Search results for: miscellaneous findings
20 Teacher Collaboration Impact on Bilingual Students’ Oral Communication Skills in Inclusive Contexts
Authors: Diana González, Marta Gràcia, Ana Luisa Adam-Alcocer
Abstract:
Incorporating digital tools into educational practices represents a valuable approach for enriching the quality of teachers' educational practices in oral competence and fostering improvements in student learning outcomes. This study aims to promote a collaborative and culturally sensitive approach to professional development between teachers and a speech therapist to enhance their self-awareness and reflection on high-quality educational practices that integrate school components to strengthen children’s oral communication and pragmatic skills. The study involved five bilingual teachers fluent in both English and Spanish, with three specializing in special education and two in general education. It focused on Spanish-English bilingual students, aged 3-6, who were experiencing speech delays or disorders in a New York City public school, with the collaboration of a speech therapist. Using EVALOE-DSS (Assessment Scale of Oral Language Teaching in the School Context - Decision Support System), teachers conducted self-assessments of their teaching practices, reflect and make-decisions throughout six classes from March to June, focusing on students' communicative competence across various activities. Concurrently, the speech therapist observed and evaluated six classes per teacher using EVALOE-DSS during the same period. Additionally, professional development meetings were held monthly between the speech therapist and teachers, centering on discussing classroom interactions, instructional strategies, and the progress of both teachers and students in their classes. Findings highlight the digital tool EVALOE-DSS's value in analyzing communication patterns and trends among bilingual children in inclusive settings. It helps in identifying improvement areas through teacher and speech therapist collaboration. After self-reflection meetings, teachers demonstrated increased awareness of student needs in oral language and pragmatic skills. They also exhibited enhanced utilization of strategies outlined in EVALOE-DSS, such as actively guiding and orienting students during oral language activities, promoting student-initiated communicative interactions, teaching students how to seek and provide information, and managing turn-taking to ensure inclusive participation. Teachers participating in the professional development program have shown positive progress in assessing their classes across all dimensions of the training tool, including instructional design, teacher conversation management, pupil conversation management, communicative functions, teacher strategies, and pupil communication functions. This includes aspects related to both teacher actions and child actions, particularly in child language development. This progress underscores the effectiveness of individual reflection (conducted weekly or biweekly using EVALOE-DSS) as well as collaborative reflection among teachers and the speech therapist during meetings. The EVALOE-SSD has proven effective in supporting teachers' self-reflection, decision-making, and classroom changes, leading to improved development of students' oral language and pragmatic skills. It has facilitated culturally sensitive evaluations of communication among bilingual children, cultivating collaboration between teachers and speech therapist to identify areas of growth. Participants in the professional development program demonstrated substantial progress across all dimensions assessed by EVALOE-DSS. This included improved management of pupil communication functions, implementation of effective teaching strategies, and better classroom dynamics. Regular reflection sessions using EVALOE-SSD supported continuous improvement in instructional practices, highlighting its role in fostering reflective teaching and enriching student learning experiences. Overall, EVALOE-DSS has proven invaluable for enhancing teaching effectiveness and promoting meaningful student interactions in diverse educational settings.Keywords: bilingual students, collaboration, culturally sensitive, oral communication skills, self-reflection
Procedia PDF Downloads 3419 Integrating Personality Traits and Travel Motivations for Enhanced Small and Medium-sized Tourism Enterprises (SMEs) Strategies: A Case Study of Cumbria, United Kingdom
Authors: Delia Gabriela Moisa, Demos Parapanos, Tim Heap
Abstract:
The tourism sector is mainly comprised of small and medium-sized tourism enterprises (SMEs), representing approximately 80% of global businesses in this field. These entities require focused attention and support to address challenges, ensuring their competitiveness and relevance in a dynamic industry characterized by continuously changing customer preferences. To address these challenges, it becomes imperative to consider not only socio-demographic factors but also delve into the intricate interplay of psychological elements influencing consumer behavior. This study investigates the impact of personality traits and travel motivations on visitor activities in Cumbria, United Kingdom, an iconic region marked by UNESCO World Heritage Sites, including The Lake District National Park and Hadrian's Wall. With a £4.1 billion tourism industry primarily driven by SMEs, Cumbria serves as an ideal setting for examining the relationship between tourist psychology and activities. Employing the Big Five personality model and the Travel Career Pattern motivation theory, this study aims to explain the relationship between psychological factors and tourist activities. The study further explores SME perspectives on personality-based market segmentation, providing strategic insights into addressing evolving tourist preferences.This pioneering mixed-methods study integrates quantitative data from 330 visitor surveys, subsequently complemented by qualitative insights from tourism SME representatives. The findings unveil that socio-demographic factors do not exhibit statistically significant variations in the activities pursued by visitors in Cumbria. However, significant correlations emerge between personality traits and motivations with preferred visitor activities. Open-minded tourists gravitate towards events and cultural activities, while Conscientious individuals favor cultural pursuits. Extraverted tourists lean towards adventurous, recreational, and wellness activities, while Agreeable personalities opt for lake cruises. Interestingly, a contrasting trend emerges as Extraversion increases, leading to a decrease in interest in cultural activities. Similarly, heightened Agreeableness corresponds to a decrease in interest in adventurous activities. Furthermore, travel motivations, including nostalgia and building relationships, drive event participation, while self-improvement and novelty-seeking lead to adventurous activities. Additionally, qualitative insights from tourism SME representatives underscore the value of targeted messaging aligned with visitor personalities for enhancing loyalty and experiences. This study contributes significantly to scholarship through its novel framework, integrating tourist psychology with activities and industry perspectives. The proposed conceptual model holds substantial practical implications for SMEs to formulate personalized offerings, optimize marketing, and strategically allocate resources tailored to tourist personalities. While the focus is on Cumbria, the methodology's universal applicability offers valuable insights for destinations globally seeking a competitive advantage. Future research addressing scale reliability and geographic specificity limitations can further advance knowledge on this critical relationship between visitor psychology, individual preferences, and industry imperatives. Moreover, by extending the investigation to other districts, future studies could draw comparisons and contrasts in the results, providing a more nuanced understanding of the factors influencing visitor psychology and preferences.Keywords: personality trait, SME, tourist behaviour, tourist motivation, visitor activity
Procedia PDF Downloads 6718 Development of an Omaha System-Based Remote Intervention Program for Work-Related Musculoskeletal Disorders (WMSDs) Among Front-Line Nurses
Authors: Tianqiao Zhang, Ye Tian, Yanliang Yin, Yichao Tian, Suzhai Tian, Weige Sun, Shuhui Gong, Limei Tang, Ruoliang Tang
Abstract:
Introduction: Healthcare workers, especially the nurses all over the world, are highly vulnerable to work-related musculoskeletal disorders (WMSDs), experiencing high rates of neck, shoulder, and low back injuries, due to the unfavorable working conditions. To reduce WMSDs among nursing personnel, many workplace interventions have been developed and implemented. Unfortunately, the ongoing Covid-19 (SARS-CoV-2) pandemic has posed great challenges to the ergonomic practices and interventions in healthcare facilities, particularly the hospitals, since current Covid-19 mitigation measures, such as social distancing and working remotely, has substantially minimized in-person gatherings and trainings. On the other hand, hospitals throughout the world have been short-staffed, resulting in disturbance of shift scheduling and more importantly, the increased job demand among the available caregivers, particularly the doctors and nurses. With the latest development in communication technology, remote intervention measures have been developed as an alternative, without the necessity of in-person meetings. The Omaha System (OS) is a standardized classification system for nursing practices, including a problem classification system, an intervention system, and an outcome evaluation system. This paper describes the development of an OS-based ergonomic intervention program. Methods: First, a comprehensive literature search was performed among worldwide electronic databases, including PubMed, Web of Science, Cochrane Library, China National Knowledge Infrastructure (CNKI), between journal inception to May 2020, resulting in a total of 1,418 scientific articles. After two independent screening processes, the final knowledge pool included eleven randomized controlled trial studies to develop the draft of the intervention program with Omaha intervention subsystem as the framework. After the determination of sample size needed for statistical power and the potential loss to follow-up, a total of 94 nurses from eight clinical departments agreed to provide written, informed consent to participate in the study, which were subsequently assigned into two random groups (i.e., intervention vs. control). A subgroup of twelve nurses were randomly selected to participate in a semi-structured interview, during which their general understanding and awareness of musculoskeletal disorders and potential interventions was assessed. Then, the first draft was modified to reflect the findings from these interviews. Meanwhile, the tentative program schedule was also assessed. Next, two rounds of consultation were conducted among experts in nursing management, occupational health, psychology, and rehabilitation, to further adjust and finalize the intervention program. The control group had access to all the information and exercise modules at baseline, while an interdisciplinary research team was formed and supervised the implementation of the on-line intervention program through multiple social media groups. Outcome measures of this comparative study included biomechanical load assessed by the Quick Exposure Check and stresses due to awkward body postures. Results and Discussion: Modification to the draft included (1) supplementing traditional Chinese medicine practices, (2) adding the use of assistive patient handling equipment, and (3) revising the on-line training method. Information module should be once a week, lasting about 20 to 30 minutes, for a total of 6 weeks, while the exercise module should be 5 times a week, each lasting about 15 to 20 minutes, for a total of 6 weeks.Keywords: ergonomic interventions, musculoskeletal disorders (MSDs), omaha system, nurses, Covid-19
Procedia PDF Downloads 18017 Critical Factors for Successful Adoption of Land Value Capture Mechanisms – An Exploratory Study Applied to Indian Metro Rail Context
Authors: Anjula Negi, Sanjay Gupta
Abstract:
Paradigms studied inform inadequacies of financial resources, be it to finance metro rails for construction or to meet operational revenues or to derive profits in the long term. Funding sustainability is far and wide for much-needed public transport modes, like urban rail or metro rails, to be successfully operated. India embarks upon a sustainable transport journey and has proposed metro rail systems countrywide. As an emerging economic leader, its fiscal constraints are paramount, and the land value capture (LVC) mechanism provides necessary support and innovation toward development. India’s metro rail policy promotes multiple methods of financing, including private-sector investments and public-private-partnership. The critical question that remains to be addressed is what factors can make such mechanisms work. Globally, urban rail is a revolution noted by many researchers as future mobility. Researchers in this study deep dive by way of literature review and empirical assessments into factors that can lead to the adoption of LVC mechanisms. It is understood that the adoption of LVC methods is in the nascent stages in India. Research posits numerous challenges being faced by metro rail agencies in raising funding and for incremental value capture. A few issues pertaining to land-based financing, inter alia: are long-term financing, inter-institutional coordination, economic/ market suitability, dedicated metro funds, land ownership issues, piecemeal approach to real estate development, property development legal frameworks, etc. The question under probe is what are the parameters that can lead to success in the adoption of land value capture (LVC) as a financing mechanism. This research provides insights into key parameters crucial to the adoption of LVC in the context of Indian metro rails. Researchers have studied current forms of LVC mechanisms at various metro rails of the country. This study is significant as little research is available on the adoption of LVC, which is applicable to the Indian context. Transit agencies, State Government, Urban Local Bodies, Policy makers and think tanks, Academia, Developers, Funders, Researchers and Multi-lateral agencies may benefit from this research to take ahead LVC mechanisms in practice. The study deems it imperative to explore and understand key parameters that impact the adoption of LVC. Extensive literature review and ratification by experts working in the metro rails arena were undertaken to arrive at parameters for the study. Stakeholder consultations in the exploratory factor analysis (EFA) process were undertaken for principal component extraction. 43 seasoned and specialized experts participated in a semi-structured questionnaire to scale the maximum likelihood on each parameter, represented by various types of stakeholders. Empirical data was collected on chosen eighteen parameters, and significant correlation was extracted for output descriptives and inferential statistics. Study findings reveal these principal components as institutional governance framework, spatial planning features, legal frameworks, funding sustainability features and fiscal policy measures. In particular, funding sustainability features highlight sub-variables of beneficiaries to pay and use of multiple revenue options towards success in LVC adoption. Researchers recommend incorporation of these variables during early stage in design and project structuring for success in adoption of LVC. In turn leading to improvements in revenue sustainability of a public transport asset and help in undertaking informed transport policy decisions.Keywords: Exploratory factor analysis, land value capture mechanism, financing metro rails, revenue sustainability, transport policy
Procedia PDF Downloads 8116 XAI Implemented Prognostic Framework: Condition Monitoring and Alert System Based on RUL and Sensory Data
Authors: Faruk Ozdemir, Roy Kalawsky, Peter Hubbard
Abstract:
Accurate estimation of RUL provides a basis for effective predictive maintenance, reducing unexpected downtime for industrial equipment. However, while models such as the Random Forest have effective predictive capabilities, they are the so-called ‘black box’ models, where interpretability is at a threshold to make critical diagnostic decisions involved in industries related to aviation. The purpose of this work is to present a prognostic framework that embeds Explainable Artificial Intelligence (XAI) techniques in order to provide essential transparency in Machine Learning methods' decision-making mechanisms based on sensor data, with the objective of procuring actionable insights for the aviation industry. Sensor readings have been gathered from critical equipment such as turbofan jet engine and landing gear, and the prediction of the RUL is done by a Random Forest model. It involves steps such as data gathering, feature engineering, model training, and evaluation. These critical components’ datasets are independently trained and evaluated by the models. While suitable predictions are served, their performance metrics are reasonably good; such complex models, however obscure reasoning for the predictions made by them and may even undermine the confidence of the decision-maker or the maintenance teams. This is followed by global explanations using SHAP and local explanations using LIME in the second phase to bridge the gap in reliability within industrial contexts. These tools analyze model decisions, highlighting feature importance and explaining how each input variable affects the output. This dual approach offers a general comprehension of the overall model behavior and detailed insight into specific predictions. The proposed framework, in its third component, incorporates the techniques of causal analysis in the form of Granger causality tests in order to move beyond correlation toward causation. This will not only allow the model to predict failures but also present reasons, from the key sensor features linked to possible failure mechanisms to relevant personnel. The causality between sensor behaviors and equipment failures creates much value for maintenance teams due to better root cause identification and effective preventive measures. This step contributes to the system being more explainable. Surrogate Several simple models, including Decision Trees and Linear Models, can be used in yet another stage to approximately represent the complex Random Forest model. These simpler models act as backups, replicating important jobs of the original model's behavior. If the feature explanations obtained from the surrogate model are cross-validated with the primary model, the insights derived would be more reliable and provide an intuitive sense of how the input variables affect the predictions. We then create an iterative explainable feedback loop, where the knowledge learned from the explainability methods feeds back into the training of the models. This feeds into a cycle of continuous improvement both in model accuracy and interpretability over time. By systematically integrating new findings, the model is expected to adapt to changed conditions and further develop its prognosis capability. These components are then presented to the decision-makers through the development of a fully transparent condition monitoring and alert system. The system provides a holistic tool for maintenance operations by leveraging RUL predictions, feature importance scores, persistent sensor threshold values, and autonomous alert mechanisms. Since the system will provide explanations for the predictions given, along with active alerts, the maintenance personnel can make informed decisions on their end regarding correct interventions to extend the life of the critical machinery.Keywords: predictive maintenance, explainable artificial intelligence, prognostic, RUL, machine learning, turbofan engines, C-MAPSS dataset
Procedia PDF Downloads 415 Development Programmes Requirements for Managing and Supporting the Ever-Dynamic Job Roles of Middle Managers in Higher Education Institutions: The Espousal Demanded from Human Resources Department; Case Studies of a New University in United Kingdom
Authors: Mohamed Sameer Mughal, Andrew D. Ross, Damian J. Fearon
Abstract:
Background: The fast-paced changing landscape of UK Higher Education Institution (HEIs) is poised by changes and challenges affecting Middle Managers (MM) in their job roles. MM contribute to the success of HEIs by balancing the equilibrium and pass organization strategies from senior staff towards operationalization directives to junior staff. However, this study showcased from the data analyzed during the semi structured interviews; MM job role is becoming more complex due to changes and challenges creating colossal pressures and workloads in day-to-day working. Current development programmes provisions by Human Resources (HR) departments in such HEIs are not feasible, applicable, and matching the true essence and requirements of MM who suggest that programmes offered by HR are too generic to suit their precise needs and require tailor made espousal to work effectively in their pertinent job roles. Methodologies: This study aims to capture demands of MM Development Needs (DN) by means of a conceptual model as conclusive part of the research that is divided into 2 phases. Phase 1 initiated by carrying out 2 pilot interviews with a retired Emeritus status professor and HR programmes development coordinator. Key themes from the pilot and literature review subsidized into formulation of 22 set of questions (Kvale and Brinkmann) in form of interviewing questionnaire during qualitative data collection. Data strategy and collection consisted of purposeful sampling of 12 semi structured interviews (n=12) lasting approximately an hour for all participants. The MM interviewed were at faculty and departmental levels which included; deans (n=2), head of departments (n=4), subject leaders (n=2), and lastly programme leaders (n=4). Participants recruitment was carried out via emails and snowballing technique. The interviews data was transcribed (verbatim) and managed using Computer Assisted Qualitative Data Analysis using Nvivo ver.11 software. Data was meticulously analyzed using Miles and Huberman inductive approach of positivistic style grounded theory, whereby key themes and categories emerged from the rich data collected. The data was precisely coded and classified into case studies (Robert Yin); with a main case study, sub cases (4 classes of MM) and embedded cases (12 individual MMs). Major Findings: An interim conceptual model emerged from analyzing the data with main concepts that included; key performance indicators (KPI’s), HEI effectiveness and outlook, practices, processes and procedures, support mechanisms, student events, rules, regulations and policies, career progression, reporting/accountability, changes and challenges, and lastly skills and attributes. Conclusion: Dynamic elements affecting MM includes; increase in government pressures, student numbers, irrelevant development programmes, bureaucratic structures, transparency and accountability, organization policies, skills sets… can only be confronted by employing structured development programmes originated by HR that are not provided generically. Future Work: Stage 2 (Quantitative method) of the study plans to validate the interim conceptual model externally through fully completed online survey questionnaire (Bram Oppenheim) from external HEIs (n=150). The total sample targeted is 1500 MM. Author contribution focuses on enhancing management theory and narrow the gap between by HR and MM development programme provision.Keywords: development needs (DN), higher education institutions (HEIs), human resources (HR), middle managers (MM)
Procedia PDF Downloads 23014 Improving Patient Journey in the Obstetrics and Gynecology Emergency Department: A Comprehensive Analysis of Patient Experience
Authors: Lolwa Alansari, Abdelhamid Azhaghdani, Sufia Athar, Hanen Mrabet, Annaliza Cruz, Tamara Alshadafat, Almunzer Zakaria
Abstract:
Introduction: Improving the patient experience is a fundamental pillar of healthcare's quadruple aims. Recognizing the importance of patient experiences and perceptions in healthcare interactions is pivotal for driving quality improvement. This abstract centers around the Patient Experience Program, an endeavor crafted with the purpose of comprehending and elevating the experiences of patients in the Obstetrics & Gynecology Emergency Department (OB/GYN ED). Methodology: This comprehensive endeavor unfolded through a structured sequence of phases following Plan-Do-Study-Act (PDSA) model, spanning over 12 months, focused on enhancing patient experiences in the Obstetrics & Gynecology Emergency Department (OB/GYN ED). The study meticulously examined the journeys of patients with acute obstetrics and gynecological conditions, collecting data from over 100 participants monthly. The inclusive approach covered patients of different priority levels (1-5) admitted for acute conditions, with no exclusions. Historical data from March and April 2022 serves as a benchmark for comparison, strengthening causality claims by providing a baseline understanding of OB/GYN ED performance before interventions. Additionally, the methodology includes the incorporation of staff engagement surveys to comprehensively understand the experiences of healthcare professionals with the implemented improvements. Data extraction involved administering open-ended questions and comment sections to gather rich qualitative insights. The survey covered various aspects of the patient journey, including communication, emotional support, timely access to care, care coordination, and patient-centered decision-making. The project's data analysis utilized a mixed-methods approach, combining qualitative techniques to identify recurring themes and extract actionable insights and quantitative methods to assess patient satisfaction scores and relevant metrics over time, facilitating the measurement of intervention impact and longitudinal tracking of changes. From the themes we discovered in both the online and in-person patient experience surveys, several key findings emerged that guided us in initiating improvements, including effective communication and information sharing, providing emotional support and empathy, ensuring timely access to care, fostering care coordination and continuity, and promoting patient-centered decision-making. Results: The project yielded substantial positive outcomes, significantly improving patient experiences in the OB/GYN ED. Patient satisfaction levels rose from 62% to a consistent 98%, with notable improvements in satisfaction with care plan information and physician care. Waiting time satisfaction increased from 68% to a steady 97%. The project positively impacted nurses' and midwives' job satisfaction, increasing from 64% to an impressive 94%. Operational metrics displayed positive trends, including a decrease in the "left without being seen" rate from 3% to 1%, the discharge against medical advice rate dropping from 8% to 1%, and the absconded rate reducing from 3% to 0%. These outcomes underscore the project's effectiveness in enhancing both patient and staff experiences in the healthcare setting. Conclusion: The use of a patient experience questionnaire has been substantiated by evidence-based research as an effective tool for improving the patient experience, guiding interventions, and enhancing overall healthcare quality in the OB/GYN ED. The project's interventions have resulted in a more efficient allocation of resources, reduced hospital stays, and minimized unnecessary resource utilization. This, in turn, contributes to cost savings for the healthcare facility.Keywords: patient experience, patient survey, person centered care, quality initiatives
Procedia PDF Downloads 5613 The Integration of Digital Humanities into the Sociology of Knowledge Approach to Discourse Analysis
Authors: Gertraud Koch, Teresa Stumpf, Alejandra Tijerina García
Abstract:
Discourse analysis research approaches belong to the central research strategies applied throughout the humanities; they focus on the countless forms and ways digital texts and images shape present-day notions of the world. Despite the constantly growing number of relevant digital, multimodal discourse resources, digital humanities (DH) methods are thus far not systematically developed and accessible for discourse analysis approaches. Specifically, the significance of multimodality and meaning plurality modelling are yet to be sufficiently addressed. In order to address this research gap, the D-WISE project aims to develop a prototypical working environment as digital support for the sociology of knowledge approach to discourse analysis and new IT-analysis approaches for the use of context-oriented embedding representations. Playing an essential role throughout our research endeavor is the constant optimization of hermeneutical methodology in the use of (semi)automated processes and their corresponding epistemological reflection. Among the discourse analyses, the sociology of knowledge approach to discourse analysis is characterised by the reconstructive and accompanying research into the formation of knowledge systems in social negotiation processes. The approach analyses how dominant understandings of a phenomenon develop, i.e., the way they are expressed and consolidated by various actors in specific arenas of discourse until a specific understanding of the phenomenon and its socially accepted structure are established. This article presents insights and initial findings from D-WISE, a joint research project running since 2021 between the Institute of Anthropological Studies in Culture and History and the Language Technology Group of the Department of Informatics at the University of Hamburg. As an interdisciplinary team, we develop central innovations with regard to the availability of relevant DH applications by building up a uniform working environment, which supports the procedure of the sociology of knowledge approach to discourse analysis within open corpora and heterogeneous, multimodal data sources for researchers in the humanities. We are hereby expanding the existing range of DH methods by developing contextualized embeddings for improved modelling of the plurality of meaning and the integrated processing of multimodal data. The alignment of this methodological and technical innovation is based on the epistemological working methods according to grounded theory as a hermeneutic methodology. In order to systematically relate, compare, and reflect the approaches of structural-IT and hermeneutic-interpretative analysis, the discourse analysis is carried out both manually and digitally. Using the example of current discourses on digitization in the healthcare sector and the associated issues regarding data protection, we have manually built an initial data corpus of which the relevant actors and discourse positions are analysed in conventional qualitative discourse analysis. At the same time, we are building an extensive digital corpus on the same topic based on the use and further development of entity-centered research tools such as topic crawlers and automated newsreaders. In addition to the text material, this consists of multimodal sources such as images, video sequences, and apps. In a blended reading process, the data material is filtered, annotated, and finally coded with the help of NLP tools such as dependency parsing, named entity recognition, co-reference resolution, entity linking, sentiment analysis, and other project-specific tools that are being adapted and developed. The coding process is carried out (semi-)automated by programs that propose coding paradigms based on the calculated entities and their relationships. Simultaneously, these can be specifically trained by manual coding in a closed reading process and specified according to the content issues. Overall, this approach enables purely qualitative, fully automated, and semi-automated analyses to be compared and reflected upon.Keywords: entanglement of structural IT and hermeneutic-interpretative analysis, multimodality, plurality of meaning, sociology of knowledge approach to discourse analysis
Procedia PDF Downloads 22412 Knowledge of the Doctors Regarding International Patient Safety Goal
Authors: Fatima Saeed, Abdullah Mudassar
Abstract:
Introduction: Patient safety remains a global priority in the ever-evolving healthcare landscape. At the forefront of this endeavor are the International Patient Safety Goals (IPSGs), a standardized framework designed to mitigate risks and elevate the quality of care. Doctors, positioned as primary caregivers, wield a pivotal role in upholding and adhering to IPSGs, underscoring the critical significance of their knowledge and understanding of these goals. This research embarks on a comprehensive exploration into the depth of Doctors ' comprehension of IPSGs, aiming to unearth potential gaps and provide insights for targeted educational interventions. Established by influential healthcare bodies, including the World Health Organization (WHO), IPSGs represent a universally applicable set of objectives spanning crucial domains such as medication safety, infection control, surgical site safety, and patient identification. Adherence to these goals has exhibited substantial reductions in adverse events, fostering an overall enhancement in the quality of care. This study operates on the fundamental premise that an informed Doctors workforce is indispensable for effectively implementing IPSGs. A nuanced understanding of these goals empowers Doctors to identify potential risks, advocate for necessary changes, and actively contribute to a safety-centric culture within healthcare institutions. Despite the acknowledged importance of IPSGs, there is a growing concern that nurses may need more knowledge to integrate these goals into their practice seamlessly. Methodology: A Comprehensive research methodology covering study design, setting, duration, sample size determination, sampling technique, and data analysis. It introduces the philosophical framework guiding the research and details material, methods, and the analysis framework. The descriptive quantitative cross-sectional study in teaching care hospitals utilized convenient sampling over six months. Data collection involved written informed consent and questionnaires, analyzed with SPSS version 23, presenting results graphically and descriptively. The chapter ensures a clear understanding of the study's design, execution, and analytical processes. Result: The survey results reveal a substantial distribution across hospitals, with 34.52% in MTIKTH and 65.48% in HMC MTI. There is a notable prevalence of patient safety incidents, emphasizing the significance of adherence to IPSGs. Positive trends are observed, including 77.0% affirming the "time-out" procedure, 81.6% acknowledging effective healthcare provider communication, and high recognition (82.7%) of the purpose of IPSGs to improve patient safety. While the survey reflects a good understanding of IPSGs, areas for improvement are identified, suggesting opportunities for targeted interventions. Discussion: The study underscores the need for tailored care approaches and highlights the bio-socio-cultural context of 'contagion,' suggesting areas for further research amid antimicrobial resistance. Shifting the focus to patient safety practices, the survey chapter provides a detailed overview of results, emphasizing workplace distribution, patient safety incidents, and positive reflections on IPSGs. The findings indicate a positive trend in patient safety practices with areas for improvement, emphasizing the ongoing need for reinforcing safety protocols and cultivating a safety-centric culture in healthcare. Conclusion: In summary, the survey indicates a positive trend in patient safety practices with a good understanding of IPSGs among participants. However, identifying areas for potential improvement suggests opportunities for targeted interventions to enhance patient safety further. Ongoing efforts to reinforce adherence to safety protocols, address identified gaps, and foster a safety culture will contribute to continuous improvements in patient care and outcomes.Keywords: infection control, international patient safety, patient safety practices, proper medication
Procedia PDF Downloads 5311 General Evaluation of a Three-Year Holistic Physical Activity Interventions Program in Qatar Campuses: Step into Health (SIH) in Campuses 2013- 2016
Authors: Daniela Salih Khidir, Mohamed G. Al Kuwari, Mercia V. Walt, Izzeldin J. Ibrahim
Abstract:
Background: University-based physical activity interventions aim to establish durable social patterns during the transition to adulthood. This study is a comprehensive evaluation of a 3-year intervention-based program to increase the culture of physical activity (PA) routine in Qatar campuses community, using a holistic approach. Methodology: General assessment methods: formative evaluation-SIH Campuses logic model design, stakeholders’ identification; process evaluation-members’ step counts analyze and qualitative Appreciative Inquiry session (4-D model); daily steps categorized as: ≤5,000, inactive; 5,000-7,499 low active; ≥7,500, physically active; outcome evaluation - records 3 years interventions. Holistic PA interventions methods: walking interventions - pedometers distributions and walking competitions for students and staff; educational interventions - in campuses implementation of bilingual educational materials, lectures, video related to PA in prevention of non-communicable diseases (NCD); articles published online; monthly emails and sms notifications for pedometer use; mass media campaign - radio advertising, yearly pre/post press releases; community stakeholders interventions-biyearly planning/reporting/achievements rewarding/ qualitative meetings; continuous follow-up communication, biweekly steps reports. Findings: Results formative evaluation - SIH in Campuses logic model identified the need of PA awareness and education within universities, resources, activities, health benefits, program continuity. Results process evaluation: walking interventions: Phase 1: 5 universities recruited, 2352 members, 3 months competition; Phase 2: 6 new universities recruited, 1328 members in addition, 4 months competition; Phase 3: 4 new universities recruited in addition, 1210 members, 6 months competition. Results phase 1 and 2: 1,299 members eligible for analyzes: 800 females (62%), 499 males (38%); 86% non-Qataris, 14% Qatari nationals, daily step count 5,681 steps, age groups 18–24 (n=841; 68%) students, 25–64; (n=458; 35.3%) staff; 38% - low active, 37% physically active and 25% inactive. The AI main themes engaging stakeholders: awareness/education - 5 points (100%); competition, multi levels of involvement in SIH, community-based program/motivation - 4 points each (80%). The AI points represent themes’ repetition within stakeholders’ discussions. Results education interventions: 2 videos implementation, 35 000 educational materials, 3 online articles, 11 walking benefits lectures, 40 emails and sms notifications. Results community stakeholders’ interventions: 6 stakeholders meetings, 3 rewarding gatherings, 1 focus meeting, 40 individual reports, 18 overall reports. Results mass media campaign: 1 radio campaign, 7 press releases, 52 campuses newsletters. Results outcome evaluation: overall 2013-2016, the study used: 1 logic model, 3 PA holistic interventions, partnerships 15 universities, registered 4890 students and staff (aged 18-64 years), engaged 30 campuses stakeholders and 14 internal stakeholders; Total registered population: 61.5% female (2999), 38.5% male (1891), 20.2% (988) Qatari nationals, 79.8% (3902) non-Qataris, 55.5% (2710) students aged 18 – 25 years, 44.5% (2180) staff aged 26 - 64 years. Overall campaign 1,558 members eligible for analyzes: daily step count 7,923; 37% - low active, 43% physically active and 20% inactive. Conclusion: The study outcomes confirm program effectiveness and engagement of young campuses community, specifically female, in PA. The authors recommend implementations of 'holistic PA intervention program approach in Qatar' aiming to impact the community at national level for PA guidelines achievement in support of NCD prevention.Keywords: campuses, evaluation, Qatar, step-count
Procedia PDF Downloads 31010 SockGEL/PLUG: Injectable Nano-Scaled Hydrogel Platforms for Oral and Maxillofacial Interventional Application
Authors: Z. S. Haidar
Abstract:
Millions of teeth are removed annually, and dental extraction is one of the most commonly performed surgical procedures globally. Whether due to caries, periodontal disease, or trauma, exodontia and the ensuing wound healing and bone remodeling processes of the resultant socket (hole in the jaw bone) usually result in serious deformities of the residual alveolar osseous ridge and surrounding soft tissues (reduced height/width). Such voluminous changes render the placement of a proper conventional bridge, denture, or even an implant-supported prosthesis extremely challenging. Further, most extractions continue to be performed with no regard for preventing the onset of alveolar osteitis (also known as dry socket, a painful and difficult-to-treat/-manage condition post-exodontia). Hence, such serious resorptive morphological changes often result in significant facial deformities and a negative impact on the overall Quality of Life (QoL) of patients (and oral health-related QoL); alarming, particularly for the geriatric with compromised healing and in light of the thriving longevity statistics. Despite advances in tissue/wound grafting, serious limitations continue to exist, including efficacy and clinical outcome predictability, cost, treatment time, expertise, and risk of immune reactions. For cases of dry socket, specifically, the commercially available and often-prescribed home remedies are highly-lacking. Indeed, most are not recommended for use anymore. Alveogyl is a fine example. Hence, there is a great market demand and need for alternative solutions. Herein, SockGEL/PLUG (patent pending), an innovative, all-natural, drug-free, and injectable thermo-responsive hydrogel, was designed, formulated, characterized, and evaluated as an osteogenic, angiogenic, anti-microbial, and pain-soothing suture-free intra-alveolar dressing, safe and efficacious for use in fresh extraction sockets, immediately post-exodontia. It is composed of FDA-approved, biocompatible and biodegradable polymers, self-assembled electro-statically to formulate a scaffolding matrix to (1) prevent the on-set of alveolar osteitis via securing the fibrin-clot in situ and protecting/sealing the socket from contamination/infection; and (2) endogenously promote/accelerate wound healing and bone remodeling to preserve the volume of the alveolus. The intrinsic properties of the SockGEL/PLUG hydrogel were evaluated physical-chemical-mechanically for safety (cell viability), viscosity, rheology, bio-distribution, and essentially, capacity to induce wound healing and osteogenesis (small defect, in vivo) without any signaling cues from exogenous cells, growth factors or drugs. The proposed animal model of cranial critical-sized and non-vascularized bone defects shall provide new and critical insights into the role and mechanism of the employed natural bio-polymer blend and gel product in endogenous reparative regeneration of soft tissues and bone morphogenesis. Alongside, the fine-tuning of our modified formulation method will further tackle appropriateness, reproducibility, scalability, ease, and speed in producing stable, biodegradable, and sterilizable thermo-sensitive matrices (3-dimensional interpenetrating yet porous polymeric network) suitable for the intra-socket application. Findings are anticipated to provide sufficient evidence to translate into pilot clinical trials and validate the innovation before engaging the market for feasibility, acceptance, and cost-effectiveness studies.Keywords: hydrogel, nanotechnology, bioengineering, bone regeneration, nanogel, drug delivery
Procedia PDF Downloads 1099 Mapping the Neurotoxic Effects of Sub-Toxic Manganese Exposure: Behavioral Outcomes, Imaging Biomarkers, and Dopaminergic System Alterations
Authors: Katie M. Clark, Adriana A. Tienda, Krista C. Paffenroth, Lindsey N. Brigante, Daniel C. Colvin, Jose Maldonado, Erin S. Calipari, Fiona E. Harrison
Abstract:
Manganese (Mn) is an essential trace element required for human health and is important in antioxidant defenses, as well as in the development and function of dopaminergic neurons. However, chronic low-level Mn exposure, such as through contaminated drinking water, poses risks that may contribute to neurodevelopmental and neurodegenerative conditions, including attention deficit hyperactivity disorder (ADHD). Pharmacological inhibition of the dopamine transporter (DAT) blocks reuptake, elevates synaptic dopamine, and alleviates ADHD symptoms. This study aimed to determine whether Mn exposure in juvenile mice modifies their response to DAT blockers, amphetamine, and methylphenidate and utilize neuroimaging methods to visualize and quantify Mn distribution across dopaminergic brain regions. Male and female heterozygous DATᵀ³⁵⁶ᴹ and wild-type littermates were randomly assigned to receive control (2.5% Stevia) or high Manganese (2.5 mg/ml Mn + 2.5% Stevia) via water ad libitum from weaning (21-28 days) for 4-5 weeks. Mice underwent repeated testing in locomotor activity chambers for three consecutive days (60 mins.) to ensure that they were fully habituated to the environments. On the fourth day, a 3-hour activity session was conducted following treatment with amphetamine (3 mg/kg) or methylphenidate (5 mg/kg). The second drug was administered in a second 3-hour activity session following a 1-week washout period. Following the washout, the mice were given one last injection of amphetamine and euthanized one hour later. Using the ex-vivo brains, magnetic resonance relaxometry (MRR) was performed on a 7Telsa imaging system to map T1- and T2-weighted (T1W, T2W) relaxation times. Mn inherent paramagnetic properties shorten both T1W and T2W times, which enhances the signal intensity and contrast, enabling effective visualization of Mn accumulation in the entire brain. A subset of mice was treated with amphetamine 1 hour before euthanasia. SmartSPIM light sheet microscopy with cleared whole brains and cFos and tyrosine hydroxylase (TH) labeling enabled an unbiased automated counting and densitometric analysis of TH and cFos positive cells. Immunohistochemistry was conducted to measure synaptic protein markers and quantify changes in neurotransmitter regulation. Mn exposure elevated Mn brain levels and potentiated stimulant effects in males. The globus pallidus, substantia nigra, thalamus, and striatum exhibited more pronounced T1W shortening, indicating regional susceptibility to Mn accumulation (p<0.0001, 2-Way ANOVA). In the cleared whole brains, initial analyses suggest that TH and c-Fos co-staining mirrors behavioral data with decreased co-staining in DATT356M+/- mice. Ongoing studies will identify the molecular basis of the effect of Mn, including changes to DAergic metabolism and transport and post-translational modification to the DAT. These findings demonstrate that alterations in T1W relaxation times, as measured by MRR, may serve as an early biomarker for Mn neurotoxicity. This neuroimaging approach exhibits remarkable accuracy in identifying Mn-susceptible brain regions, with a spatial resolution and sensitivity that surpasses current conventional dissection and mass spectrometry approaches. The capability to label and map TH and cFos expression across the entire brain provides insights into whole-brain neuronal activation and its connections to functional neural circuits and behavior following amphetamine and methylphenidate administration.Keywords: manganese, environmental toxicology, dopamine dysfunction, biomarkers, drinking water, light sheet microscopy, magnetic resonance relaxometry (MRR)
Procedia PDF Downloads 48 Open Science Philosophy, Research and Innovation
Authors: C.Ardil
Abstract:
Open Science translates the understanding and application of various theories and practices in open science philosophy, systems, paradigms and epistemology. Open Science originates with the premise that universal scientific knowledge is a product of a collective scholarly and social collaboration involving all stakeholders and knowledge belongs to the global society. Scientific outputs generated by public research are a public good that should be available to all at no cost and without barriers or restrictions. Open Science has the potential to increase the quality, impact and benefits of science and to accelerate advancement of knowledge by making it more reliable, more efficient and accurate, better understandable by society and responsive to societal challenges, and has the potential to enable growth and innovation through reuse of scientific results by all stakeholders at all levels of society, and ultimately contribute to growth and competitiveness of global society. Open Science is a global movement to improve accessibility to and reusability of research practices and outputs. In its broadest definition, it encompasses open access to publications, open research data and methods, open source, open educational resources, open evaluation, and citizen science. The implementation of open science provides an excellent opportunity to renegotiate the social roles and responsibilities of publicly funded research and to rethink the science system as a whole. Open Science is the practice of science in such a way that others can collaborate and contribute, where research data, lab notes and other research processes are freely available, under terms that enable reuse, redistribution and reproduction of the research and its underlying data and methods. Open Science represents a novel systematic approach to the scientific process, shifting from the standard practices of publishing research results in scientific publications towards sharing and using all available knowledge at an earlier stage in the research process, based on cooperative work and diffusing scholarly knowledge with no barriers and restrictions. Open Science refers to efforts to make the primary outputs of publicly funded research results (publications and the research data) publicly accessible in digital format with no limitations. Open Science is about extending the principles of openness to the whole research cycle, fostering, sharing and collaboration as early as possible, thus entailing a systemic change to the way science and research is done. Open Science is the ongoing transition in how open research is carried out, disseminated, deployed, and transformed to make scholarly research more open, global, collaborative, creative and closer to society. Open Science involves various movements aiming to remove the barriers for sharing any kind of output, resources, methods or tools, at any stage of the research process. Open Science embraces open access to publications, research data, source software, collaboration, peer review, notebooks, educational resources, monographs, citizen science, or research crowdfunding. The recognition and adoption of open science practices, including open science policies that increase open access to scientific literature and encourage data and code sharing, is increasing in the open science philosophy. Revolutionary open science policies are motivated by ethical, moral or utilitarian arguments, such as the right to access digital research literature for open source research or science data accumulation, research indicators, transparency in the field of academic practice, and reproducibility. Open science philosophy is adopted primarily to demonstrate the benefits of open science practices. Researchers use open science applications for their own advantage in order to get more offers, increase citations, attract media attention, potential collaborators, career opportunities, donations and funding opportunities. In open science philosophy, open data findings are evidence that open science practices provide significant benefits to researchers in scientific research creation, collaboration, communication, and evaluation according to more traditional closed science practices. Open science considers concerns such as the rigor of peer review, common research facts such as financing and career development, and the sacrifice of author rights. Therefore, researchers are recommended to implement open science research within the framework of existing academic evaluation and incentives. As a result, open science research issues are addressed in the areas of publishing, financing, collaboration, resource management and sharing, career development, discussion of open science questions and conclusions.Keywords: Open Science, Open Science Philosophy, Open Science Research, Open Science Data
Procedia PDF Downloads 1297 Translation of Self-Inject Contraception Training Objectives Into Service Performance Outcomes
Authors: Oluwaseun Adeleke, Samuel O. Ikani, Simeon Christian Chukwu, Fidelis Edet, Anthony Nwala, Mopelola Raji, Simeon Christian Chukwu
Abstract:
Background: Health service providers are offered in-service training periodically to strengthen their ability to deliver services that are ethical, quality, timely and safe. Not all capacity-building courses have successfully resulted in intended service delivery outcomes because of poor training content, design, approach, and ambiance. The Delivering Innovations in Selfcare (DISC) project developed a Moment of Truth innovation, which is a proven training model focused on improving consumer/provider interaction that leads to an increase in the voluntary uptake of subcutaneous depot medroxyprogesterone acetate (DMPA-SC) self-injection among women who opt for injectable contraception. Methodology: Six months after training on a moment of truth (MoT) training manual, the project conducted two intensive rounds of qualitative data collection and triangulation that included provider, client, and community mobilizer interviews, facility observations, and routine program data collection. Respondents were sampled according to a convenience sampling approach, and data collected was analyzed using a codebook and Atlas-TI. Providers and clients were interviewed to understand their experience, perspective, attitude, and awareness about the DMPA-SC self-inject. Data were collected from 12 health facilities in three states – eight directly trained and four cascades trained. The research team members came together for a participatory analysis workshop to explore and interpret emergent themes. Findings: Quality-of-service delivery and performance outcomes were observed to be significantly better in facilities whose providers were trained directly trained by the DISC project than in sites that received indirect training through master trainers. Facilities that were directly trained recorded SI proportions that were twice more than in cascade-trained sites. Direct training comprised of full-day and standalone didactic and interactive sessions constructed to evoke commitment, passion and conviction as well as eliminate provider bias and misconceptions in providers by utilizing human interest stories and values clarification exercises. Sessions also created compelling arguments using evidence and national guidelines. The training also prioritized demonstration sessions, utilized job aids, particularly videos, strengthened empathetic counseling – allaying client fears and concerns about SI, trained on positioning self-inject first and side effects management. Role plays and practicum was particularly useful to enable providers to retain and internalize new knowledge. These sessions provided experiential learning and the opportunity to apply one's expertise in a supervised environment where supportive feedback is provided in real-time. Cascade Training was often a shorter and abridged form of MoT training that leveraged existing training already planned by master trainers. This training was held over a four-hour period and was less emotive, focusing more on foundational DMPA-SC knowledge such as a reorientation to DMPA-SC, comparison of DMPA-SC variants, counseling framework and skills, data reporting and commodity tracking/requisition – no facility practicums. Training on self-injection was not as robust, presumably because they were not directed at methods in the contraceptive mix that align with state/organizational sponsored objectives – in this instance, fostering LARC services. Conclusion: To achieve better performance outcomes, consideration should be given to providing training that prioritizes practice-based and emotive content. Furthermore, a firm understanding and conviction about the value training offers improve motivation and commitment to accomplish and surpass service-related performance outcomes.Keywords: training, performance outcomes, innovation, family planning, contraception, DMPA-SC, self-care, self-injection.
Procedia PDF Downloads 846 Revolutionizing Financial Forecasts: Enhancing Predictions with Graph Convolutional Networks (GCN) - Long Short-Term Memory (LSTM) Fusion
Authors: Ali Kazemi
Abstract:
Those within the volatile and interconnected international economic markets, appropriately predicting market trends, hold substantial fees for traders and financial establishments. Traditional device mastering strategies have made full-size strides in forecasting marketplace movements; however, monetary data's complicated and networked nature calls for extra sophisticated processes. This observation offers a groundbreaking method for monetary marketplace prediction that leverages the synergistic capability of Graph Convolutional Networks (GCNs) and Long Short-Term Memory (LSTM) networks. Our suggested algorithm is meticulously designed to forecast the traits of inventory market indices and cryptocurrency costs, utilizing a comprehensive dataset spanning from January 1, 2015, to December 31, 2023. This era, marked by sizable volatility and transformation in financial markets, affords a solid basis for schooling and checking out our predictive version. Our algorithm integrates diverse facts to construct a dynamic economic graph that correctly reflects market intricacies. We meticulously collect opening, closing, and high and low costs daily for key inventory marketplace indices (e.g., S&P 500, NASDAQ) and widespread cryptocurrencies (e.g., Bitcoin, Ethereum), ensuring a holistic view of marketplace traits. Daily trading volumes are also incorporated to seize marketplace pastime and liquidity, providing critical insights into the market's shopping for and selling dynamics. Furthermore, recognizing the profound influence of the monetary surroundings on financial markets, we integrate critical macroeconomic signs with hobby fees, inflation rates, GDP increase, and unemployment costs into our model. Our GCN algorithm is adept at learning the relational patterns amongst specific financial devices represented as nodes in a comprehensive market graph. Edges in this graph encapsulate the relationships based totally on co-movement styles and sentiment correlations, enabling our version to grasp the complicated community of influences governing marketplace moves. Complementing this, our LSTM algorithm is trained on sequences of the spatial-temporal illustration discovered through the GCN, enriched with historic fee and extent records. This lets the LSTM seize and expect temporal marketplace developments accurately. Inside the complete assessment of our GCN-LSTM algorithm across the inventory marketplace and cryptocurrency datasets, the version confirmed advanced predictive accuracy and profitability compared to conventional and opportunity machine learning to know benchmarks. Specifically, the model performed a Mean Absolute Error (MAE) of 0.85%, indicating high precision in predicting day-by-day charge movements. The RMSE was recorded at 1.2%, underscoring the model's effectiveness in minimizing tremendous prediction mistakes, which is vital in volatile markets. Furthermore, when assessing the model's predictive performance on directional market movements, it achieved an accuracy rate of 78%, significantly outperforming the benchmark models, averaging an accuracy of 65%. This high degree of accuracy is instrumental for techniques that predict the course of price moves. This study showcases the efficacy of mixing graph-based totally and sequential deep learning knowledge in economic marketplace prediction and highlights the fee of a comprehensive, records-pushed evaluation framework. Our findings promise to revolutionize investment techniques and hazard management practices, offering investors and economic analysts a powerful device to navigate the complexities of cutting-edge economic markets.Keywords: financial market prediction, graph convolutional networks (GCNs), long short-term memory (LSTM), cryptocurrency forecasting
Procedia PDF Downloads 635 A Comprehensive Study of Spread Models of Wildland Fires
Authors: Manavjit Singh Dhindsa, Ursula Das, Kshirasagar Naik, Marzia Zaman, Richard Purcell, Srinivas Sampalli, Abdul Mutakabbir, Chung-Horng Lung, Thambirajah Ravichandran
Abstract:
These days, wildland fires, also known as forest fires, are more prevalent than ever. Wildfires have major repercussions that affect ecosystems, communities, and the environment in several ways. Wildfires lead to habitat destruction and biodiversity loss, affecting ecosystems and causing soil erosion. They also contribute to poor air quality by releasing smoke and pollutants that pose health risks, especially for individuals with respiratory conditions. Wildfires can damage infrastructure, disrupt communities, and cause economic losses. The economic impact of firefighting efforts, combined with their direct effects on forestry and agriculture, causes significant financial difficulties for the areas impacted. This research explores different forest fire spread models and presents a comprehensive review of various techniques and methodologies used in the field. A forest fire spread model is a computational or mathematical representation that is used to simulate and predict the behavior of a forest fire. By applying scientific concepts and data from empirical studies, these models attempt to capture the intricate dynamics of how a fire spreads, taking into consideration a variety of factors like weather patterns, topography, fuel types, and environmental conditions. These models assist authorities in understanding and forecasting the potential trajectory and intensity of a wildfire. Emphasizing the need for a comprehensive understanding of wildfire dynamics, this research explores the approaches, assumptions, and findings derived from various models. By using a comparison approach, a critical analysis is provided by identifying patterns, strengths, and weaknesses among these models. The purpose of the survey is to further wildfire research and management techniques. Decision-makers, researchers, and practitioners can benefit from the useful insights that are provided by synthesizing established information. Fire spread models provide insights into potential fire behavior, facilitating authorities to make informed decisions about evacuation activities, allocating resources for fire-fighting efforts, and planning for preventive actions. Wildfire spread models are also useful in post-wildfire mitigation strategies as they help in assessing the fire's severity, determining high-risk regions for post-fire dangers, and forecasting soil erosion trends. The analysis highlights the importance of customized modeling approaches for various circumstances and promotes our understanding of the way forest fires spread. Some of the known models in this field are Rothermel’s wildland fuel model, FARSITE, WRF-SFIRE, FIRETEC, FlamMap, FSPro, cellular automata model, and others. The key characteristics that these models consider include weather (includes factors such as wind speed and direction), topography (includes factors like landscape elevation), and fuel availability (includes factors like types of vegetation) among other factors. The models discussed are physics-based, data-driven, or hybrid models, also utilizing ML techniques like attention-based neural networks to enhance the performance of the model. In order to lessen the destructive effects of forest fires, this initiative aims to promote the development of more precise prediction tools and effective management techniques. The survey expands its scope to address the practical needs of numerous stakeholders. Access to enhanced early warning systems enables decision-makers to take prompt action. Emergency responders benefit from improved resource allocation strategies, strengthening the efficacy of firefighting efforts.Keywords: artificial intelligence, deep learning, forest fire management, fire risk assessment, fire simulation, machine learning, remote sensing, wildfire modeling
Procedia PDF Downloads 814 Numerical Simulation of Von Karman Swirling Bioconvection Nanofluid Flow from a Deformable Rotating Disk
Authors: Ali Kadir, S. R. Mishra, M. Shamshuddin, O. Anwar Beg
Abstract:
Motivation- Rotating disk bio-reactors are fundamental to numerous medical/biochemical engineering processes including oxygen transfer, chromatography, purification and swirl-assisted pumping. The modern upsurge in biologically-enhanced engineering devices has embraced new phenomena including bioconvection of micro-organisms (photo-tactic, oxy-tactic, gyrotactic etc). The proven thermal performance superiority of nanofluids i.e. base fluids doped with engineered nanoparticles has also stimulated immense implementation in biomedical designs. Motivated by these emerging applications, we present a numerical thermofluid dynamic simulation of the transport phenomena in bioconvection nanofluid rotating disk bioreactor flow. Methodology- We study analytically and computationally the time-dependent three-dimensional viscous gyrotactic bioconvection in swirling nanofluid flow from a rotating disk configuration. The disk is also deformable i.e. able to extend (stretch) in the radial direction. Stefan blowing is included. The Buongiorno dilute nanofluid model is adopted wherein Brownian motion and thermophoresis are the dominant nanoscale effects. The primitive conservation equations for mass, radial, tangential and axial momentum, heat (energy), nanoparticle concentration and micro-organism density function are formulated in a cylindrical polar coordinate system with appropriate wall and free stream boundary conditions. A mass convective condition is also incorporated at the disk surface. Forced convection is considered i.e. buoyancy forces are neglected. This highly nonlinear, strongly coupled system of unsteady partial differential equations is normalized with the classical Von Karman and other transformations to render the boundary value problem (BVP) into an ordinary differential system which is solved with the efficient Adomian decomposition method (ADM). Validation with earlier Runge-Kutta shooting computations in the literature is also conducted. Extensive computations are presented (with the aid of MATLAB symbolic software) for radial and circumferential velocity components, temperature, nanoparticle concentration, micro-organism density number and gradients of these functions at the disk surface (radial local skin friction, local circumferential skin friction, Local Nusselt number, Local Sherwood number, motile microorganism mass transfer rate). Main Findings- Increasing radial stretching parameter decreases radial velocity and radial skin friction, reduces azimuthal velocity and skin friction, decreases local Nusselt number and motile micro-organism mass wall flux whereas it increases nano-particle local Sherwood number. Disk deceleration accelerates the radial flow, damps the azimuthal flow, decreases temperatures and thermal boundary layer thickness, depletes the nano-particle concentration magnitudes (and associated nano-particle species boundary layer thickness) and furthermore decreases the micro-organism density number and gyrotactic micro-organism species boundary layer thickness. Increasing Stefan blowing accelerates the radial flow and azimuthal (circumferential flow), elevates temperatures of the nanofluid, boosts nano-particle concentration (volume fraction) and gyrotactic micro-organism density number magnitudes whereas suction generates the reverse effects. Increasing suction effect reduces radial skin friction and azimuthal skin friction, local Nusselt number, and motile micro-organism wall mass flux whereas it enhances the nano-particle species local Sherwood number. Conclusions - Important transport characteristics are identified of relevance to real bioreactor nanotechnological systems not discussed in previous works. ADM is shown to achieve very rapid convergence and highly accurate solutions and shows excellent promise in simulating swirling multi-physical nano-bioconvection fluid dynamics problems. Furthermore, it provides an excellent complement to more general commercial computational fluid dynamics simulations.Keywords: bio-nanofluids, rotating disk bioreactors, Von Karman swirling flow, numerical solutions
Procedia PDF Downloads 1553 Developing VR-Based Neurorehabilitation Support Tools: A Step-by-Step Approach for Cognitive Rehabilitation and Pain Distraction during Invasive Techniques in Hospital Settings
Authors: Alba Prats-Bisbe, Jaume López-Carballo, David Leno-Colorado, Alberto García Molina, Alicia Romero Marquez, Elena Hernández Pena, Eloy Opisso Salleras, Raimon Jané Campos
Abstract:
Neurological disorders are a leading cause of disability and premature mortality worldwide. Neurorehabilitation (NRHB) is a clinical process aimed at reducing functional impairment, promoting societal participation, and improving the quality of life for affected individuals. Virtual reality (VR) technology is emerging as a promising NRHB support tool. Its immersive nature fosters a strong sense of agency and embodiment, motivating patients to engage in meaningful tasks and increasing adherence to therapy. However, the clinical benefits of VR interventions are challenging to determine due to the high heterogeneity among health applications. This study explores a stepwise development approach for creating VR-based tools to assist individuals with neurological disorders in medical practice, aiming to enhance reproducibility, facilitate comparison, and promote the generalization of findings. Building on previous research, the step-by-step methodology encompasses: Needs Identification– conducting cross-disciplinary meetings to brainstorm problems, solutions, and address barriers. Intervention Definition– target population, set goals, and conceptualize the VR system (equipment and environments). Material Selection and Placement– choose appropriate hardware and software, place the device within the hospital setting, and test equipment. Co-design– collaboratively create VR environments, user interfaces, and data management strategies. Prototyping– develop VR prototypes, conduct user testing, and make iterative redesigns. Usability and Feasibility Assessment– design protocols and conduct trials with stakeholders in the hospital setting. Efficacy Assessment– conduct clinical trials to evaluate outcomes and long-term effects. Cost-Effectiveness Validation– assess reproducibility, sustainability, and balance between costs and benefits. NRHB is complex due to the multifaceted needs of patients and the interdisciplinary healthcare architecture. VR has the potential to support various applications, such as motor skill training, cognitive tasks, pain management, unilateral spatial neglect (diagnosis and treatment), mirror therapy, and ecologically valid activities of daily living. Following this methodology was crucial for launching a VR-based system in a real hospital environment. Collaboration with neuropsychologists lead to develop A) a VR-based tool for cognitive rehabilitation in patients with acquired brain injury (ABI). The system comprises a head-mounted display (HTC Vive Pro Eye) and 7 tasks targeting attention, memory, and executive functions. A desktop application facilitates session configuration, while database records in-game variables. The VR tool's usability and feasibility were demonstrated in proof-of-concept trials with 20 patients, and effectiveness is being tested through a clinical protocol with 12 patients completing 24-session treatment. Another case involved collaboration with nurses and paediatric physiatrists to create B) a VR-based distraction tool during invasive techniques. The goal is to alleviate pain and anxiety associated with botulinum toxin (BTX) injections, blood tests, or intravenous placements. An all-in-one headset (HTC Vive Focus 3) deploys 360º videos to improve the experience for paediatric patients and their families. This study presents a framework for developing clinically relevant and technologically feasible VR-based support tools for hospital settings. Despite differences in patient type, intervention purpose, and VR system, the methodology demonstrates usability, viability, reproducibility and preliminary clinical benefits. It highlights the importance approach centred on clinician and patient needs for any aspect of NRHB within a real hospital setting.Keywords: neurological disorders, neurorehabilitation, stepwise development approach, virtual reality
Procedia PDF Downloads 292 Detailed Degradation-Based Model for Solid Oxide Fuel Cells Long-Term Performance
Authors: Mina Naeini, Thomas A. Adams II
Abstract:
Solid Oxide Fuel Cells (SOFCs) feature high electrical efficiency and generate substantial amounts of waste heat that make them suitable for integrated community energy systems (ICEs). By harvesting and distributing the waste heat through hot water pipelines, SOFCs can meet thermal demand of the communities. Therefore, they can replace traditional gas boilers and reduce greenhouse gas (GHG) emissions. Despite these advantages of SOFCs over competing power generation units, this technology has not been successfully commercialized in large-scale to replace traditional generators in ICEs. One reason is that SOFC performance deteriorates over long-term operation, which makes it difficult to find the proper sizing of the cells for a particular ICE system. In order to find the optimal sizing and operating conditions of SOFCs in a community, a proper knowledge of degradation mechanisms and effects of operating conditions on SOFCs long-time performance is required. The simplified SOFC models that exist in the current literature usually do not provide realistic results since they usually underestimate rate of performance drop by making too many assumptions or generalizations. In addition, some of these models have been obtained from experimental data by curve-fitting methods. Although these models are valid for the range of operating conditions in which experiments were conducted, they cannot be generalized to other conditions and so have limited use for most ICEs. In the present study, a general, detailed degradation-based model is proposed that predicts the performance of conventional SOFCs over a long period of time at different operating conditions. Conventional SOFCs are composed of Yttria Stabilized Zirconia (YSZ) as electrolyte, Ni-cermet anodes, and LaSr₁₋ₓMnₓO₃ (LSM) cathodes. The following degradation processes are considered in this model: oxidation and coarsening of nickel particles in the Ni-cermet anodes, changes in the pore radius in anode, electrolyte, and anode electrical conductivity degradation, and sulfur poisoning of the anode compartment. This model helps decision makers discover the optimal sizing and operation of the cells for a stable, efficient performance with the fewest assumptions. It is suitable for a wide variety of applications. Sulfur contamination of the anode compartment is an important cause of performance drop in cells supplied with hydrocarbon-based fuel sources. H₂S, which is often added to hydrocarbon fuels as an odorant, can diminish catalytic behavior of Ni-based anodes by lowering their electrochemical activity and hydrocarbon conversion properties. Therefore, the existing models in the literature for H₂-supplied SOFCs cannot be applied to hydrocarbon-fueled SOFCs as they only account for the electrochemical activity reduction. A regression model is developed in the current work for sulfur contamination of the SOFCs fed with hydrocarbon fuel sources. The model is developed as a function of current density and H₂S concentration in the fuel. To the best of authors' knowledge, it is the first model that accounts for impact of current density on sulfur poisoning of cells supplied with hydrocarbon-based fuels. Proposed model has wide validity over a range of parameters and is consistent across multiple studies by different independent groups. Simulations using the degradation-based model illustrated that SOFCs voltage drops significantly in the first 1500 hours of operation. After that, cells exhibit a slower degradation rate. The present analysis allowed us to discover the reason for various degradation rate values reported in literature for conventional SOFCs. In fact, the reason why literature reports very different degradation rates, is that literature is inconsistent in definition of how degradation rate is calculated. In the literature, the degradation rate has been calculated as the slope of voltage versus time plot with the unit of voltage drop percentage per 1000 hours operation. Due to the nonlinear profile of voltage over time, degradation rate magnitude depends on the magnitude of time steps selected to calculate the curve's slope. To avoid this issue, instantaneous rate of performance drop is used in the present work. According to a sensitivity analysis, the current density has the highest impact on degradation rate compared to other operating factors, while temperature and hydrogen partial pressure affect SOFCs performance less. The findings demonstrated that a cell running at lower current density performs better in long-term in terms of total average energy delivered per year, even though initially it generates less power than if it had a higher current density. This is because of the dominant and devastating impact of large current densities on the long-term performance of SOFCs, as explained by the model.Keywords: degradation rate, long-term performance, optimal operation, solid oxide fuel cells, SOFCs
Procedia PDF Downloads 1281 Sustainable Agricultural and Soil Water Management Practices in Relation to Climate Change and Disaster: A Himalayan Country Experience
Authors: Krishna Raj Regmi
Abstract:
A “Climate change adaptation and disaster risk management for sustainable agriculture” project was implemented in Nepal, a Himalayan country during 2008 to 2013 sponsored jointly by Food and Agriculture Organization (FAO) and United Nations Development Programme (UNDP), Nepal. The paper is based on the results and findings of this joint pilot project. The climate change events such as increased intensity of erratic rains in short spells, trend of prolonged drought, gradual rise in temperature in the higher elevations and occurrence of cold and hot waves in Terai (lower plains) has led to flash floods, massive erosion in the hills particularly in Churia range and drying of water sources. These recurring natural and climate-induced disasters are causing heavy damages through sedimentation and inundation of agricultural lands, crops, livestock, infrastructures and rural settlements in the downstream plains and thus reducing agriculture productivity and food security in the country. About 65% of the cultivated land in Nepal is rainfed with drought-prone characteristics and stabilization of agricultural production and productivity in these tracts will be possible through adoption of rainfed and drought-tolerant technologies as well as efficient soil-water management by the local communities. The adaptation and mitigation technologies and options identified by the project for soil erosion, flash floods and landslide control are on-farm watershed management, sloping land agriculture technologies (SALT), agro-forestry practices, agri-silvi-pastoral management, hedge-row contour planting, bio-engineering along slopes and river banks, plantation of multi-purpose trees and management of degraded waste land including sandy river-bed flood plains. The stress tolerant technologies with respect to drought, floods and temperature stress for efficient utilization of nutrient, soil, water and other resources for increased productivity are adoption of stress tolerant crop varieties and breeds of animals, indigenous proven technologies, mixed and inter-cropping systems, system of rice/wheat intensification (SRI), direct rice seeding, double transplanting of rice, off-season vegetable production and regular management of nurseries, orchards and animal sheds. The alternate energy use options and resource conservation practices for use by local communities are installation of bio-gas plants and clean stoves (Chulla range) for mitigation of green house gas (GHG) emissions, use of organic manures and bio-pesticides, jatropha cultivation, green manuring in rice fields and minimum/zero tillage practices for marshy lands. The efficient water management practices for increasing productivity of crops and livestock are use of micro-irrigation practices, construction of water conservation and water harvesting ponds, use of overhead water tanks and Thai jars for rain water harvesting and rehabilitation of on-farm irrigation systems. Initiation of some works on community-based early warning system, strengthening of met stations and disaster database management has made genuine efforts in providing disaster-tailored early warning, meteorological and insurance services to the local communities. Contingent planning is recommended to develop coping strategies and capacities of local communities to adopt necessary changes in the cropping patterns and practices in relation to adverse climatic and disaster risk conditions. At the end, adoption of awareness raising and capacity development activities (technical and institutional) and networking on climate-induced disaster and risks through training, visits and knowledge sharing workshops, dissemination of technical know-how and technologies, conduct of farmers' field schools, development of extension materials and their displays are being promoted. However, there is still need of strong coordination and linkage between agriculture, environment, forestry, meteorology, irrigation, climate-induced pro-active disaster preparedness and research at the ministry, department and district level for up-scaling, implementation and institutionalization of climate change and disaster risk management activities and adaptation mitigation options in agriculture for sustainable livelihoods of the communities.Keywords: climate change adaptation, disaster risk management, soil-water management practices, sustainable agriculture
Procedia PDF Downloads 508