climate change on glacier recession. Furthermore, the model developed will be effective for further future studies with ensembles of glaciers.

Keywords: flow line modeling, Athabasca Glacier, glacier mass balance, Remote Sensing, Arc hydro tool, little ice age

Procedia PDF Downloads 256
7240 Dynamic Network Approach to Air Traffic Management

Authors: Catia S. A. Sima, K. Bousson

Abstract:

Congestion in the Terminal Maneuvering Areas (TMAs) of larger airports impacts all aspects of air traffic flow, not only at national level but may also induce arrival delays at international level. Hence, there is a need to monitor appropriately the air traffic flow in TMAs so that efficient decisions may be taken to manage their occupancy rates. It would be desirable to physically increase the existing airspace to accommodate all existing demands, but this question is entirely utopian and, given this possibility, several studies and analyses have been developed over the past decades to meet the challenges that have arisen due to the dizzying expansion of the aeronautical industry. The main objective of the present paper is to propose concepts to manage and reduce the degree of uncertainty in the air traffic operations, maximizing the interest of all involved, ensuring a balance between demand and supply, and developing and/or adapting resources that enable a rapid and effective adaptation of measures to the current context and the consequent changes perceived in the aeronautical industry. A central task is to emphasize the increase in air traffic flow management capacity to the present day, taking into account not only a wide range of methodologies but also equipment and/or tools already available in the aeronautical industry. The efficient use of these resources is crucial as the human capacity for work is limited and the actors involved in all processes related to air traffic flow management are increasingly overloaded and, as a result, operational safety could be compromised. The methodology used to answer and/or develop the issues listed above is based on the advantages promoted by the application of Markov Chain principles that enable the construction of a simplified model of a dynamic network that describes the air traffic flow behavior anticipating their changes and eventual measures that could better address the impact of increased demand. Through this model, the proposed concepts are shown to have potentials to optimize the air traffic flow management combined with the operation of the existing resources at each moment and the circumstances found in each TMA, using historical data from the air traffic operations and specificities found in the aeronautical industry, namely in the Portuguese context.

Keywords: air traffic flow, terminal maneuvering area, TMA, air traffic management, ATM, Markov chains

Procedia PDF Downloads 117
7239 Mechanical and Microstructural Properties of Rotary-Swaged Wire of Commercial-Purity Titanium

Authors: Michal Duchek, Jan Palán, Tomas Kubina

Abstract:

Bars made of titanium grade 2 and grade 4 were subjected to rotary forging with up to 2.2 true strain reduction in the cross-section from 10 to 3.81 mm. During progressive deformation, grain refinement in the transverse direction took place. In the longitudinal direction, ultrafine microstructure has not developed. It has been demonstrated that titanium grade 2 strengthens more than grade 4. The ultimate tensile strength increased from 650 MPa to 1040 MPa in titanium grade 4. Hardness profiles on the cross section in both materials show an increase in the centre of the wire.

Keywords: commercial-purity titanium, wire, rotary swaging, tensile test, hardness, modulus of elasticity, microstructure

Procedia PDF Downloads 220
7238 Long Waves Inundating through and around an Array of Circular Cylinders

Authors: Christian Klettner, Ian Eames, Tristan Robinson

Abstract:

Tsunami is characterised by their very long time periods and can have devastating consequences when these inundate through built-up coastal regions as in the 2004 Indian Ocean and 2011 Tohoku Tsunami. This work aims to investigate the effect of these long waves on the flow through and around a group of buildings, which are abstracted to circular cylinders. The research approach used in this study was using experiments and numerical simulations. Large-scale experiments were carried out at HR Wallingford. The novelty of these experiments is (I) the number of bodies present (up to 64), (II) the long wavelength of the input waves (80 seconds) and (III) the width of the tank (4m) which gives the unique opportunity to investigate three length scales, namely the diameter of the building, the diameter of the array and the width of the tank. To complement the experiments, dam break flow past the same arrays is investigated using three-dimensional numerical simulations in OpenFOAM. Dam break flow was chosen as it is often used as a surrogate for the tsunami in previous research and is used here as there are well defined initial conditions and high quality previous experimental data for the case of a single cylinder is available. The focus of this work is to better understand the effect of the solid void fraction on the force and flow through and around the array. New qualitative and quantitative diagnostics are developed and tested to analyse the complex coupled interaction between the cylinders.

Keywords: computational fluid dynamics, tsunami, forces, complex geometry

Procedia PDF Downloads 176
7237 Analysis of Thermal Damage Characteristics of High Pressure Turbine Blade According to Off-Design Operating Conditions

Authors: Seon Ho Kim, Minho Bang, Seok Min Choi, Young Moon Lee, Dong Kwan Kim, Hyung Hee Cho

Abstract:

Gas turbines are heat engines that convert chemical energy into electrical energy through mechanical energy. Since their high energy density per unit volume and low pollutant emissions, gas turbines are classified as clean energy. In order to obtain better performance, the turbine inlet temperature of the current gas turbine is operated at about 1600℃, and thermal damage is a very serious problem. Especially, these thermal damages are more prominent in off-design conditions than in design conditions. In this study, the thermal damage characteristics of high temperature components of a gas turbine made of a single crystal material are studied numerically for the off-design operating conditions. The target gas turbine is configured as a reheat cycle and is operated in peak load operation mode, not normal operation. In particular, the target gas turbine features a lot of low-load operation. In this study, a commercial code, ANSYS 18.2, was used for analyzing the thermal-flow coupling problems. As a result, the flow separation phenomenon on the pressure side due to the flow reduction was remarkable at the off-design condition, and the high heat transfer coefficient at the upper end of the suction surface due to the tip leakage flow was appeared.

Keywords: gas turbine, single crystal blade, off-design, thermal analysis

Procedia PDF Downloads 202
7236 Propagation of Weak Non-Linear Waves in Non-Equilibrium Flow

Authors: J. Jena, Monica Saxena

Abstract:

In this paper, the propagation of weak nonlinear waves in non-equilibrium flow has been studied in detail using the perturbation method. The expansive action of receding piston undergoing infinite acceleration has been discussed. Central expansion fan, compression waves and shock fronts have been discussed and the solutions up to the first order in the characteristic plane and physical plane have been obtained.

Keywords: Characteristic wave front, weak non-linear waves, central expansion fan, compression waves

Procedia PDF Downloads 349
7235 Development of the Web-Based Multimedia N-Screen Service System for Cross Platform

Authors: S. Bae, J. Shin, S. Lee

Abstract:

As the development of smart devices such as Smart TV, Smartphone, Tablet PC, Laptop, the interest in N-Screen Services that can be cross-linked with heterogeneous devices is increasing. N-Screen means User-centric services that can share and constantly watch multimedia contents anytime and anywhere. However, the existing N-Screen system has the limitation that N-Screen system has to implement the application for each platform and device to provide multimedia service. To overcome this limitation, Multimedia N-Screen Service System is proposed through the web, and it is independent of different environments. The combination of Web and cloud computing technologies from this study results in increasing efficiency and reduction in costs.

Keywords: N-screen, web, cloud, multimedia

Procedia PDF Downloads 284
7234 Reduced Lung Volume: A Possible Cause of Stuttering

Authors: Shantanu Arya, Sachin Sakhuja, Gunjan Mehta, Sanjay Munjal

Abstract:

Stuttering may be defined as a speech disorder affecting the fluency domain of speech and characterized by covert features like word substitution, omittance and circumlocution and overt features like prolongation of sound, syllables and blocks etc. Many etiologies have been postulated to explain stuttering based on various experiments and research. Moreover, Breathlessness has also been reported by many individuals with stuttering for which breathing exercises are generally advised. However, no studies reporting objective evaluation of the pulmonary capacity and further objective assessment of the efficacy of breathing exercises have been conducted. Pulmonary Function Test which evaluates parameters like Forced Vital Capacity, Peak Expiratory Flow Rate, Forced expiratory flow Rate can be used to study the pulmonary behavior of individuals with stuttering. The study aimed: a) To identify speech motor & physiologic behaviours associated with stuttering by administering PFT. b) To recognize possible reasons for an association between speech motor behaviour & stuttering severity. In this regard, PFT tests were administered on individuals who reported signs and symptoms of stuttering and showed abnormal scores on Stuttering Severity Index. Parameters like Forced Vital Capacity, Forced Expiratory Volume, Peak Expiratory Flow Rate (L/min), Forced Expiratory Flow Rate (L/min) were evaluated and correlated with scores of Stuttering Severity Index. Results showed significant decrease in the parameters (lower than normal scores) in individuals with established stuttering. Strong correlation was also found between degree of stuttering and the degree of decrease in the pulmonary volumes. Thus, it is evident that fluent speech requires strong support of lung pressure and requisite volumes. Further research in demonstrating the efficacy of abdominal breathing exercises in this regard is needed.

Keywords: forced expiratory flow rate, forced expiratory volume, forced vital capacity, peak expiratory flow rate, stuttering

Procedia PDF Downloads 252
7233 Achieving Flow at Work: An Experience Sampling Study to Comprehend How Cognitive Task Characteristics and Work Environments Predict Flow Experiences

Authors: Jonas De Kerf, Rein De Cooman, Sara De Gieter

Abstract:

For many decades, scholars have aimed to understand how work can become more meaningful by maximizing both potential and enhancing feelings of satisfaction. One of the largest contributions towards such positive psychology was made with the introduction of the concept of ‘flow,’ which refers to a condition in which people feel intense engagement and effortless action. Since then, valuable research on work-related flow has indicated that this state of mind is related to positive outcomes for both organizations (e.g., social, supportive climates) and workers (e.g., job satisfaction). Yet, scholars still do not fully comprehend how such deep involvement at work is obtained, given the notion that flow is considered a short-term, complex, and dynamic experience. Most research neglects that people who experience flow ought to be optimally challenged so that intense concentration is required. Because attention is at the core of this enjoyable state of mind, this study aims to comprehend how elements that affect workers’ cognitive functioning impact flow at work. Research on cognitive performance suggests that working on mentally demanding tasks (e.g., information processing tasks) requires workers to concentrate deeply, as a result leading to flow experiences. Based on social facilitation theory, working on such tasks in an isolated environment eases concentration. Prior research has indicated that working at home (instead of working at the office) or in a closed office (rather than in an open-plan office) impacts employees’ overall functioning in terms of concentration and productivity. Consequently, we advance such knowledge and propose an interaction by combining cognitive task characteristics and work environments among part-time teleworkers. Hence, we not only aim to shed light on the relation between cognitive tasks and flow but also provide empirical evidence that workers performing such tasks achieve the highest states of flow while working either at home or in closed offices. In July 2022, an experience-sampling study will be conducted that uses a semi-random signal schedule to understand how task and environment predictors together impact part-time teleworkers’ flow. More precisely, about 150 knowledge workers will fill in multiple surveys a day for two consecutive workweeks to report their flow experiences, cognitive tasks, and work environments. Preliminary results from a pilot study indicate that on a between level, tasks high in information processing go along with high self-reported fluent productivity (i.e., making progress). As expected, evidence was found for higher fluency in productivity for workers performing information processing tasks both at home and in a closed office, compared to those performing the same tasks at the office or in open-plan offices. This study expands the current knowledge on work-related flow by looking at a task and environmental predictors that enable workers to obtain such a peak state. While doing so, our findings suggest that practitioners should strive for ideal alignments between tasks and work locations to work with both deep involvement and gratification.

Keywords: cognitive work, office lay-out, work location, work-related flow

Procedia PDF Downloads 87
7232 Parental Negative Emotional States, Parenting Style and Child Emotional and Behavioural Problems: Australia-Indonesia Cross-Cultural Study

Authors: Yulina E. Riany, Divna Haslam, Matthew Sanders

Abstract:

This cross-cultural study aims to compare the level of parental depression and stress, parenting style use, and child emotional and behavioural problems between parents in Australia as an example of a Western country and parents in Indonesia as an example of Asian culture. A series of hierarchical regressions were undertaken to determine two models examining the factors that predict child problems residing in Australia (Model 1) and in Indonesia (Model 2). The online survey was completed by 179 parents in Australia and 448 parents in Indonesia. Results indicated that Australian parents reported higher levels of depression, authoritative parenting and higher levels of child misbehaviours compared to Indonesian parents. In comparison, Indonesian parents reported higher authoritarian parenting. Analyses performed to examine Model 1 and 2 revealed that parental negative emotional states and parenting style predicted child emotional and behavioural problems in both countries.

Keywords: cross-cutural study, parental stress, parenting, child misbehaviour

Procedia PDF Downloads 100
7231 The Patterns of Cross-Sentence: An Event-Related Potential Study of Mathematical Word Problem

Authors: Tien-Ching Yao, Ching-Ching Lu

Abstract:

Understanding human language processing is one of the main challenges of current cognitive neuroscience. The aims of the present study were to use a sentence decision task combined with event-related potentials to investigate the psychological reality of "cross-sentence patterns." Therefore, we take the math word problems the experimental materials and use the ERPs' P600 component to verify. In this study, the experimental material consisted of 200 math word problems with three different conditions were used ( multiplication word problems、division word problems type 1、division word problems type 2 ). Eighteen Mandarin native speakers participated in the ERPs study (14 of whom were female). The result of the grand average waveforms suggests a later posterior positivity at around 500ms - 900ms. These findings were tested statistically using repeated measures ANOVAs at the component caused by the stimulus type of different questions. Results suggest that three conditions present significant (P < 0.05) on the Mean Amplitude, Latency, and Peak Amplitude. The result showed the characteristic timing and posterior scalp distribution of a P600 effect. We interpreted these characteristic responses as the psychological reality of "cross-sentence patterns." These results provide insights into the sentence processing issues in linguistic theory and psycholinguistic models of language processing and advance our understanding of how people make sense of information during language comprehension.

Keywords: language processing, sentence comprehension, event-related potentials, cross-sentence patterns

Procedia PDF Downloads 132
7230 Scrutinizing the Effective Parameters on Cuttings Movement in Deviated Wells: Experimental Study

Authors: Siyamak Sarafraz, Reza Esmaeil Pour, Saeed Jamshidi, Asghar Molaei Dehkordi

Abstract:

Cutting transport is one of the major problems in directional and extended reach oil and gas wells. Lack of sufficient attention to this issue may bring some troubles such as casing running, stuck pipe, excessive torque and drag, hole pack off, bit wear, decreased the rate of penetration (ROP), increased equivalent circulation density (ECD) and logging. Since it is practically impossible to directly observe the behavior of deep wells, a test setup was designed to investigate cutting transport phenomena. This experimental work carried out to scrutiny behavior of the effective variables in cutting transport. The test setup contained a test section with 17 feet long that made of a 3.28 feet long transparent glass pipe with 3 inch diameter, a storage tank with 100 liters capacity, drill pipe rotation which made of stainless steel with 1.25 inches diameter, pump to circulate drilling fluid, valve to adjust flow rate, bit and a camera to record all events which then converted to RGB images via the Image Processing Toolbox. After preparation of test process, each test performed separately, and weights of the output particles were measured and compared with each other. Observation charts were plotted to assess the behavior of viscosity, flow rate and RPM in inclinations of 0°, 30°, 60° and 90°. RPM was explored with other variables such as flow rate and viscosity in different angles. Also, effect of different flow rate was investigated in directional conditions. To access the precise results, captured image were analyzed to find out bed thickening and particles behave in the annulus. The results of this experimental study demonstrate that drill string rotation helps particles to be suspension and reduce the particle deposition cutting movement increased significantly. By raising fluid velocity, laminar flow converted to turbulence flow in the annulus. Increases in flow rate in horizontal section by considering a lower range of viscosity is more effective and improved cuttings transport performance.

Keywords: cutting transport, directional drilling, flow rate, hole cleaning, pipe rotation

Procedia PDF Downloads 264
7229 Modeling Depth Averaged Velocity and Boundary Shear Stress Distributions

Authors: Ebissa Gadissa Kedir, C. S. P. Ojha, K. S. Hari Prasad

Abstract:

In the present study, the depth-averaged velocity and boundary shear stress in non-prismatic compound channels with three different converging floodplain angles ranging from 1.43ᶱ to 7.59ᶱ have been studied. The analytical solutions were derived by considering acting forces on the channel beds and walls. In the present study, five key parameters, i.e., non-dimensional coefficient, secondary flow term, secondary flow coefficient, friction factor, and dimensionless eddy viscosity, were considered and discussed. An expression for non-dimensional coefficient and integration constants was derived based on the boundary conditions. The model was applied to different data sets of the present experiments and experiments from other sources, respectively, to examine and analyse the influence of floodplain converging angles on depth-averaged velocity and boundary shear stress distributions. The results show that the non-dimensional parameter plays important in portraying the variation of depth-averaged velocity and boundary shear stress distributions with different floodplain converging angles. Thus, the variation of the non-dimensional coefficient needs attention since it affects the secondary flow term and secondary flow coefficient in both the main channel and floodplains. The analysis shows that the depth-averaged velocities are sensitive to a shear stress-dependent model parameter non-dimensional coefficient, and the analytical solutions are well agreed with experimental data when five parameters are included. It is inferred that the developed model may facilitate the interest of others in complex flow modeling.

Keywords: depth-average velocity, converging floodplain angles, non-dimensional coefficient, non-prismatic compound channels

Procedia PDF Downloads 61
7228 Implementation of an Economic – Probabilistic Model to Risk Analysis of ERP Project in Technological Innovation Firms – A Case Study of ICT Industry in Iran

Authors: Reza Heidari, Maryam Amiri

Abstract:

In a technological world, many countries have a tendency to fortifying their companies and technological infrastructures. Also, one of the most important requirements for developing technology is innovation, and then, all companies are struggling to consider innovation as a basic principle. Since, the expansion of a product need to combine different technologies, therefore, different innovative projects would be run in the firms as a base of technology development. In such an environment, enterprise resource planning (ERP) has special significance in order to develop and strengthen of innovations. In this article, an economic-probabilistic analysis was provided to perform an implementation project of ERP in the technological innovation (TI) based firms. The used model in this article assesses simultaneously both risk and economic analysis in view of the probability of each event that is jointly between economical approach and risk investigation approach. To provide an economic-probabilistic analysis of risk of the project, activities and milestones in the cash flow were extracted. Also, probability of occurrence of each of them was assessed. Since, Resources planning in an innovative firm is the object of this project. Therefore, we extracted various risks that are in relation with innovative project and then they were evaluated in the form of cash flow. This model, by considering risks affecting the project and the probability of each of them and assign them to the project's cash flow categories, presents an adjusted cash flow based on Net Present Value (NPV) and with probabilistic simulation approach. Indeed, this model presented economic analysis of the project based on risks-adjusted. Then, it measures NPV of the project, by concerning that these risks which have the most effect on technological innovation projects, and in the following measures probability associated with the NPV for each category. As a result of application of presented model in the information and communication technology (ICT) industry, provided an appropriate analysis of feasibility of the project from the point of view of cash flow based on risk impact on the project. Obtained results can be given to decision makers until they can practically have a systematically analysis of the possibility of the project with an economic approach and as moderated.

Keywords: cash flow categorization, economic evaluation, probabilistic, risk assessment, technological innovation

Procedia PDF Downloads 388
7227 Risk Management and Security Practice in Customs Supply Chain: Application of Cross ABC Method to the Moroccan Customs

Authors: Lamia Hammadi, Abdellah Ait Ouhman, Aomar Ibourk

Abstract:

It is widely assumed that the case of Customs Supply Chain is classified as a complex system, due to not only the variety and large number of actors, but also their complex structural links, and the interactions between these actors, that’s why this system is subject to various types of Risks. The economic, political and social impacts of those risks are highly detrimental to countries, businesses and the public, for this reason, Risk management in the customs supply chain is becoming a crucial issue to ensure the sustainability, security and safety. The main characteristic of customs risk management approach is determining which goods and means of transport should be examined? To what extend? And where future compliance resources should be directed? The purposes of this article are, firstly to deal with the concept of customs supply chain, secondly present our risk management approach based on Cross Activity Based Costing (ABC) Method as an interactive tool to support decision making in customs risk management. Finally, analysis of case study of Moroccan customs to putting theory into practice and will thus draw together the various elements of a structured and efficient risk management approach.

Keywords: cross ABC method, customs supply chain, risk, risk management

Procedia PDF Downloads 359
7226 Effect of a Stepwise Discontinuity on a 65 Degree Delta Wing

Authors: Nishit L. Sanil, Raza M. Khan

Abstract:

Increasing lift effectively at higher angles of attack has always been a daunting challenge in aviation especially on a delta wing. These are used on military jet fighter planes and has some undesirable characteristics, notably flow separation at high angles of attack and high drag at low speeds. In order to solve this problem, a design modification is modeled on a delta wing which would increase the lift so that we can improve maneuverability. To attain an increase in the lift of a 65 degree delta wing at higher angles of attack, a step-wise discontinuity is created at the upper surface of the delta wing. A normal delta wing is validated for comparison which would thereby give us a measure of flow separation and coefficient of lift affected by the modification. The results obtained deliver a significant increase in lift at higher angles of attack thereby delaying stall. Hence the benefits of the modification would aid the potential designs of aircraft’s in the time to come.

Keywords: coefficient of lift, delta wing, flow separation, step-wise discontinuity

Procedia PDF Downloads 287
7225 Comparative Investigation of Miniaturized Antennas Based on Chiral Slotted Ground Plane

Authors: Oussema Tabbabi, Mondher Laabidi, Fethi Choubani, J. David

Abstract:

This study presents a miniaturized antenna based on chiral metamaterials slotted ground plane. To decrease resonant frequency while keeping the antennas physical dimensions the same, we propose a two novel patch antennas with double Z and cross slots on the ground plane. The length of the each type of slot are also altered to investigate the effect on miniaturization performance. Resonance frequency reduction has been achieved nearly to 30% and 23% as well as size reduction of almost 28% and 22% for the double Z and the cross shape respectively.

Keywords: chiral metamaterials, miniaturized antenna, miniaturization, resonance frequency

Procedia PDF Downloads 442
7224 Synthesis of Double Dye-Doped Silica Nanoparticles and Its Application in Paper-Based Chromatography

Authors: Ka Ho Yau, Jan Frederick Engels, Kwok Kei Lai, Reinhard Renneberg

Abstract:

Lateral flow test is a prevalent technology in various sectors such as food, pharmacology and biomedical sciences. Colloidal gold (CG) is widely used as the signalling molecule because of the ease of synthesis, bimolecular conjugation and its red colour due to intrinsic SPRE. However, the production of colloidal gold is costly and requires vigorous conditions. The stability of colloidal gold are easily affected by environmental factors such as pH, high salt content etc. Silica nanoparticles are well known for its ease of production and stability over a wide range of solvents. Using reverse micro-emulsion (w/o), silica nanoparticles with different sizes can be produced precisely by controlling the amount of water. By incorporating different water-soluble dyes, a rainbow colour of the silica nanoparticles could be produced. Conjugation with biomolecules such as antibodies can be achieved after surface modification of the silica nanoparticles with organosilane. The optimum amount of the antibodies to be labelled was determined by Bradford Assay. In this work, we have demonstrated the ability of the dye-doped silica nanoparticles as a signalling molecule in lateral flow test, which showed a semi-quantitative measurement of the analyte. The image was further analysed for the LOD=10 ng of the analyte. The working range and the linear range of the test were from 0 to 2.15μg/mL and from 0 to 1.07 μg/mL (R2=0.988) respectively. The performance of the tests was comparable to those using colloidal gold with the advantages of lower cost, enhanced stability and having a wide spectrum of colours. The positives lines can be imaged by naked eye or by using a mobile phone camera for a better quantification. Further research has been carried out in multicolour detection of different biomarkers simultaneously. The preliminary results were promising as there was little cross-reactivity being observed for an optimized system. This approach provides a platform for multicolour detection for a set of biomarkers that enhances the accuracy of diseases diagnostics.

Keywords: colorimetric detection, immunosensor, paper-based biosensor, silica

Procedia PDF Downloads 368
7223 Numerical Study of Bubbling Fluidized Beds Operating at Sub-atmospheric Conditions

Authors: Lanka Dinushke Weerasiri, Subrat Das, Daniel Fabijanic, William Yang

Abstract:

Fluidization at vacuum pressure has been a topic that is of growing research interest. Several industrial applications (such as drying, extractive metallurgy, and chemical vapor deposition (CVD)) can potentially take advantage of vacuum pressure fluidization. Particularly, the fine chemical industry requires processing under safe conditions for thermolabile substances, and reduced pressure fluidized beds offer an alternative. Fluidized beds under vacuum conditions provide optimal conditions for treatment of granular materials where the reduced gas pressure maintains an operational environment outside of flammability conditions. The fluidization at low-pressure is markedly different from the usual gas flow patterns of atmospheric fluidization. The different flow regimes can be characterized by the dimensionless Knudsen number. Nevertheless, hydrodynamics of bubbling vacuum fluidized beds has not been investigated to author’s best knowledge. In this work, the two-fluid numerical method was used to determine the impact of reduced pressure on the fundamental properties of a fluidized bed. The slip flow model implemented by Ansys Fluent User Defined Functions (UDF) was used to determine the interphase momentum exchange coefficient. A wide range of operating pressures was investigated (1.01, 0.5, 0.25, 0.1 and 0.03 Bar). The gas was supplied by a uniform inlet at 1.5Umf and 2Umf. The predicted minimum fluidization velocity (Umf) shows excellent agreement with the experimental data. The results show that the operating pressure has a notable impact on the bed properties and its hydrodynamics. Furthermore, it also shows that the existing Gorosko correlation that predicts bed expansion is not applicable under reduced pressure conditions.

Keywords: computational fluid dynamics, fluidized bed, gas-solid flow, vacuum pressure, slip flow, minimum fluidization velocity

Procedia PDF Downloads 120
7222 Design and Development of Constant Stress Composite Cantilever Beam

Authors: Vinod B. Suryawanshi, Ajit D. Kelkar

Abstract:

Glass fiber reinforced composites materials, due their unique properties such as high mechanical strength to weight ratio, corrosion resistance, and impact resistance have huge potential as structural materials in automotive, construction and transportation applications. However, these properties often come at higher cost owing to complex design methods, difficult manufacturing processes and raw material cost. In this paper, a cost effective design and manufacturing approach for a composite cantilever beam structure is presented. A constant stress (variable cross section) beam concept has been used to design and optimize the shape of composite cantilever beam and thus obtain the reduction in material used. The variable cross section beam was fabricated from the glass epoxy prepregs using cost effective out of autoclave process. The drop ply technique has been successfully used to obtain the variation in the cross section along the span of the beam. In order to test the beam and validate the design, the beam was subjected to different end loads. Strain gauges were mounted along the length of the beam to obtain strains in the beam at different sections and loads. The strain values were used to calculate the flexural strength and bending stresses in the beam. The stresses obtained through strain measurements from the experiment were found to be uniform along the span of the beam, and thus validates the design. Finally, the finite element model for the constant stress beam was developed using commercial finite element simulation software. It was observed that the simulation results agreed very well with the experimental results.

Keywords: beams, composites, constant cross-section, structures

Procedia PDF Downloads 333
7221 PSS®E Based Modelling, Simulation and Synchronous Interconnection of Eastern Grid and North-Eastern Regional Grid of India

Authors: Toushik Maiti, Saibal Chatterjee, Kamaljyoti Gogoi, Arijit Basuray

Abstract:

Eastern Regional(ER) Grid and North Eastern Regional (NER) Grid are two major grids of Eastern Part of India. Both of the grid consists of voltage level 765kV, 400 kV, 220 kV and numerous buses at lower voltage range. Eastern Regional Grid and North Eastern Regional Grid are not only connected among themselves but are also connected to various other grids of India. ER and NER Grid having various HVDC lines or back to back systems which form the total network. The studied system comprises of 340 buses of different voltage levels and transmission lines running over a length of 32089 km. The validation of load flow has been done using IEEE STANDARD 30 bus system. The power flow simulation analysis has been performed after synchronizing both the Eastern Grid and North-Eastern Regional Grid of India using Power System Simulators for Engineering (PSS®E) Important inferences has been drawn from the study.

Keywords: HVDC, load flow, PSS®E, unsymmetrical and symmetrical faults

Procedia PDF Downloads 365
7220 Spin Coherent States Without Squeezing

Authors: A. Dehghani, S. Shirin

Abstract:

We propose in this article a new configuration of quantum states, |α, β> := |α>×|β>. Which are composed of vector products of two different copies of spin coherent states, |α> and |β>. Some mathematical as well as physical properties of such states are discussed. For instance, it has been shown that the cross products of two coherent vectors remain coherent again. They admit a resolution of the identity through positive definite measures on the complex plane. They represent packets similar to the true coherent states, in other words we would not expect to take spin squeezing in any of the field quadratures Lˆx, Lˆy and Lˆz. Depending on the particular choice of parameters in the above scenarios, they can be converted into the so-called Dicke states which minimize the uncertainty relations of each pair of the angular momentum components.

Keywords: vector (Cross-)products, minimum uncertainty, angular momentum, measurement, Dicke states

Procedia PDF Downloads 391