Search results for: context-based fuzzy clustering
174 Microstructure Evolution and Pre-transformation Microstructure Reconstruction in Ti-6Al-4V Alloy
Authors: Shreyash Hadke, Manendra Singh Parihar, Rajesh Khatirkar
Abstract:
In the present investigation, the variation in the microstructure with the changes in the heat treatment conditions i.e. temperature and time was observed. Ti-6Al-4V alloy was subject to solution annealing treatments in β (1066C) and α+β phase (930C and 850C) followed by quenching, air cooling and furnace cooling to room temperature respectively. The effect of solution annealing and cooling on the microstructure was studied by using optical microscopy (OM), scanning electron microscopy (SEM), electron backscattered diffraction (EBSD) and x-ray diffraction (XRD). The chemical composition of the β phase for different conditions was determined with the help of energy dispersive spectrometer (EDS) attached to SEM. Furnace cooling resulted in the development of coarser structure (α+β), while air cooling resulted in much finer structure with widmanstatten morphology of α at the grain boundaries. Quenching from solution annealing temperature formed α’ martensite, their proportion being dependent on the temperature in β phase field. It is well known that the transformation of β to α follows Burger orientation relationship (OR). In order to reconstruct the microstructure of parent β phase, a MATLAB code was written using neighbor-to-neighbor, triplet method and Tari’s method. The code was tested on the annealed samples (1066C solution annealing temperature followed by furnace cooling to room temperature). The parent phase data thus generated was then plotted using the TSL-OIM software. The reconstruction results of the above methods were compared and analyzed. The Tari’s approach (clustering approach) gave better results compared to neighbor-to-neighbor and triplet method but the time taken by the triplet method was least compared to the other two methods.Keywords: Ti-6Al-4V alloy, microstructure, electron backscattered diffraction, parent phase reconstruction
Procedia PDF Downloads 447173 Modified Clusterwise Regression for Pavement Management
Authors: Mukesh Khadka, Alexander Paz, Hanns de la Fuente-Mella
Abstract:
Typically, pavement performance models are developed in two steps: (i) pavement segments with similar characteristics are grouped together to form a cluster, and (ii) the corresponding performance models are developed using statistical techniques. A challenge is to select the characteristics that define clusters and the segments associated with them. If inappropriate characteristics are used, clusters may include homogeneous segments with different performance behavior or heterogeneous segments with similar performance behavior. Prediction accuracy of performance models can be improved by grouping the pavement segments into more uniform clusters by including both characteristics and a performance measure. This grouping is not always possible due to limited information. It is impractical to include all the potential significant factors because some of them are potentially unobserved or difficult to measure. Historical performance of pavement segments could be used as a proxy to incorporate the effect of the missing potential significant factors in clustering process. The current state-of-the-art proposes Clusterwise Linear Regression (CLR) to determine the pavement clusters and the associated performance models simultaneously. CLR incorporates the effect of significant factors as well as a performance measure. In this study, a mathematical program was formulated for CLR models including multiple explanatory variables. Pavement data collected recently over the entire state of Nevada were used. International Roughness Index (IRI) was used as a pavement performance measure because it serves as a unified standard that is widely accepted for evaluating pavement performance, especially in terms of riding quality. Results illustrate the advantage of the using CLR. Previous studies have used CLR along with experimental data. This study uses actual field data collected across a variety of environmental, traffic, design, and construction and maintenance conditions.Keywords: clusterwise regression, pavement management system, performance model, optimization
Procedia PDF Downloads 252172 Estimation of Source Parameters and Moment Tensor Solution through Waveform Modeling of 2013 Kishtwar Earthquake
Authors: Shveta Puri, Shiv Jyoti Pandey, G. M. Bhat, Neha Raina
Abstract:
TheJammu and Kashmir region of the Northwest Himalaya had witnessed many devastating earthquakes in the recent past and has remained unexplored for any kind of seismic investigations except scanty records of the earthquakes that occurred in this region in the past. In this study, we have used local seismic data of year 2013 that was recorded by the network of Broadband Seismographs in J&K. During this period, our seismic stations recorded about 207 earthquakes including two moderate events of Mw 5.7 on 1st May, 2013 and Mw 5.1 of 2nd August, 2013.We analyzed the events of Mw 3-4.6 and the main events only (for minimizing the error) for source parameters, b value and sense of movement through waveform modeling for understanding seismotectonic and seismic hazard of the region. It has been observed that most of the events are bounded between 32.9° N – 33.3° N latitude and 75.4° E – 76.1° E longitudes, Moment Magnitude (Mw) ranges from Mw 3 to 5.7, Source radius (r), from 0.21 to 3.5 km, stress drop, from 1.90 bars to 71.1 bars and Corner frequency, from 0.39 – 6.06 Hz. The b-value for this region was found to be 0.83±0 from these events which are lower than the normal value (b=1), indicating the area is under high stress. The travel time inversion and waveform inversion method suggest focal depth up to 10 km probably above the detachment depth of the Himalayan region. Moment tensor solution of the (Mw 5.1, 02:32:47 UTC) main event of 2ndAugust suggested that the source fault is striking at 295° with dip of 33° and rake value of 85°. It was found that these events form intense clustering of small to moderate events within a narrow zone between Panjal Thrust and Kishtwar Window. Moment tensor solution of the main events and their aftershocks indicating thrust type of movement is occurring in this region.Keywords: b-value, moment tensor, seismotectonics, source parameters
Procedia PDF Downloads 314171 Geostatistical Simulation of Carcinogenic Industrial Effluent on the Irrigated Soil and Groundwater, District Sheikhupura, Pakistan
Authors: Asma Shaheen, Javed Iqbal
Abstract:
The water resources are depleting due to an intrusion of industrial pollution. There are clusters of industries including leather tanning, textiles, batteries, and chemical causing contamination. These industries use bulk quantity of water and discharge it with toxic effluents. The penetration of heavy metals through irrigation from industrial effluent has toxic effect on soil and groundwater. There was strong positive significant correlation between all the heavy metals in three media of industrial effluent, soil and groundwater (P < 0.001). The metal to the metal association was supported by dendrograms using cluster analysis. The geospatial variability was assessed by using geographically weighted regression (GWR) and pollution model to identify the simulation of carcinogenic elements in soil and groundwater. The principal component analysis identified the metals source, 48.8% variation in factor 1 have significant loading for sodium (Na), calcium (Ca), magnesium (Mg), iron (Fe), chromium (Cr), nickel (Ni), lead (Pb) and zinc (Zn) of tannery effluent-based process. In soil and groundwater, the metals have significant loading in factor 1 representing more than half of the total variation with 51.3 % and 53.6 % respectively which showed that pollutants in soil and water were driven by industrial effluent. The cumulative eigen values for the three media were also found to be greater than 1 representing significant clustering of related heavy metals. The results showed that heavy metals from industrial processes are seeping up toxic trace metals in the soil and groundwater. The poisonous pollutants from heavy metals turned the fresh resources of groundwater into unusable water. The availability of fresh water for irrigation and domestic use is being alarming.Keywords: groundwater, geostatistical, heavy metals, industrial effluent
Procedia PDF Downloads 229170 Vibration Absorption Strategy for Multi-Frequency Excitation
Authors: Der Chyan Lin
Abstract:
Since the early introduction by Ormondroyd and Den Hartog, vibration absorber (VA) has become one of the most commonly used vibration mitigation strategies. The strategy is most effective for a primary plant subjected to a single frequency excitation. For continuous systems, notable advances in vibration absorption in the multi-frequency system were made. However, the efficacy of the VA strategy for systems under multi-frequency excitation is not well understood. For example, for an N degrees-of-freedom (DOF) primary-absorber system, there are N 'peak' frequencies of large amplitude vibration per every new excitation frequency. In general, the usable range for vibration absorption can be greatly reduced as a result. Frequency modulated harmonic excitation is a commonly seen multi-frequency excitation example: f(t) = cos(ϖ(t)t) where ϖ(t)=ω(1+α sin(δt)). It is known that f(t) has a series expansion given by the Bessel function of the first kind, which implies an infinity of forcing frequencies in the frequency modulated harmonic excitation. For an SDOF system of natural frequency ωₙ subjected to f(t), it can be shown that amplitude peaks emerge at ω₍ₚ,ₖ₎=(ωₙ ± 2kδ)/(α ∓ 1),k∈Z; i.e., there is an infinity of resonant frequencies ω₍ₚ,ₖ₎, k∈Z, making the use of VA strategy ineffective. In this work, we propose an absorber frequency placement strategy for SDOF vibration systems subjected to frequency-modulated excitation. An SDOF linear mass-spring system coupled to lateral absorber systems is used to demonstrate the ideas. Although the mechanical components are linear, the governing equations for the coupled system are nonlinear. We show using N identical absorbers, for N ≫ 1, that (a) there is a cluster of N+1 natural frequencies around every natural absorber frequency, and (b) the absorber frequencies can be moved away from the plant's resonance frequency (ω₀) as N increases. Moreover, we also show the bandwidth of the VA performance increases with N. The derivations of the clustering and bandwidth widening effect will be given, and the superiority of the proposed strategy will be demonstrated via numerical experiments.Keywords: Bessel function, bandwidth, frequency modulated excitation, vibration absorber
Procedia PDF Downloads 157169 Computer-Aided Classification of Liver Lesions Using Contrasting Features Difference
Authors: Hussein Alahmer, Amr Ahmed
Abstract:
Liver cancer is one of the common diseases that cause the death. Early detection is important to diagnose and reduce the incidence of death. Improvements in medical imaging and image processing techniques have significantly enhanced interpretation of medical images. Computer-Aided Diagnosis (CAD) systems based on these techniques play a vital role in the early detection of liver disease and hence reduce liver cancer death rate. This paper presents an automated CAD system consists of three stages; firstly, automatic liver segmentation and lesion’s detection. Secondly, extracting features. Finally, classifying liver lesions into benign and malignant by using the novel contrasting feature-difference approach. Several types of intensity, texture features are extracted from both; the lesion area and its surrounding normal liver tissue. The difference between the features of both areas is then used as the new lesion descriptors. Machine learning classifiers are then trained on the new descriptors to automatically classify liver lesions into benign or malignant. The experimental results show promising improvements. Moreover, the proposed approach can overcome the problems of varying ranges of intensity and textures between patients, demographics, and imaging devices and settings.Keywords: CAD system, difference of feature, fuzzy c means, lesion detection, liver segmentation
Procedia PDF Downloads 326168 Soft Computing Approach for Diagnosis of Lassa Fever
Authors: Roseline Oghogho Osaseri, Osaseri E. I.
Abstract:
Lassa fever is an epidemic hemorrhagic fever caused by the Lassa virus, an extremely virulent arena virus. This highly fatal disorder kills 10% to 50% of its victims, but those who survive its early stages usually recover and acquire immunity to secondary attacks. One of the major challenges in giving proper treatment is lack of fast and accurate diagnosis of the disease due to multiplicity of symptoms associated with the disease which could be similar to other clinical conditions and makes it difficult to diagnose early. This paper proposed an Adaptive Neuro Fuzzy Inference System (ANFIS) for the prediction of Lass Fever. In the design of the diagnostic system, four main attributes were considered as the input parameters and one output parameter for the system. The input parameters are Temperature on admission (TA), White Blood Count (WBC), Proteinuria (P) and Abdominal Pain (AP). Sixty-one percent of the datasets were used in training the system while fifty-nine used in testing. Experimental results from this study gave a reliable and accurate prediction of Lassa fever when compared with clinically confirmed cases. In this study, we have proposed Lassa fever diagnostic system to aid surgeons and medical healthcare practictionals in health care facilities who do not have ready access to Polymerase Chain Reaction (PCR) diagnosis to predict possible Lassa fever infection.Keywords: anfis, lassa fever, medical diagnosis, soft computing
Procedia PDF Downloads 271167 A New Optimization Algorithm for Operation of a Microgrid
Authors: Sirus Mohammadi, Rohala Moghimi
Abstract:
The main advantages of microgrids are high energy efficiency through the application of Combined Heat and Power (CHP), high quality and reliability of the delivered electric energy and environmental and economic advantages. This study presents an energy management system (EMS) to optimize the operation of the microgrid (MG). In this paper an Adaptive Modified Firefly Algorithm (AMFA) is presented for optimal operation of a typical MG with renewable energy sources (RESs) accompanied by a back-up Micro-Turbine/Fuel Cell/Battery hybrid power source to level the power mismatch or to store the energy surplus when it’s needed. The problem is formulated as a nonlinear constraint problem to minimize the total operating cost. The management of Energy storage system (ESS), economic load dispatch and operation optimization of distributed generation (DG) are simplified into a single-object optimization problem in the EMS. The proposed algorithm is tested on a typical grid-connected MG including WT/PV/Micro Turbine/Fuel Cell and Energy Storage Devices (ESDs) then its superior performance is compared with those from other evolutionary algorithms such as Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Fuzzy Self Adaptive PSO (FSAPSO), Chaotic Particle PSO (CPSO), Adaptive Modified PSO (AMPSO), and Firefly Algorithm (FA).Keywords: microgrid, operation management, optimization, firefly algorithm (AMFA)
Procedia PDF Downloads 341166 Investigation and Analysis of Residential Building Energy End-Use Profile in Hot and Humid Area with Reference to Zhuhai City in China
Authors: Qingqing Feng, S. Thomas Ng, Frank Xu
Abstract:
Energy consumption in domestic sector has been increasing rapidly in China all along these years. Confronted with environmental challenges, the international society has made a concerted effort by setting the Paris Agreement, the Sustainable Development Goals, and the New Urban Agenda. Thus it’s very important for China to put forward reasonable countermeasures to boost building energy conservation which necessitates looking into the actuality of residential energy end-use profile and its influence factors. In this study, questionnaire surveys have been conducted in Zhuhai city in China, a typical city in hot summer warm winter climate zone. The data solicited mainly include the occupancy schedule, building’s information, residents’ information, household energy uses, the type, quantity and use patterns of appliances and occupants’ satisfaction. Over 200 valid samples have been collected through face-to-face interviews. Descriptive analysis, clustering analysis, correlation analysis and sensitivity analysis were then conducted on the dataset to understand the energy end-use profile. The findings identify: 1) several typical clusters of occupancy patterns and appliances utilization patterns; 2) the top three sensitive factors influencing energy consumption; 3) the correlations between satisfaction and energy consumption. For China with many different climates zones, it’s difficult to find a silver bullet on energy conservation. The aim of this paper is to provide a theoretical basis for multi-stakeholders including policy makers, residents, and academic communities to formulate reasonable energy saving blueprints for hot and humid urban residential buildings in China.Keywords: residential building, energy end-use profile, questionnaire survey, sustainability
Procedia PDF Downloads 131165 Genome-Wide Identification and Characterization of MLO Family Genes in Pumpkin (Cucurbita maxima Duch.)
Authors: Khin Thanda Win, Chunying Zhang, Sanghyeob Lee
Abstract:
Mildew resistance locus o (Mlo), a plant-specific gene family with seven-transmembrane (TM), plays an important role in plant resistance to powdery mildew (PM). PM caused by Podosphaera xanthii is a widespread plant disease and probably represents the major fungal threat for many Cucurbits. The recent Cucurbita maxima genome sequence data provides an opportunity to identify and characterize the MLO gene family in this species. Total twenty genes (designated CmaMLO1 through CmaMLO20) have been identified by using an in silico cloning method with the MLO gene sequences of Cucumis sativus, Cucumis melo, Citrullus lanatus and Cucurbita pepo as probes. These CmaMLOs were evenly distributed on 15 chromosomes of 20 C. maxima chromosomes without any obvious clustering. Multiple sequence alignment showed that the common structural features of MLO gene family, such as TM domains, a calmodulin-binding domain and 30 important amino acid residues for MLO function, were well conserved. Phylogenetic analysis of the CmaMLO genes and other plant species reveals seven different clades (I through VII) and only clade IV is specific to monocots (rice, barley, and wheat). Phylogenetic and structural analyses provided preliminary evidence that five genes belonged to clade V could be the susceptibility genes which may play the importance role in PM resistance. This study is the first comprehensive report on MLO genes in C. maxima to our knowledge. These findings will facilitate the functional analysis of the MLOs related to PM susceptibility and are valuable resources for the development of disease resistance in pumpkin.Keywords: Mildew resistance locus o (Mlo), powdery mildew, phylogenetic relationship, susceptibility genes
Procedia PDF Downloads 182164 Mechanisms and Regulation of the Bi-directional Motility of Mitotic Kinesin Nano-motors
Authors: Larisa Gheber
Abstract:
Mitosis is an essential process by which duplicated genetic information is transmitted from mother to daughter cells. Incorrect chromosome segregation during mitosis can lead to genetic diseases, chromosome instability and cancer. This process is mediated by a dynamic microtubule-based intracellular structure, the mitotic spindle. One of the major factors that govern the mitotic spindle dynamics are the kinesin-5 biological nano motors that were believed to move unidirectionally on the microtubule filaments, using ATP hydrolysis, thus performing essential functions in mitotic spindle dynamics. Surprisingly, several reports from our and other laboratories have demonstrated that some kinesin-5 motors are bi-directional: they move in minus-end direction on the microtubules as single-molecules and can switch directionality under a number of conditions. These findings broke a twenty-five-years old dogma regarding kinesin directionality (1, 2). The mechanism of this bi-directional motility and its physiological significance remain unclear. To address this unresolved problem, we apply an interdisciplinary approach combining live cell imaging, biophysical single molecule, and structural experiments to examine the activity of these motors and their mutated variants in vivo and in vitro. Our data shows that factors such as protein phosphorylation (3, 4), motor clustering on the microtubules (5, 6) and structural elements (7, 8) regulate the bi-directional motility of kinesin motors. We also show, using Cryo-EM, that bi-directional kinesin motors obtain non-canonical microtubule binding, which is essential to their special motile properties and intracellular functions. We will discuss the implication of these findings to mechanism bi-directional motility and physiological roles in mitosis.Keywords: mitosis, cancer, kinesin, microtubules, biochemistry, biophysics
Procedia PDF Downloads 81163 Modelling Mode Choice Behaviour Using Cloud Theory
Authors: Leah Wright, Trevor Townsend
Abstract:
Mode choice models are crucial instruments in the analysis of travel behaviour. These models show the relationship between an individual’s choice of transportation mode for a given O-D pair and the individual’s socioeconomic characteristics such as household size and income level, age and/or gender, and the features of the transportation system. The most popular functional forms of these models are based on Utility-Based Choice Theory, which addresses the uncertainty in the decision-making process with the use of an error term. However, with the development of artificial intelligence, many researchers have started to take a different approach to travel demand modelling. In recent times, researchers have looked at using neural networks, fuzzy logic and rough set theory to develop improved mode choice formulas. The concept of cloud theory has recently been introduced to model decision-making under uncertainty. Unlike the previously mentioned theories, cloud theory recognises a relationship between randomness and fuzziness, two of the most common types of uncertainty. This research aims to investigate the use of cloud theory in mode choice models. This paper highlights the conceptual framework of the mode choice model using cloud theory. Merging decision-making under uncertainty and mode choice models is state of the art. The cloud theory model is expected to address the issues and concerns with the nested logit and improve the design of mode choice models and their use in travel demand.Keywords: Cloud theory, decision-making, mode choice models, travel behaviour, uncertainty
Procedia PDF Downloads 389162 A Cognitive Approach to the Optimization of Power Distribution across an Educational Campus
Authors: Mrinmoy Majumder, Apu Kumar Saha
Abstract:
The ever-increasing human population and its demand for energy is placing stress upon conventional energy sources; and as demand for power continues to outstrip supply, the need to optimize energy distribution and utilization is emerging as an important focus for various stakeholders. The distribution of available energy must be achieved in such a way that the needs of the consumer are satisfied. However, if the availability of resources is not sufficient to satisfy consumer demand, it is necessary to find a method to select consumers based on factors such as their socio-economic or environmental impacts. Weighting consumer types in this way can help separate them based on their relative importance, and cognitive optimization of the allocation process can then be carried out so that, even on days of particularly scarce supply, the socio-economic impacts of not satisfying the needs of consumers can be minimized. In this context, the present study utilized fuzzy logic to assign weightage to different types of consumers based at an educational campus in India, and then established optimal allocation by applying the non-linear mapping capability of neuro-genetic algorithms. The outputs of the algorithms were compared with similar outputs from particle swarm optimization and differential evolution algorithms. The results of the study demonstrate an option for the optimal utilization of available energy based on the socio-economic importance of consumers.Keywords: power allocation, optimization problem, neural networks, environmental and ecological engineering
Procedia PDF Downloads 480161 Location Choice: The Effects of Network Configuration upon the Distribution of Economic Activities in the Chinese City of Nanning
Authors: Chuan Yang, Jing Bie, Zhong Wang, Panagiotis Psimoulis
Abstract:
Contemporary studies investigating the association between the spatial configuration of the urban network and economic activities at the street level were mostly conducted within space syntax conceptual framework. These findings supported the theory of 'movement economy' and demonstrated the impact of street configuration on the distribution of pedestrian movement and land-use shaping, especially retail activities. However, the effects varied between different urban contexts. In this paper, the relationship between economic activity distribution and the urban configurational characters was examined at the segment level. In the study area, three kinds of neighbourhood types, urban, suburban, and rural neighbourhood, were included. And among all neighbourhoods, three kinds of urban network form, 'tree-like', grid, and organic pattern, were recognised. To investigate the nested effects of urban configuration measured by space syntax approach and urban context, multilevel zero-inflated negative binomial (ZINB) regression models were constructed. Additionally, considering the spatial autocorrelation, spatial lag was also concluded in the model as an independent variable. The random effect ZINB model shows superiority over the ZINB model or multilevel linear (ML) model in the explanation of economic activities pattern shaping over the urban environment. And after adjusting for the neighbourhood type and network form effects, connectivity and syntax centrality significantly affect economic activities clustering. The comparison between accumulative and new established economic activities illustrated the different preferences for economic activity location choice.Keywords: space syntax, economic activities, multilevel model, Chinese city
Procedia PDF Downloads 125160 Genomic and Evolutionary Diversity of Long Terminal Repeat (LTR) Retrotransposons in Date Palm (Phoenix dactylifera)
Authors: Faisal Nouroz, Mukaramin Mukaramin
Abstract:
Of the transposable elements (TEs), the retrotransposons are the most copious elements identified from many sequenced genomes. They have played a major role in genome evolution, rearrangement, and expansions based on their copy and paste mode of proliferation. They are further divided into LTR and Non-LTR retrotransposons. The purpose of the current study was to identify the LTR REs in sequenced Phoenix dactylifera genome and to study their structural diversity. A total of 150 P. dactylifera BAC sequences with > 60kb sizes were randomly retrieved from National Center for Biotechnology Information (NCBI) database and screened for the presence of LTR retrotransposons. Seven bacterial artificial chromosomes (BAC) sequences showed full-length LTR Retrotransposons with 4 Copia and 3 Gypsy families having variable copy numbers in respective families. Reverse transcriptase (RT) domain was found as the most conserved domain among Copia and Gypsy superfamilies and was used to deduce evolutionary analysis. The amino acid residues among various RT sequences showed variability in their percentages indicating post divergence evolution. Amino acid Leucine was found in highest proportions followed by Lysine, while Methionine and Tryptophan were in lowest percentages. The phylogenetic analysis based on RT domains confirmed that although having most conserved RT regions, several evolutionary events occurred causing nucleotide polymorphisms and hence clustering of Gypsy and Copia superfamilies into their respective lineages. The study will be helpful in identification and annotation of these elements in other species and genera and their distribution patterns on chromosomes by fluorescent in situ hybridization techniques.Keywords: transposable elements, Phoenix dactylifera, retrotransposons, phylogenetic analysis
Procedia PDF Downloads 128159 Spatio-temporal Distribution of the Groundwater Quality in the El Milia Plain, Kebir Rhumel Basin, Algeria
Authors: Lazhar Belkhiri, Ammar Tiri, Lotfi Mouni
Abstract:
In this research, we analyzed the groundwater quality index in the El Milia plain, Kebir Rhumel Basin, Algeria. Thirty-three groundwater samples were collected from wells in the El Milia plain during April 2015. In this study, pH and electrical conductivity (EC) were conducted at each sampling well. Eight hydrochemical parameters such as calcium (Ca), magnesium (Mg), sodium (Na), potassium (K), chlorid (Cl), sulfate (SO4), bicarbonate (HCO3), and Nnitrate (NO3) were analysed. The entropy water quality index (EWQI) method was employed to evaluate the groundwater quality in the study area. Moran’s I and the ordinary kriging (OK) interpolation technique were used to examine the spatial distribution pattern of the hydrochemical parameters in the groundwater. It was found that the hydrochemical parameters Ca, Cl, and HCO3 showed strong spatial autocorrelation in the El Milia plain, indicating a spatial dependence and clustering of these parameters in the groundwater. The groundwater quality was evaluated using the entropy water quality index (EWQI). The results showed that approximately 86% of the total groundwater samples in the study area fall within the moderate groundwater quality category. The spatial map of the EWQI values indicated an increasing trend from the south-west to the northeast, following the direction of groundwater flow. The highest EWQI values were observed near El Milia city in the center of the plain. This spatial pattern suggests variations in groundwater quality across the study area, with potentially higher risks near the city center. Therefore, the results obtained in this research provide very useful information to decision-makers.Keywords: entropy water quality index (EWQI), moran’s i, ordinary kriging interpolation, el milia plain
Procedia PDF Downloads 62158 Credit Card Fraud Detection with Ensemble Model: A Meta-Heuristic Approach
Authors: Gong Zhilin, Jing Yang, Jian Yin
Abstract:
The purpose of this paper is to develop a novel system for credit card fraud detection based on sequential modeling of data using hybrid deep learning models. The projected model encapsulates five major phases are pre-processing, imbalance-data handling, feature extraction, optimal feature selection, and fraud detection with an ensemble classifier. The collected raw data (input) is pre-processed to enhance the quality of the data through alleviation of the missing data, noisy data as well as null values. The pre-processed data are class imbalanced in nature, and therefore they are handled effectively with the K-means clustering-based SMOTE model. From the balanced class data, the most relevant features like improved Principal Component Analysis (PCA), statistical features (mean, median, standard deviation) and higher-order statistical features (skewness and kurtosis). Among the extracted features, the most optimal features are selected with the Self-improved Arithmetic Optimization Algorithm (SI-AOA). This SI-AOA model is the conceptual improvement of the standard Arithmetic Optimization Algorithm. The deep learning models like Long Short-Term Memory (LSTM), Convolutional Neural Network (CNN), and optimized Quantum Deep Neural Network (QDNN). The LSTM and CNN are trained with the extracted optimal features. The outcomes from LSTM and CNN will enter as input to optimized QDNN that provides the final detection outcome. Since the QDNN is the ultimate detector, its weight function is fine-tuned with the Self-improved Arithmetic Optimization Algorithm (SI-AOA).Keywords: credit card, data mining, fraud detection, money transactions
Procedia PDF Downloads 131157 A QoS Aware Cluster Based Routing Algorithm for Wireless Mesh Network Using LZW Lossless Compression
Authors: J. S. Saini, P. P. K. Sandhu
Abstract:
The multi-hop nature of Wireless Mesh Networks and the hasty progression of throughput demands results in multi- channels and multi-radios structures in mesh networks, but the main problem of co-channels interference reduces the total throughput, specifically in multi-hop networks. Quality of Service mentions a vast collection of networking technologies and techniques that guarantee the ability of a network to make available desired services with predictable results. Quality of Service (QoS) can be directed at a network interface, towards a specific server or router's performance, or in specific applications. Due to interference among various transmissions, the QoS routing in multi-hop wireless networks is formidable task. In case of multi-channel wireless network, since two transmissions using the same channel may interfere with each other. This paper has considered the Destination Sequenced Distance Vector (DSDV) routing protocol to locate the secure and optimised path. The proposed technique also utilizes the Lempel–Ziv–Welch (LZW) based lossless data compression and intra cluster data aggregation to enhance the communication between the source and the destination. The use of clustering has the ability to aggregate the multiple packets and locates a single route using the clusters to improve the intra cluster data aggregation. The use of the LZW based lossless data compression has ability to reduce the data packet size and hence it will consume less energy, thus increasing the network QoS. The MATLAB tool has been used to evaluate the effectiveness of the projected technique. The comparative analysis has shown that the proposed technique outperforms over the existing techniques.Keywords: WMNS, QOS, flooding, collision avoidance, LZW, congestion control
Procedia PDF Downloads 340156 Study of the Benefit Analysis Using Vertical Farming Method in Urban Renewal within the Older City of Taichung
Authors: Hsu Kuo-Wei, Tan Roon Fang, Chao Jen-chih
Abstract:
Cities face environmental challenges, including over-urbanization issues, air and water quality issues, lack of green space, excess heat capture, polluted storm water runoff and lack of ecological biodiversity. The vertical farming holds the condition of technology addressing these issues by enabling more food to be produced with finite less resources use and space. Most of the existing research regarding to technology Industry of agriculture between plant factory and vertical greening, which with high costs and high-technology. Relative research developed a sustainable model for construction and operation of the vertical farm in urban housing which aims to revolutionize our daily life of food production and urban development. However, those researches focused on quantitative analysis. This study utilized relative research for key variables of benefits of vertical farming. In the second stage, utilizes Fuzzy Delphi Method to obtain the critical factors of benefits of vertical farming using in Urban Renewal by interviewing the foregoing experts. Then, Analytic Hierarchy Process is applied to find the importance degree of each criterion as the measurable indices of the vertical farming method in urban renewal within the older city of Taichung.Keywords: urban renewal, vertical farming, urban agriculture, benefit analysis, the older city of Taichung
Procedia PDF Downloads 469155 Biochemical and Pomological Variability among 14 Moroccan and Foreign Cultivars of Prunus dulcis
Authors: H. Hanine, H. H'ssaini, M. Ibno Alaoui, A. Nablousi, H. Zahir, S. Ennahli, H. Latrache, H. Zine Abidine
Abstract:
Biochemical and pomological variability among 14 cultivars of Prunus dulcis planted in a germoplasm collection site in Morocco were evaluated. Almond samples from six local and eight foreign cultivars (France, Italy, Spain, and USA) were characterized. Biochemical and pomological data revealed significant genetic variability among the 14 cultivars; local cultivars exhibited higher total polyphenol content. Oil content ranged from 35 to 57% among cultivars; both Texas and Toundout genotypes recorded the highest oil content. Total protein concentration from select cultivars ranged from 50 mg/g in Ferraduel to 105 mg/g in Rizlane1 cultivars. Antioxidant activity of almond samples was examined by a DPPH (1,1-diphenyl-2-picrylhydrazyl) radical-scavenging assay; the antioxidant activity varied significantly within the cultivars, with IC50 (the half-maximal inhibitory concentration) values ranging from 2.25 to 20 mg/ml. Autochthonous cultivars originated from the Oujda region exhibited higher tegument total polyphenol and amino acid content compared to others. The genotype Rizlane2 recorded the highest flavonoid content. Pomological traits revealed a large variability within the almond germplasms. The hierarchical clustering analysis of all the data regarding pomological traits distinguished two groups with some particular genotypes as distinct cultivars, and groups of cultivars as polyclone varieties. These results strongly exhibit a potential use of Moroccan-originated almonds as potential clones for future selection due to their nutritional values and pomological traits compared to well-established cultivars.Keywords: antioxidant activity, DDPH, Moroccan almonds, Prunus dulcis
Procedia PDF Downloads 243154 Assessing Significance of Correlation with Binomial Distribution
Authors: Vijay Kumar Singh, Pooja Kushwaha, Prabhat Ranjan, Krishna Kumar Ojha, Jitendra Kumar
Abstract:
Present day high-throughput genomic technologies, NGS/microarrays, are producing large volume of data that require improved analysis methods to make sense of the data. The correlation between genes and samples has been regularly used to gain insight into many biological phenomena including, but not limited to, co-expression/co-regulation, gene regulatory networks, clustering and pattern identification. However, presence of outliers and violation of assumptions underlying Pearson correlation is frequent and may distort the actual correlation between the genes and lead to spurious conclusions. Here, we report a method to measure the strength of association between genes. The method assumes that the expression values of a gene are Bernoulli random variables whose outcome depends on the sample being probed. The method considers the two genes as uncorrelated if the number of sample with same outcome for both the genes (Ns) is equal to certainly expected number (Es). The extent of correlation depends on how far Ns can deviate from the Es. The method does not assume normality for the parent population, fairly unaffected by the presence of outliers, can be applied to qualitative data and it uses the binomial distribution to assess the significance of association. At this stage, we would not claim about the superiority of the method over other existing correlation methods, but our method could be another way of calculating correlation in addition to existing methods. The method uses binomial distribution, which has not been used until yet, to assess the significance of association between two variables. We are evaluating the performance of our method on NGS/microarray data, which is noisy and pierce by the outliers, to see if our method can differentiate between spurious and actual correlation. While working with the method, it has not escaped our notice that the method could also be generalized to measure the association of more than two variables which has been proven difficult with the existing methods.Keywords: binomial distribution, correlation, microarray, outliers, transcriptome
Procedia PDF Downloads 416153 Information Management Approach in the Prediction of Acute Appendicitis
Authors: Ahmad Shahin, Walid Moudani, Ali Bekraki
Abstract:
This research aims at presenting a predictive data mining model to handle an accurate diagnosis of acute appendicitis with patients for the purpose of maximizing the health service quality, minimizing morbidity/mortality, and reducing cost. However, acute appendicitis is the most common disease which requires timely accurate diagnosis and needs surgical intervention. Although the treatment of acute appendicitis is simple and straightforward, its diagnosis is still difficult because no single sign, symptom, laboratory or image examination accurately confirms the diagnosis of acute appendicitis in all cases. This contributes in increasing morbidity and negative appendectomy. In this study, the authors propose to generate an accurate model in prediction of patients with acute appendicitis which is based, firstly, on the segmentation technique associated to ABC algorithm to segment the patients; secondly, on applying fuzzy logic to process the massive volume of heterogeneous and noisy data (age, sex, fever, white blood cell, neutrophilia, CRP, urine, ultrasound, CT, appendectomy, etc.) in order to express knowledge and analyze the relationships among data in a comprehensive manner; and thirdly, on applying dynamic programming technique to reduce the number of data attributes. The proposed model is evaluated based on a set of benchmark techniques and even on a set of benchmark classification problems of osteoporosis, diabetes and heart obtained from the UCI data and other data sources.Keywords: healthcare management, acute appendicitis, data mining, classification, decision tree
Procedia PDF Downloads 352152 Fuzzy Nail Cream Formula Treatment with Basic Iranian Traditional Medicine
Authors: Elahe Najafizade, Ahmad Mohammad Alkhateeb, Seyed Ali Hossein Zahraei, Iman Dianat
Abstract:
Introduction: Hangnails are short, torn, down parts of the skin surrounding the nails. At times they are very painful. The usual treatment advised is cutting the excess skin with clippers or scissors. To provide instant relief to the patients, we describe a simpler and more effective way to use surgical glue to paste them back into their original position. Method: The cream should not be on the heat; it is on the bain-marie. To achieve the desired emulsifier, 1 gram of borax was mixed in 10 grams of distilled water in a bain-marie until it melted, then stirred oserin, beeswax, and oil in the bain-marie until it melted. After that, 32 grams of distilled water was added little by little. We add and stir and gradually add the borax dissolved in 10 grams of distilled water. The bowl of cream was placed in a bowl of cold water and stirred until the cream was smooth. After that, we add gasoline, alcohol, or methylparaben preservatives. It should be noted that this amount of ingredients is enough for a 350-gram can (when we prepare the cream, we also add the extract). Result: The patient was a 40-year-old female with a hangnail problem that had been used several different creams and Vaseline, but the treatment was not useful, but after this cream was applied for treatment; the hangnail started to cure within one week, and complete treatment achieved after two weeks. Conclusion: Traditional methods with modification without using chemical substances somehow work better and safer, so research programs on them will be useful for less risky treatment procedures.Keywords: nail, cream, formula, traditional medicine
Procedia PDF Downloads 114151 A Deep Learning Model with Greedy Layer-Wise Pretraining Approach for Optimal Syngas Production by Dry Reforming of Methane
Authors: Maryam Zarabian, Hector Guzman, Pedro Pereira-Almao, Abraham Fapojuwo
Abstract:
Dry reforming of methane (DRM) has sparked significant industrial and scientific interest not only as a viable alternative for addressing the environmental concerns of two main contributors of the greenhouse effect, i.e., carbon dioxide (CO₂) and methane (CH₄), but also produces syngas, i.e., a mixture of hydrogen (H₂) and carbon monoxide (CO) utilized by a wide range of downstream processes as a feedstock for other chemical productions. In this study, we develop an AI-enable syngas production model to tackle the problem of achieving an equivalent H₂/CO ratio [1:1] with respect to the most efficient conversion. Firstly, the unsupervised density-based spatial clustering of applications with noise (DBSAN) algorithm removes outlier data points from the original experimental dataset. Then, random forest (RF) and deep neural network (DNN) models employ the error-free dataset to predict the DRM results. DNN models inherently would not be able to obtain accurate predictions without a huge dataset. To cope with this limitation, we employ reusing pre-trained layers’ approaches such as transfer learning and greedy layer-wise pretraining. Compared to the other deep models (i.e., pure deep model and transferred deep model), the greedy layer-wise pre-trained deep model provides the most accurate prediction as well as similar accuracy to the RF model with R² values 1.00, 0.999, 0.999, 0.999, 0.999, and 0.999 for the total outlet flow, H₂/CO ratio, H₂ yield, CO yield, CH₄ conversion, and CO₂ conversion outputs, respectively.Keywords: artificial intelligence, dry reforming of methane, artificial neural network, deep learning, machine learning, transfer learning, greedy layer-wise pretraining
Procedia PDF Downloads 88150 Weight Estimation Using the K-Means Method in Steelmaking’s Overhead Cranes in Order to Reduce Swing Error
Authors: Seyedamir Makinejadsanij
Abstract:
One of the most important factors in the production of quality steel is to know the exact weight of steel in the steelmaking area. In this study, a calculation method is presented to estimate the exact weight of the melt as well as the objects transported by the overhead crane. Iran Alloy Steel Company's steelmaking area has three 90-ton cranes, which are responsible for transferring the ladles and ladle caps between 34 areas in the melt shop. Each crane is equipped with a Disomat Tersus weighing system that calculates and displays real-time weight. The moving object has a variable weight due to swinging, and the weighing system has an error of about +-5%. This means that when the object is moving by a crane, which weighs about 80 tons, the device (Disomat Tersus system) calculates about 4 tons more or 4 tons less, and this is the biggest problem in calculating a real weight. The k-means algorithm is an unsupervised clustering method that was used here. The best result was obtained by considering 3 centers. Compared to the normal average(one) or two, four, five, and six centers, the best answer is with 3 centers, which is logically due to the elimination of noise above and below the real weight. Every day, the standard weight is moved with working cranes to test and calibrate cranes. The results are shown that the accuracy is about 40 kilos per 60 tons (standard weight). As a result, with this method, the accuracy of moving weight is calculated as 99.95%. K-means is used to calculate the exact mean of objects. The stopping criterion of the algorithm is also the number of 1000 repetitions or not moving the points between the clusters. As a result of the implementation of this system, the crane operator does not stop while moving objects and continues his activity regardless of weight calculations. Also, production speed increased, and human error decreased.Keywords: k-means, overhead crane, melt weight, weight estimation, swing problem
Procedia PDF Downloads 91149 High-Risk Gene Variant Profiling Models Ethnic Disparities in Diabetes Vulnerability
Authors: Jianhua Zhang, Weiping Chen, Guanjie Chen, Jason Flannick, Emma Fikse, Glenda Smerin, Yanqin Yang, Yulong Li, John A. Hanover, William F. Simonds
Abstract:
Ethnic disparities in many diseases are well recognized and reflect the consequences of genetic, behavior, and environmental factors. However, direct scientific evidence connecting the ethnic genetic variations and the disease disparities has been elusive, which may have led to the ethnic inequalities in large scale genetic studies. Through the genome-wide analysis of data representing 185,934 subjects, including 14,955 from our own studies of the African America Diabetes Mellitus, we discovered sets of genetic variants either unique to or conserved in all ethnicities. We further developed a quantitative gene function-based high-risk variant index (hrVI) of 20,428 genes to establish profiles that strongly correlate with the subjects' self-identified ethnicities. With respect to the ability to detect human essential and pathogenic genes, the hrVI analysis method is both comparable with and complementary to the well-known genetic analysis methods, pLI and VIRlof. Application of the ethnicity-specific hrVI analysis to the type 2 diabetes mellitus (T2DM) national repository, containing 20,791 cases and 24,440 controls, identified 114 candidate T2DM-associated genes, 8.8-fold greater than that of ethnicity-blind analysis. All the genes identified are defined as either pathogenic or likely-pathogenic in ClinVar database, with 33.3% diabetes-associated and 54.4% obesity-associated genes. These results demonstrate the utility of hrVI analysis and provide the first genetic evidence by clustering patterns of how genetic variations among ethnicities may impede the discovery of diabetes and foreseeably other disease-associated genes.Keywords: diabetes-associated genes, ethnic health disparities, high-risk variant index, hrVI, T2DM
Procedia PDF Downloads 137148 Unveiling Electrical Treeing Mechanisms in Epoxy Resin Insulation Degradation
Authors: Chien-Kuo Chang, You-Syuan Wu, Min-Chiu Wu, Bharath-Kumar Boyanapalli
Abstract:
The electrical treeing mechanism in epoxy resin insulation is a critical area of study concerning the degradation of high-voltage electrical equipment. In this study, we conducted pressure-induced degradation experiments on epoxy resin specimens using a needle-plane electrode structure to simulate electrical treeing. The specimens featured two different defect spacings, allowing for detailed observation facilitated by time-lapse photography. Our investigation revealed four distinct stages of insulation degradation: initial dark tree growth, filamentary tree growth, reverse tree growth, and eventual insulation breakdown. The initial dark treeing stage, though shortest in duration, exhibited a thicker main branch and shorter branching, ceasing upon the appearance of filamentary treeing. Filamentary treeing manifested in two forms: dark filamentary treeing during the resin's glassy state, characterized by branching structures, and fuzzy filamentary treeing during the rubbery state, resembling white feathers. The channels formed by filamentary treeing were observed to be as narrow as a few micrometers and continued to grow until the end of the experiment. Additionally, the transition to reverse treeing occurred when filamentary treeing reached the ground electrode, with the earliest manifestation being growth from the ground electrode towards the high-voltage end.Keywords: epoxy resin insulation, high-voltage equipment, electrical treeing mechanism
Procedia PDF Downloads 77147 Modeling Average Paths Traveled by Ferry Vessels Using AIS Data
Authors: Devin Simmons
Abstract:
At the USDOT’s Bureau of Transportation Statistics, a biannual census of ferry operators in the U.S. is conducted, with results such as route mileage used to determine federal funding levels for operators. AIS data allows for the possibility of using GIS software and geographical methods to confirm operator-reported mileage for individual ferry routes. As part of the USDOT’s work on the ferry census, an algorithm was developed that uses AIS data for ferry vessels in conjunction with known ferry terminal locations to model the average route travelled for use as both a cartographic product and confirmation of operator-reported mileage. AIS data from each vessel is first analyzed to determine individual journeys based on the vessel’s velocity, and changes in velocity over time. These trips are then converted to geographic linestring objects. Using the terminal locations, the algorithm then determines whether the trip represented a known ferry route. Given a large enough dataset, routes will be represented by multiple trip linestrings, which are then filtered by DBSCAN spatial clustering to remove outliers. Finally, these remaining trips are ready to be averaged into one route. The algorithm interpolates the point on each trip linestring that represents the start point. From these start points, a centroid is calculated, and the first point of the average route is determined. Each trip is interpolated again to find the point that represents one percent of the journey’s completion, and the centroid of those points is used as the next point in the average route, and so on until 100 points have been calculated. Routes created using this algorithm have shown demonstrable improvement over previous methods, which included the implementation of a LOESS model. Additionally, the algorithm greatly reduces the amount of manual digitizing needed to visualize ferry activity.Keywords: ferry vessels, transportation, modeling, AIS data
Procedia PDF Downloads 178146 A Review of Blog Assisted Language Learning Research: Based on Bibliometric Analysis
Authors: Bo Ning Lyu
Abstract:
Blog assisted language learning (BALL) has been trialed by educators in language teaching with the development of Web 2.0 technology. Understanding the development trend of related research helps grasp the whole picture of the use of blog in language education. This paper reviews current research related to blogs enhanced language learning based on bibliometric analysis, aiming at (1) identifying the most frequently used keywords and their co-occurrence, (2) clustering research topics based on co-citation analysis, (3) finding the most frequently cited studies and authors and (4) constructing the co-authorship network. 330 articles were searched out in Web of Science, 225 peer-viewed journal papers were finally collected according to selection criteria. Bibexcel and VOSviewer were used to visualize the results. Studies reviewed were published between 2005 to 2016, most in the year of 2014 and 2015 (35 papers respectively). The top 10 most frequently appeared keywords are learning, language, blog, teaching, writing, social, web 2.0, technology, English, communication. 8 research themes could be clustered by co-citation analysis: blogging for collaborative learning, blogging for writing skills, blogging in higher education, feedback via blogs, blogging for self-regulated learning, implementation of using blogs in classroom, comparative studies and audio/video blogs. Early studies focused on the introduction of the classroom implementation while recent studies moved to the audio/video blogs from their traditional usage. By reviewing the research related to BALL quantitatively and objectively, this paper reveals the evolution and development trends as well as identifies influential research, helping researchers and educators quickly grasp this field overall and conducting further studies.Keywords: blog, bibliometric analysis, language learning, literature review
Procedia PDF Downloads 211145 Retrospective Reconstruction of Time Series Data for Integrated Waste Management
Authors: A. Buruzs, M. F. Hatwágner, A. Torma, L. T. Kóczy
Abstract:
The development, operation and maintenance of Integrated Waste Management Systems (IWMS) affects essentially the sustainable concern of every region. The features of such systems have great influence on all of the components of sustainability. In order to reach the optimal way of processes, a comprehensive mapping of the variables affecting the future efficiency of the system is needed such as analysis of the interconnections among the components and modelling of their interactions. The planning of a IWMS is based fundamentally on technical and economical opportunities and the legal framework. Modelling the sustainability and operation effectiveness of a certain IWMS is not in the scope of the present research. The complexity of the systems and the large number of the variables require the utilization of a complex approach to model the outcomes and future risks. This complex method should be able to evaluate the logical framework of the factors composing the system and the interconnections between them. The authors of this paper studied the usability of the Fuzzy Cognitive Map (FCM) approach modelling the future operation of IWMS’s. The approach requires two input data set. One is the connection matrix containing all the factors affecting the system in focus with all the interconnections. The other input data set is the time series, a retrospective reconstruction of the weights and roles of the factors. This paper introduces a novel method to develop time series by content analysis.Keywords: content analysis, factors, integrated waste management system, time series
Procedia PDF Downloads 329