Search results for: discrete feature vector
2064 Modeling Engagement with Multimodal Multisensor Data: The Continuous Performance Test as an Objective Tool to Track Flow
Authors: Mohammad H. Taheri, David J. Brown, Nasser Sherkat
Abstract:
Engagement is one of the most important factors in determining successful outcomes and deep learning in students. Existing approaches to detect student engagement involve periodic human observations that are subject to inter-rater reliability. Our solution uses real-time multimodal multisensor data labeled by objective performance outcomes to infer the engagement of students. The study involves four students with a combined diagnosis of cerebral palsy and a learning disability who took part in a 3-month trial over 59 sessions. Multimodal multisensor data were collected while they participated in a continuous performance test. Eye gaze, electroencephalogram, body pose, and interaction data were used to create a model of student engagement through objective labeling from the continuous performance test outcomes. In order to achieve this, a type of continuous performance test is introduced, the Seek-X type. Nine features were extracted including high-level handpicked compound features. Using leave-one-out cross-validation, a series of different machine learning approaches were evaluated. Overall, the random forest classification approach achieved the best classification results. Using random forest, 93.3% classification for engagement and 42.9% accuracy for disengagement were achieved. We compared these results to outcomes from different models: AdaBoost, decision tree, k-Nearest Neighbor, naïve Bayes, neural network, and support vector machine. We showed that using a multisensor approach achieved higher accuracy than using features from any reduced set of sensors. We found that using high-level handpicked features can improve the classification accuracy in every sensor mode. Our approach is robust to both sensor fallout and occlusions. The single most important sensor feature to the classification of engagement and distraction was shown to be eye gaze. It has been shown that we can accurately predict the level of engagement of students with learning disabilities in a real-time approach that is not subject to inter-rater reliability, human observation or reliant on a single mode of sensor input. This will help teachers design interventions for a heterogeneous group of students, where teachers cannot possibly attend to each of their individual needs. Our approach can be used to identify those with the greatest learning challenges so that all students are supported to reach their full potential.Keywords: affective computing in education, affect detection, continuous performance test, engagement, flow, HCI, interaction, learning disabilities, machine learning, multimodal, multisensor, physiological sensors, student engagement
Procedia PDF Downloads 952063 Adaptive Process Monitoring for Time-Varying Situations Using Statistical Learning Algorithms
Authors: Seulki Lee, Seoung Bum Kim
Abstract:
Statistical process control (SPC) is a practical and effective method for quality control. The most important and widely used technique in SPC is a control chart. The main goal of a control chart is to detect any assignable changes that affect the quality output. Most conventional control charts, such as Hotelling’s T2 charts, are commonly based on the assumption that the quality characteristics follow a multivariate normal distribution. However, in modern complicated manufacturing systems, appropriate control chart techniques that can efficiently handle the nonnormal processes are required. To overcome the shortcomings of conventional control charts for nonnormal processes, several methods have been proposed to combine statistical learning algorithms and multivariate control charts. Statistical learning-based control charts, such as support vector data description (SVDD)-based charts, k-nearest neighbors-based charts, have proven their improved performance in nonnormal situations compared to that of the T2 chart. Beside the nonnormal property, time-varying operations are also quite common in real manufacturing fields because of various factors such as product and set-point changes, seasonal variations, catalyst degradation, and sensor drifting. However, traditional control charts cannot accommodate future condition changes of the process because they are formulated based on the data information recorded in the early stage of the process. In the present paper, we propose a SVDD algorithm-based control chart, which is capable of adaptively monitoring time-varying and nonnormal processes. We reformulated the SVDD algorithm into a time-adaptive SVDD algorithm by adding a weighting factor that reflects time-varying situations. Moreover, we defined the updating region for the efficient model-updating structure of the control chart. The proposed control chart simultaneously allows efficient model updates and timely detection of out-of-control signals. The effectiveness and applicability of the proposed chart were demonstrated through experiments with the simulated data and the real data from the metal frame process in mobile device manufacturing.Keywords: multivariate control chart, nonparametric method, support vector data description, time-varying process
Procedia PDF Downloads 3002062 Communicative Strategies in Colombian Political Speech: On the Example of the Speeches of Francia Marquez
Authors: Danila Arbuzov
Abstract:
In this article the author examines the communicative strategies used in the Colombian political discourse, following the example of the speeches of the Vice President of Colombia Francia Marquez, who took office in 2022 and marked a new development vector for the Colombian nation. The lexical and syntactic means are analyzed to achieve the communicative objectives. The material presented may be useful for those who are interested in investigating various aspects of discursive linguistics, particularly political discourse, as well as the implementation of communicative strategies in certain types of discourse.Keywords: political discourse, communication strategies, Colombian political discourse, Colombia, manipulation
Procedia PDF Downloads 1152061 Improved Computational Efficiency of Machine Learning Algorithm Based on Evaluation Metrics to Control the Spread of Coronavirus in the UK
Authors: Swathi Ganesan, Nalinda Somasiri, Rebecca Jeyavadhanam, Gayathri Karthick
Abstract:
The COVID-19 crisis presents a substantial and critical hazard to worldwide health. Since the occurrence of the disease in late January 2020 in the UK, the number of infected people confirmed to acquire the illness has increased tremendously across the country, and the number of individuals affected is undoubtedly considerably high. The purpose of this research is to figure out a predictive machine learning archetypal that could forecast COVID-19 cases within the UK. This study concentrates on the statistical data collected from 31st January 2020 to 31st March 2021 in the United Kingdom. Information on total COVID cases registered, new cases encountered on a daily basis, total death registered, and patients’ death per day due to Coronavirus is collected from World Health Organisation (WHO). Data preprocessing is carried out to identify any missing values, outliers, or anomalies in the dataset. The data is split into 8:2 ratio for training and testing purposes to forecast future new COVID cases. Support Vector Machines (SVM), Random Forests, and linear regression algorithms are chosen to study the model performance in the prediction of new COVID-19 cases. From the evaluation metrics such as r-squared value and mean squared error, the statistical performance of the model in predicting the new COVID cases is evaluated. Random Forest outperformed the other two Machine Learning algorithms with a training accuracy of 99.47% and testing accuracy of 98.26% when n=30. The mean square error obtained for Random Forest is 4.05e11, which is lesser compared to the other predictive models used for this study. From the experimental analysis Random Forest algorithm can perform more effectively and efficiently in predicting the new COVID cases, which could help the health sector to take relevant control measures for the spread of the virus.Keywords: COVID-19, machine learning, supervised learning, unsupervised learning, linear regression, support vector machine, random forest
Procedia PDF Downloads 1212060 Comparing SVM and Naïve Bayes Classifier for Automatic Microaneurysm Detections
Authors: A. Sopharak, B. Uyyanonvara, S. Barman
Abstract:
Diabetic retinopathy is characterized by the development of retinal microaneurysms. The damage can be prevented if disease is treated in its early stages. In this paper, we are comparing Support Vector Machine (SVM) and Naïve Bayes (NB) classifiers for automatic microaneurysm detection in images acquired through non-dilated pupils. The Nearest Neighbor classifier is used as a baseline for comparison. Detected microaneurysms are validated with expert ophthalmologists’ hand-drawn ground-truths. The sensitivity, specificity, precision and accuracy of each method are also compared.Keywords: diabetic retinopathy, microaneurysm, naive Bayes classifier, SVM classifier
Procedia PDF Downloads 3302059 Power Quality Modeling Using Recognition Learning Methods for Waveform Disturbances
Authors: Sang-Keun Moon, Hong-Rok Lim, Jin-O Kim
Abstract:
This paper presents a Power Quality (PQ) modeling and filtering processes for the distribution system disturbances using recognition learning methods. Typical PQ waveforms with mathematical applications and gathered field data are applied to the proposed models. The objective of this paper is analyzing PQ data with respect to monitoring, discriminating, and evaluating the waveform of power disturbances to ensure the system preventative system failure protections and complex system problem estimations. Examined signal filtering techniques are used for the field waveform noises and feature extractions. Using extraction and learning classification techniques, the efficiency was verified for the recognition of the PQ disturbances with focusing on interactive modeling methods in this paper. The waveform of selected 8 disturbances is modeled with randomized parameters of IEEE 1159 PQ ranges. The range, parameters, and weights are updated regarding field waveform obtained. Along with voltages, currents have same process to obtain the waveform features as the voltage apart from some of ratings and filters. Changing loads are causing the distortion in the voltage waveform due to the drawing of the different patterns of current variation. In the conclusion, PQ disturbances in the voltage and current waveforms indicate different types of patterns of variations and disturbance, and a modified technique based on the symmetrical components in time domain was proposed in this paper for the PQ disturbances detection and then classification. Our method is based on the fact that obtained waveforms from suggested trigger conditions contain potential information for abnormality detections. The extracted features are sequentially applied to estimation and recognition learning modules for further studies.Keywords: power quality recognition, PQ modeling, waveform feature extraction, disturbance trigger condition, PQ signal filtering
Procedia PDF Downloads 1882058 Cognitive and Functional Analysis of Experiencer Subject and Experiencer Object Psychological Predicate Constructions in French
Authors: Carine Kawakami
Abstract:
In French, as well as in English, there are two types of psychological predicate constructions depending on where the experiencer argument is realized; the first type is in the subject position (e.g. Je regrette d’être venu ici. ‘I regret coming here'), hereinafter called ES construction, and the second type is in the object position (e.g. Cette nouvelle m’a surpris. ‘This new surprised me.'), referred as EO construction. In the previous studies about psychological predicates, the syntactic position of the experiencer argument has been just a matter of its connection with the syntactic or semantic structure of the predicate. So that few attentions have been paid to how two types of realization of experiencer are related to the conceptualization of psychological event and to the function of the sentence describing the psychological event, in the sense of speech act theory. In this research, focusing on the French phenomena limited to the first personal pronoun and the present tense, the ES constructions and the EO constructions will be analyzed from cognitive and functional approach. It will be revealed that, due to the possibility to be used in soliloquy and the high co-occurrence with ça (‘it’), the EO constructions may have expressive function to betray what speaker feels in hic et nunc, like interjection. And in the expressive case, the experiencer is construed as a locus where a feeling appears spontaneously and is construed subjectively (e.g. Ah, ça m’énerve! ‘Oh, it irritates me!'). On the other hand, the ES constructions describe speaker’s mental state in an assertive manner rather than the expressive and spontaneously way. In other words, they describe what speaker feels to the interlocutor (e.g. Je suis énervé. ‘I am irritated.'). As a consequence, when the experiencer argument is realized in the subject position, it is construed objectively and have a participant feature in the sense of cognitive grammar. Finally, it will be concluded that the choice of construction type, at least in French, is correlated to the conceptualization of the psychological event and the discourse feature of its expression.Keywords: french psychological verb, conceptualization, expressive function, assertive function, experiencer realization
Procedia PDF Downloads 1372057 The Impact of Geopolitical Risks and the Oil Price Fluctuations on the Kuwaiti Financial Market
Authors: Layal Mansour
Abstract:
The aim of this paper is to identify whether oil price volatility or geopolitical risks can predict future financial stress periods or economic recessions in Kuwait. We construct the first Financial Stress Index for Kuwait (FSIK) that includes informative vulnerable indicators of the main financial sectors: the banking sector, the equities market, and the foreign exchange market. The study covers the period from 2000 to 2020, so it includes the two recent most devastating world economic crises with oil price fluctuation: the Covid-19 pandemic crisis and Ukraine-Russia War. All data are taken by the central bank of Kuwait, the World Bank, IMF, DataStream, and from Federal Reserve System St Louis. The variables are computed as the percentage growth rate, then standardized and aggregated into one index using the variance equal weights method, the most frequently used in the literature. The graphical FSIK analysis provides detailed information (by dates) to policymakers on how internal financial stability depends on internal policy and events such as government elections or resignation. It also shows how monetary authorities or internal policymakers’ decisions to relieve personal loans or increase/decrease the public budget trigger internal financial instability. The empirical analysis under vector autoregression (VAR) models shows the dynamic causal relationship between the oil price fluctuation and the Kuwaiti economy, which relies heavily on the oil price. Similarly, using vector autoregression (VAR) models to assess the impact of the global geopolitical risks on Kuwaiti financial stability, results reveal whether Kuwait is confronted with or sheltered from geopolitical risks. The Financial Stress Index serves as a guide for macroprudential regulators in order to understand the weakness of the overall Kuwaiti financial market and economy regardless of the Kuwaiti dinar strength and exchange rate stability. It helps policymakers predict future stress periods and, thus, address alternative cushions to confront future possible financial threats.Keywords: Kuwait, financial stress index, causality test, VAR, oil price, geopolitical risks
Procedia PDF Downloads 832056 Monitoring Systemic Risk in the Hedge Fund Sector
Authors: Frank Hespeler, Giuseppe Loiacono
Abstract:
We propose measures for systemic risk generated through intra-sectorial interdependencies in the hedge fund sector. These measures are based on variations in the average cross-effects of funds showing significant interdependency between their individual returns and the moments of the sector’s return distribution. The proposed measures display a high ability to identify periods of financial distress, are robust to modifications in the underlying econometric model and are consistent with intuitive interpretation of the results.Keywords: hedge funds, systemic risk, vector autoregressive model, risk monitoring
Procedia PDF Downloads 3262055 Molecular Characterisation and Expression of Glutathione S-Transferase of Fasciola Gigantica
Authors: J. Adeppa, S. Samanta, O. K. Raina
Abstract:
Fasciolosis is a widespread economically important parasitic infection throughout the world caused by Fasciola hepatica and F. gigantica. In order to identify novel immunogen conferring significant protection against fasciolosis, currently, research has been focused on the defined antigens viz. glutathione S-transferase, fatty acid binding protein, cathepsin-L, fluke hemoglobin, paramyosin, myosin and F. hepatica- Kunitz Type Molecule. Among various antigens, GST which plays a crucial role in detoxification processes, i.e. phase II defense mechanism of this parasite, has a unique position as a novel vaccine candidate and a drug target in the control of this disease. For producing the antigens in large quantities and their purification to complete homogeneity, the recombinant DNA technology has become an important tool to achieve this milestone. RT- PCR was carried out using F. gigantica total RNA as template, and an amplicon of 657 bp GST gene was obtained. TA cloning vector was used for cloning of this gene, and the presence of insert was confirmed by blue-white selection for recombinant colonies. Sequence analysis of the present isolate showed 99.1% sequence homology with the published sequence of the F. gigantica GST gene of cattle origin (accession no. AF112657), with six nucleotide changes at 72, 74, 423, 513, 549 and 627th bp found in the present isolate, causing an overall change of 4 amino acids. The 657 bp GST gene was cloned at BamH1 and HindIII restriction sites of the prokaryotic expression vector pPROEXHTb in frame with six histidine residues and expressed in E. coli DH5α. Recombinant protein was purified from the bacterial lysate under non-denaturing conditions by the process of sonication after lysozyme treatment and subjecting the soluble fraction of the bacterial lysate to Ni-NTA affinity chromatography. Western blotting with rabbit hyper-immune serum showed immuno-reactivity with 25 kDa recombinant GST. Recombinant protein detected F. gigantica experimental as well as field infection in buffaloes by dot-ELISA. However, cross-reactivity studies on Fasciola gigantica GST antigen are needed to evaluate the utility of this protein in the serodiagnosis of fasciolosis.Keywords: fasciola gigantic, fasciola hepatica, GST, RT- PCR
Procedia PDF Downloads 1882054 Impact of Urbanization Growth on Disease Spread and Outbreak Response: Exploring Strategies for Enhancing Resilience
Authors: Raquel Vianna Duarte Cardoso, Eduarda Lobato Faria, José Jorge Boueri
Abstract:
Rapid urbanization has transformed the global landscape, presenting significant challenges to public health. This article delves into the impact of urbanization on the spread of infectious diseases in cities and identifies crucial strategies to enhance urban community resilience. Massive urbanization over recent decades has created conducive environments for the rapid spread of diseases due to population density, mobility, and unequal living conditions. Urbanization has been observed to increase exposure to pathogens and foster conditions conducive to disease outbreaks, including seasonal flu, vector-borne diseases, and respiratory infections. In order to tackle these issues, a range of cross-disciplinary approaches are suggested. These encompass the enhancement of urban healthcare infrastructure, emphasizing the need for robust investments in hospitals, clinics, and healthcare systems to keep pace with the burgeoning healthcare requirements in urban environments. Moreover, the establishment of disease monitoring and surveillance mechanisms is indispensable, as it allows for the timely detection of outbreaks, enabling swift responses. Additionally, community engagement and education play a pivotal role in advocating for personal hygiene, vaccination, and preventive measures, thus playing a pivotal role in diminishing disease transmission. Lastly, the promotion of sustainable urban planning, which includes the creation of cities with green spaces, access to clean water, and proper sanitation, can significantly mitigate the risks associated with waterborne and vector-borne diseases. The article is based on a review of scientific literature, and it offers a comprehensive insight into the complexities of the relationship between urbanization and health. It places a strong emphasis on the urgent need for integrated approaches to improve urban resilience in the face of health challenges.Keywords: infectious diseases dissemination, public health, urbanization impacts, urban resilience
Procedia PDF Downloads 782053 Application of the Discrete Rationalized Haar Transform to Distributed Parameter System
Authors: Joon-Hoon Park
Abstract:
In this paper the rationalized Haar transform is applied for distributed parameter system identification and estimation. A distributed parameter system is a dynamical and mathematical model described by a partial differential equation. And system identification concerns the problem of determining mathematical models from observed data. The Haar function has some disadvantages of calculation because it contains irrational numbers, for these reasons the rationalized Haar function that has only rational numbers. The algorithm adopted in this paper is based on the transform and operational matrix of the rationalized Haar function. This approach provides more convenient and efficient computational results.Keywords: distributed parameter system, rationalized Haar transform, operational matrix, system identification
Procedia PDF Downloads 5092052 Exciting Voltage Control for Efficiency Maximization for 2-D Omni-Directional Wireless Power Transfer Systems
Authors: Masato Sasaki, Masayoshi Yamamoto
Abstract:
The majority of wireless power transfer (WPT) systems transfer power in a directional manner. This paper describes a discrete exciting voltage control technique for WPT via magnetic resonant coupling with two orthogonal transmitter coils (2D omni-directional WPT system) which can maximize the power transfer efficiency in response to the change of coupling status. The theory allows the equations of the efficiency of the system to be determined at all the rate of the mutual inductance. The calculated results are included to confirm the advantage to one directional WPT system and the validity of the theory and the equations.Keywords: wireless power transfer, omni-directional, orthogonal, efficiency
Procedia PDF Downloads 3202051 The Mouth and Gastrointestinal Tract of the African Lung Fish Protopterus annectens in River Niger at Agenebode, Nigeria
Authors: Marian Agbugui
Abstract:
The West African Lung fishes are fishes rich in protein and serve as an important source of food supply for man. The kind of food ingested by this group of fishes is dependent on the alimentary canal as well as the fish’s digestive processes which provide suitable modifications for maximum utilization of food taken. A study of the alimentary canal of P. annectens will expose the best information on the anatomy and histology of the fish. Samples of P. annectens were dissected to reveal the liver, pancreas and entire gut wall. Digital pictures of the mouth, jaws and the Gastrointestinal Tract (GIT) were taken. The entire gut was identified, sectioned and micro graphed. P. annectens was observed to possess a terminal mouth that opens up to 10% of its total body length, an adaptive feature to enable the fish to swallow the whole of its pry. Its dentition is made up of incisors- scissor-like teeth which also help to firmly grip, seize and tear through the skin of prey before swallowing. A short, straight and longitudinal GIT was observed in P. annectens which is known to be common feature in lungfishes, though it is thought to be a primitive characteristic similar to the lamprey. The oesophagus is short and distensible similar to other predatory and carnivorous species. Food is temporarily stored in the stomach before it is passed down into the intestine. A pyloric aperture is seen at the end of the double folded pyloric valve which leads into an intestine that makes up 75% of the whole GIT. The intestine begins at the posterior end of the pyloric aperture and winds down in six coils through the whole length intestine and ends at the cloaca. From this study it is concluded that P. annectens possess a composite GIT with organs similar to other lung fishes; it is a detritor with carnivorous abilities.Keywords: gastrointestinal tract, incisors scissor-like teeth, intestine, mucus, Protopterus annectens, serosa
Procedia PDF Downloads 1542050 Review of Different Machine Learning Algorithms
Authors: Syed Romat Ali Shah, Bilal Shoaib, Saleem Akhtar, Munib Ahmad, Shahan Sadiqui
Abstract:
Classification is a data mining technique, which is recognizedon Machine Learning (ML) algorithm. It is used to classifythe individual articlein a knownofinformation into a set of predefinemodules or group. Web mining is also a portion of that sympathetic of data mining methods. The main purpose of this paper to analysis and compare the performance of Naïve Bayse Algorithm, Decision Tree, K-Nearest Neighbor (KNN), Artificial Neural Network (ANN)and Support Vector Machine (SVM). This paper consists of different ML algorithm and their advantages and disadvantages and also define research issues.Keywords: Data Mining, Web Mining, classification, ML Algorithms
Procedia PDF Downloads 3032049 Monotonicity of the Jensen Functional for f-Divergences via the Zipf-Mandelbrot Law
Authors: Neda Lovričević, Đilda Pečarić, Josip Pečarić
Abstract:
The Jensen functional in its discrete form is brought in relation to the Csiszar divergence functional, this time via its monotonicity property. This approach presents a generalization of the previously obtained results that made use of interpolating Jensen-type inequalities. Thus the monotonicity property is integrated with the Zipf-Mandelbrot law and applied to f-divergences for probability distributions that originate from the Csiszar divergence functional: Kullback-Leibler divergence, Hellinger distance, Bhattacharyya distance, chi-square divergence, total variation distance. The Zipf-Mandelbrot and the Zipf law are widely used in various scientific fields and interdisciplinary and here the focus is on the aspect of the mathematical inequalities.Keywords: Jensen functional, monotonicity, Csiszar divergence functional, f-divergences, Zipf-Mandelbrot law
Procedia PDF Downloads 1432048 Tetrad field and torsion vectors in Schwarzschild solution
Authors: M.A.Bakry1, *, Aryn T. Shafeek1, +
Abstract:
In this article, absolute Parallelism geometry is used to study the torsional gravitational field. And discovered the tetrad fields, torsion vector, and torsion scalar of Schwarzschild space. The new solution of the torsional gravitational field is a generalization of Schwarzschild in the context of general relativity. The results are applied to the planetary orbits.Keywords: absolute parallelism geometry, tetrad fields, torsion vectors, torsion scalar
Procedia PDF Downloads 1432047 Control of Underactuated Biped Robots Using Event Based Fuzzy Partial Feedback Linearization
Authors: Omid Heydarnia, Akbar Allahverdizadeh, Behnam Dadashzadeh, M. R. Sayyed Noorani
Abstract:
Underactuated biped robots control is one of the interesting topics in robotics. The main difficulties are its highly nonlinear dynamics, open-loop instability, and discrete event at the end of the gait. One of the methods to control underactuated systems is the partial feedback linearization, but it is not robust against uncertainties and disturbances that restrict its performance to control biped walking and running. In this paper, fuzzy partial feedback linearization is presented to overcome its drawback. Numerical simulations verify the effectiveness of the proposed method to generate stable and robust biped walking and running gaits.Keywords: underactuated system, biped robot, fuzzy control, partial feedback linearization
Procedia PDF Downloads 3522046 Simulation of an Active Controlled Vibration Isolation System for Astronaut’s Exercise Platform
Authors: Shield B. Lin, Sameer Abdali
Abstract:
Computer simulations were performed using MATLAB/Simulink for a vibration isolation system for astronaut’s exercise platform. Simulation parameters initially were based on an on-going experiment in a laboratory at NASA Johnson Space Center. The authors expanded later simulations to include other parameters. A discrete proportional-integral-derivative controller with a low-pass filter commanding a linear actuator served as the active control unit to push and pull a counterweight in balancing the disturbance forces. A spring-damper device is used as an optional passive control unit. Simulation results indicated such design could achieve near complete vibration isolation with small displacements of the exercise platform.Keywords: control, counterweight, isolation, vibration
Procedia PDF Downloads 1502045 Multi-scale Spatial and Unified Temporal Feature-fusion Network for Multivariate Time Series Anomaly Detection
Authors: Hang Yang, Jichao Li, Kewei Yang, Tianyang Lei
Abstract:
Multivariate time series anomaly detection is a significant research topic in the field of data mining, encompassing a wide range of applications across various industrial sectors such as traffic roads, financial logistics, and corporate production. The inherent spatial dependencies and temporal characteristics present in multivariate time series introduce challenges to the anomaly detection task. Previous studies have typically been based on the assumption that all variables belong to the same spatial hierarchy, neglecting the multi-level spatial relationships. To address this challenge, this paper proposes a multi-scale spatial and unified temporal feature fusion network, denoted as MSUT-Net, for multivariate time series anomaly detection. The proposed model employs a multi-level modeling approach, incorporating both temporal and spatial modules. The spatial module is designed to capture the spatial characteristics of multivariate time series data, utilizing an adaptive graph structure learning model to identify the multi-level spatial relationships between data variables and their attributes. The temporal module consists of a unified temporal processing module, which is tasked with capturing the temporal features of multivariate time series. This module is capable of simultaneously identifying temporal dependencies among different variables. Extensive testing on multiple publicly available datasets confirms that MSUT-Net achieves superior performance on the majority of datasets. Our method is able to model and accurately detect systems data with multi-level spatial relationships from a spatial-temporal perspective, providing a novel perspective for anomaly detection analysis.Keywords: data mining, industrial system, multivariate time series, anomaly detection
Procedia PDF Downloads 172044 Web Data Scraping Technology Using Term Frequency Inverse Document Frequency to Enhance the Big Data Quality on Sentiment Analysis
Authors: Sangita Pokhrel, Nalinda Somasiri, Rebecca Jeyavadhanam, Swathi Ganesan
Abstract:
Tourism is a booming industry with huge future potential for global wealth and employment. There are countless data generated over social media sites every day, creating numerous opportunities to bring more insights to decision-makers. The integration of Big Data Technology into the tourism industry will allow companies to conclude where their customers have been and what they like. This information can then be used by businesses, such as those in charge of managing visitor centers or hotels, etc., and the tourist can get a clear idea of places before visiting. The technical perspective of natural language is processed by analysing the sentiment features of online reviews from tourists, and we then supply an enhanced long short-term memory (LSTM) framework for sentiment feature extraction of travel reviews. We have constructed a web review database using a crawler and web scraping technique for experimental validation to evaluate the effectiveness of our methodology. The text form of sentences was first classified through Vader and Roberta model to get the polarity of the reviews. In this paper, we have conducted study methods for feature extraction, such as Count Vectorization and TFIDF Vectorization, and implemented Convolutional Neural Network (CNN) classifier algorithm for the sentiment analysis to decide the tourist’s attitude towards the destinations is positive, negative, or simply neutral based on the review text that they posted online. The results demonstrated that from the CNN algorithm, after pre-processing and cleaning the dataset, we received an accuracy of 96.12% for the positive and negative sentiment analysis.Keywords: counter vectorization, convolutional neural network, crawler, data technology, long short-term memory, web scraping, sentiment analysis
Procedia PDF Downloads 882043 Simulation of Carbon Nanotubes/GaAs Hybrid PV Using AMPS-1D
Authors: Nima E. Gorji
Abstract:
The performance and characteristics of a hybrid heterojunction single-walled carbon nanotube and GaAs solar cell is modelled and numerically simulated using AMPS-1D device simulation tool. The device physics and performance parameters with different junction parameters are analysed. The results suggest that the open-circuit voltage changes very slightly by changing the work function, acceptor and donor density while the other electrical parameters reach to an optimum value. Increasing the concentration of a discrete defect density in the absorber layer decreases the electrical parameters. The current-voltage characteristics, quantum efficiency, band gap and thickness variation of the photovoltaic response will be quantitatively considered.Keywords: carbon nanotube, GaAs, hybrid solar cell, AMPS-1D modelling
Procedia PDF Downloads 3302042 Distribution of Malaria-Infected Anopheles Mosquitoes in Kudat, Ranau and Tenom of Sabah, Malaysia
Authors: Ahmad Fakhriy Hassan, Rohani Ahmad, Zurainee Mohamed Nor, Wan Najdah Wan Mohamad Ali
Abstract:
In Malaysia, it was realized that while the incidence of human malaria is decreasing, the incidence of Plasmodium knowlesi malaria appears to be on the rise, especially in rural areas of Sabah, East Malaysia. The primary vector for P. knowlesi malaria in Sabah is An. balabacensis a species found abundant in rural areas, shown to rest and feed outdoor throughout the night, which makes its control very challenging. This study aims to examine the distribution of malaria-infected Anopheles mosquitoes in three areas in Sabah, namely Kudat, Ranau, and Tenom, known as areas in Sabah that presented high number of malaria cases. Briefly, mosquitoes were caught every 6 weeks for the period of 18 months using Human Landing Catching (HLC) technique from May 2016 to November 2017. Identification of species was done using microscopy and molecular methods. Molecular method is also used to detect malaria parasite in all mosquito collected. An. balabacensis was present in all the study areas. In Kudat, six other Anopheles species were also detected, namely, An. barumbrosus, An. latens, An. letifer, An. maculatus, An. sundaicus and An. tesselatus. In Ranau five other Anopheles species were detected, namely, An. barumbrosus, An. donaldi., An. hodgkini, An. maculatus, and An. tesselatus while in Tenom seven more species An. donaldi, An. umbrosus, An. barumbrosus, An.latens, An. hodgkini, An. maculatus, and An. tesselatus were detected. This study showed 24% out of 259, 39% out of 127, and 26% out of 265 Anopheles mosquito collected in Kudat, Ranau, and Tenom were detected positive for malaria parasite respectively. In Kudat An. balabacensis, An. barumbrosus, An. latens, An. maculatus, An. sundaicus and An. tesselatus were the six out of eight Anopheles species that were found infected with malaria parasite. All Anopheles species collected in Ranau were positive for malaria while In Tenom, only five out of eight species; An. balabacensus, An. donaldi, An. hodgkini, An. maculatus, and An. latens were detected positive for malaria parasite. Interestingly, for all study areas An. balabacensis was shown to be the only species infected with four malaria species; P. falciparum, P. knowlesi, P. vivax, and Plasmodium sp. This finding clearly indicates that An. balabacensis is the dominant malaria vector in Kudat, Ranau, and Tenom.Keywords: Anopheles balabacensis, human landing catching technique, nested PCR, Plasmodium knowlesi, Simian malaria
Procedia PDF Downloads 1472041 Effect of Sand Particle Distribution in Oil and Gas Pipeline Erosion
Authors: Christopher Deekia Nwimae, Nigel Simms, Liyun Lao
Abstract:
Erosion in pipe bends caused by particles is a major obstacle in the oil and gas fields and might cause the breakdown of production equipment. This work studied the effects imposed by flow velocity and impact of solid particles diameter in an elbow; erosion rate was verified with experimental data using the computational fluid dynamics (CFD) approach. Two-way coupled Euler-Lagrange and discrete phase model was employed to calculate the air/solid particle flow in an elbow. One erosion model and three-particle rebound models were used to predict the erosion rate on the 90° elbows. The generic erosion model was used in the CFD-based erosion model, and after comparing it with experimental data, results showed agreement with the CFD-based predictions as observed.Keywords: erosion, prediction, elbow, computational fluid dynamics
Procedia PDF Downloads 1582040 Transformation of ectA Gene From Halomonas elongata in Tomato Plant
Authors: Narayan Moger, Divya B., Preethi Jambagi, Krishnaveni C. K., Apsana M. R., B. R. Patil, Basvaraj Bagewadi
Abstract:
Salinity is one of the major threats to world food security. Considering the requirement for salt tolerant crop plants in the present study was undertaken to clone and transferred the salt tolerant ectA gene from marine ecosystem into agriculture crop system to impart salinity tolerance. Ectoine is the compatible solute which accumulates in the cell membrane, is known to be involved in salt tolerance activity in most of the Halophiles. The present situation is insisting to development of salt tolerant transgenic lines to combat abiotic stress. In this background, the investigation was conducted to develop transgenic tomato lines by cloning and transferring of ectA gene is an ectoine derivative capable of enzymatic action for the production of acetyl-diaminobutyric acid. The gene ectA is involved in maintaining the osmotic balance of plants. The PCR amplified ectA gene (579bp) was cloned into T/A cloning vector (pTZ57R/T). The construct pDBJ26 containing ectA gene was sequenced by using gene specific forward and reverse primers. Sequence was analyzed using BLAST algorithm to check similarity of ectA gene with other isolates. Highest homology of 99.66 per cent was found with ectA gene sequences of isolates Halomonas elongata with the available sequence information in NCBI database. The ectA gene was further sub cloned into pRI101-AN plant expression vector and transferred into E. coli DH5α for its maintenance. Further pDNM27 was mobilized into A. tumefaciens LBA4404 through tri-parental mating system. The recombinant Agrobacterium containing pDNM27 was transferred into tomato plants through In planta plant transformation method. Out of 300 seedlings, co-cultivated only twenty-seven plants were able to well establish under the greenhouse condition. Among twenty-seven transformants only twelve plants showed amplification with gene specific primers. Further work must be extended to evaluate the transformants at T1 and T2 generations for ectoine accumulation, salinity tolerance, plant growth and development and yield.Keywords: salinity, computable solutes, ectA, transgenic, in planta transformation
Procedia PDF Downloads 812039 Hybridization of Manually Extracted and Convolutional Features for Classification of Chest X-Ray of COVID-19
Authors: M. Bilal Ishfaq, Adnan N. Qureshi
Abstract:
COVID-19 is the most infectious disease these days, it was first reported in Wuhan, the capital city of Hubei in China then it spread rapidly throughout the whole world. Later on 11 March 2020, the World Health Organisation (WHO) declared it a pandemic. Since COVID-19 is highly contagious, it has affected approximately 219M people worldwide and caused 4.55M deaths. It has brought the importance of accurate diagnosis of respiratory diseases such as pneumonia and COVID-19 to the forefront. In this paper, we propose a hybrid approach for the automated detection of COVID-19 using medical imaging. We have presented the hybridization of manually extracted and convolutional features. Our approach combines Haralick texture features and convolutional features extracted from chest X-rays and CT scans. We also employ a minimum redundancy maximum relevance (MRMR) feature selection algorithm to reduce computational complexity and enhance classification performance. The proposed model is evaluated on four publicly available datasets, including Chest X-ray Pneumonia, COVID-19 Pneumonia, COVID-19 CTMaster, and VinBig data. The results demonstrate high accuracy and effectiveness, with 0.9925 on the Chest X-ray pneumonia dataset, 0.9895 on the COVID-19, Pneumonia and Normal Chest X-ray dataset, 0.9806 on the Covid CTMaster dataset, and 0.9398 on the VinBig dataset. We further evaluate the effectiveness of the proposed model using ROC curves, where the AUC for the best-performing model reaches 0.96. Our proposed model provides a promising tool for the early detection and accurate diagnosis of COVID-19, which can assist healthcare professionals in making informed treatment decisions and improving patient outcomes. The results of the proposed model are quite plausible and the system can be deployed in a clinical or research setting to assist in the diagnosis of COVID-19.Keywords: COVID-19, feature engineering, artificial neural networks, radiology images
Procedia PDF Downloads 762038 Soybean Seed Composition Prediction From Standing Crops Using Planet Scope Satellite Imagery and Machine Learning
Authors: Supria Sarkar, Vasit Sagan, Sourav Bhadra, Meghnath Pokharel, Felix B.Fritschi
Abstract:
Soybean and their derivatives are very important agricultural commodities around the world because of their wide applicability in human food, animal feed, biofuel, and industries. However, the significance of soybean production depends on the quality of the soybean seeds rather than the yield alone. Seed composition is widely dependent on plant physiological properties, aerobic and anaerobic environmental conditions, nutrient content, and plant phenological characteristics, which can be captured by high temporal resolution remote sensing datasets. Planet scope (PS) satellite images have high potential in sequential information of crop growth due to their frequent revisit throughout the world. In this study, we estimate soybean seed composition while the plants are in the field by utilizing PlanetScope (PS) satellite images and different machine learning algorithms. Several experimental fields were established with varying genotypes and different seed compositions were measured from the samples as ground truth data. The PS images were processed to extract 462 hand-crafted vegetative and textural features. Four machine learning algorithms, i.e., partial least squares (PLSR), random forest (RFR), gradient boosting machine (GBM), support vector machine (SVM), and two recurrent neural network architectures, i.e., long short-term memory (LSTM) and gated recurrent unit (GRU) were used in this study to predict oil, protein, sucrose, ash, starch, and fiber of soybean seed samples. The GRU and LSTM architectures had two separate branches, one for vegetative features and the other for textures features, which were later concatenated together to predict seed composition. The results show that sucrose, ash, protein, and oil yielded comparable prediction results. Machine learning algorithms that best predicted the six seed composition traits differed. GRU worked well for oil (R-Squared: of 0.53) and protein (R-Squared: 0.36), whereas SVR and PLSR showed the best result for sucrose (R-Squared: 0.74) and ash (R-Squared: 0.60), respectively. Although, the RFR and GBM provided comparable performance, the models tended to extremely overfit. Among the features, vegetative features were found as the most important variables compared to texture features. It is suggested to utilize many vegetation indices for machine learning training and select the best ones by using feature selection methods. Overall, the study reveals the feasibility and efficiency of PS images and machine learning for plot-level seed composition estimation. However, special care should be given while designing the plot size in the experiments to avoid mixed pixel issues.Keywords: agriculture, computer vision, data science, geospatial technology
Procedia PDF Downloads 1382037 3D Writing on Photosensitive Glass-Ceramics
Authors: C. Busuioc, S. Jinga, E. Pavel
Abstract:
Optical lithography is a key technique in the development of sub-5 nm patterns for the semiconductor industry. We have already reported that the best results obtained with respect to direct laser writing process on active media, such as glass-ceramics, are achieved only when the energy of the laser radiation is absorbed in discrete quantities. Further, we need to clarify the role of active centers concentration in silver nanocrystals natural generation, as well as in fluorescent rare-earth nanostructures formation. As a consequence, samples with different compositions were prepared. SEM, AFM, TEM and STEM investigations were employed in order to demonstrate that few nm width lines can be written on fluorescent photosensitive glass-ceramics, these being efficient absorbers. Moreover, we believe that the experimental data will lead to the best choice in terms of active centers amount, laser power and glass-ceramic matrix.Keywords: glass-ceramics, 3D laser writing, optical disks, data storage
Procedia PDF Downloads 3002036 Italian Speech Vowels Landmark Detection through the Legacy Tool 'xkl' with Integration of Combined CNNs and RNNs
Authors: Kaleem Kashif, Tayyaba Anam, Yizhi Wu
Abstract:
This paper introduces a methodology for advancing Italian speech vowels landmark detection within the distinctive feature-based speech recognition domain. Leveraging the legacy tool 'xkl' by integrating combined convolutional neural networks (CNNs) and recurrent neural networks (RNNs), the study presents a comprehensive enhancement to the 'xkl' legacy software. This integration incorporates re-assigned spectrogram methodologies, enabling meticulous acoustic analysis. Simultaneously, our proposed model, integrating combined CNNs and RNNs, demonstrates unprecedented precision and robustness in landmark detection. The augmentation of re-assigned spectrogram fusion within the 'xkl' software signifies a meticulous advancement, particularly enhancing precision related to vowel formant estimation. This augmentation catalyzes unparalleled accuracy in landmark detection, resulting in a substantial performance leap compared to conventional methods. The proposed model emerges as a state-of-the-art solution in the distinctive feature-based speech recognition systems domain. In the realm of deep learning, a synergistic integration of combined CNNs and RNNs is introduced, endowed with specialized temporal embeddings, harnessing self-attention mechanisms, and positional embeddings. The proposed model allows it to excel in capturing intricate dependencies within Italian speech vowels, rendering it highly adaptable and sophisticated in the distinctive feature domain. Furthermore, our advanced temporal modeling approach employs Bayesian temporal encoding, refining the measurement of inter-landmark intervals. Comparative analysis against state-of-the-art models reveals a substantial improvement in accuracy, highlighting the robustness and efficacy of the proposed methodology. Upon rigorous testing on a database (LaMIT) speech recorded in a silent room by four Italian native speakers, the landmark detector demonstrates exceptional performance, achieving a 95% true detection rate and a 10% false detection rate. A majority of missed landmarks were observed in proximity to reduced vowels. These promising results underscore the robust identifiability of landmarks within the speech waveform, establishing the feasibility of employing a landmark detector as a front end in a speech recognition system. The synergistic integration of re-assigned spectrogram fusion, CNNs, RNNs, and Bayesian temporal encoding not only signifies a significant advancement in Italian speech vowels landmark detection but also positions the proposed model as a leader in the field. The model offers distinct advantages, including unparalleled accuracy, adaptability, and sophistication, marking a milestone in the intersection of deep learning and distinctive feature-based speech recognition. This work contributes to the broader scientific community by presenting a methodologically rigorous framework for enhancing landmark detection accuracy in Italian speech vowels. The integration of cutting-edge techniques establishes a foundation for future advancements in speech signal processing, emphasizing the potential of the proposed model in practical applications across various domains requiring robust speech recognition systems.Keywords: landmark detection, acoustic analysis, convolutional neural network, recurrent neural network
Procedia PDF Downloads 652035 New Features for Copy-Move Image Forgery Detection
Authors: Michael Zimba
Abstract:
A novel set of features for copy-move image forgery, CMIF, detection method is proposed. The proposed set presents a new approach which relies on electrostatic field theory, EFT. Solely for the purpose of reducing the dimension of a suspicious image, firstly performs discrete wavelet transform, DWT, of the suspicious image and extracts only the approximation subband. The extracted subband is then bijectively mapped onto a virtual electrostatic field where concepts of EFT are utilised to extract robust features. The extracted features are shown to be invariant to additive noise, JPEG compression, and affine transformation. The proposed features can also be used in general object matching.Keywords: virtual electrostatic field, features, affine transformation, copy-move image forgery
Procedia PDF Downloads 543