Search results for: sustainable systems
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12762

Search results for: sustainable systems

2172 Optimal Continuous Scheduled Time for a Cumulative Damage System with Age-Dependent Imperfect Maintenance

Authors: Chin-Chih Chang

Abstract:

Many manufacturing systems suffer failures due to complex degradation processes and various environment conditions such as random shocks. Consider an operating system is subject to random shocks and works at random times for successive jobs. When successive jobs often result in production losses and performance deterioration, it would be better to do maintenance or replacement at a planned time. A preventive replacement (PR) policy is presented to replace the system before a failure occurs at a continuous time T. In such a policy, the failure characteristics of the system are designed as follows. Each job would cause a random amount of additive damage to the system, and the system fails when the cumulative damage has exceeded a failure threshold. Suppose that the deteriorating system suffers one of the two types of shocks with age-dependent probabilities: type-I (minor) shock is rectified by a minimal repair, or type-II (catastrophic) shock causes the system to fail. A corrective replacement (CR) is performed immediately when the system fails. In summary, a generalized maintenance model to scheduling replacement plan for an operating system is presented below. PR is carried out at time T, whereas CR is carried out when any type-II shock occurs and the total damage exceeded a failure level. The main objective is to determine the optimal continuous schedule time of preventive replacement through minimizing the mean cost rate function. The existence and uniqueness of optimal replacement policy are derived analytically. It can be seen that the present model is a generalization of the previous models, and the policy with preventive replacement outperforms the one without preventive replacement.

Keywords: preventive replacement, working time, cumulative damage model, minimal repair, imperfect maintenance, optimization

Procedia PDF Downloads 342
2171 Hydro-Climatological, Geological, Hydrogeological and Geochemical Study of the Coastal Aquifer System of Chiba Watershed (Cape Bon Peninsula)

Authors: Khawla Askri, Mohamed Haythem Msaddek, AbdelAziz Sebei

Abstract:

Climate change combined with the increase in anthropogenic activities will affect coastal groundwater systems around the world and, more particularly, the Cap Bon region in the North East of Tunisia. This study aims to study the impact of climate change and human stress on the salinization and quantification of groundwater in the Wadi Chiba watershed. In this regard, a hydro-climatological study and a hydrogeological study were carried out based on the characterization of the aquifer system of the eastern coast at the level of the watershed of Wadi Chiba in order to seek to identify, first of all, the degradation of the state of the aquifer on the quantitative level by the study of the piezometric and its evolution over time. Secondly, we sought to identify the degradation of the state of the aquifer qualitatively by using the geochemical method, in particular the major elements, to assess the mineralization of the aquifer water and understand its hydrogeochemical functioning. The study of the Na + / Cl- and Ca2 + / Mg2 + chemical relationships confirmed the presence of a marine intrusion downstream of the Wadi Chiba watershed northeast of Cap-Bon accompanied by a piezometric depression. For this purpose, we proceeded to: 1) Mapping of both piezometric data and salinity. 2) The interpretation of the mapping results. 3)Identification of the origin of the localized deterioration in the quality of the aquifer water. Finally, the analysis of the results showed that the scarcity of water is already forcing human actions in the Chiba watershed due to the irrigation of agricultural lands and the overexploitation of the water table in the study area.

Keywords: climate change, human activities, water table, Wadi Chiba watershed, piezometric depression, marine intrusion

Procedia PDF Downloads 75
2170 Balancing Justice: A Critical Analysis of Plea Bargaining's Impact on Uganda's Criminal Justice System

Authors: Mukisa Daphine Letisha

Abstract:

Plea bargaining, a practice often associated with more developed legal systems, has emerged as a significant tool within Uganda's criminal justice system despite its absence in formal legal structures inherited from its colonial past. Initiated in 2013 with the aim of reducing case backlogs, expediting trials, and addressing prison congestion, plea bargaining reflects a pragmatic response to systemic challenges. While rooted in international statutes and domestic constitutional provisions, its implementation relies heavily on the Judicature (Plea Bargain) Rules of 2016, which outline procedural requirements and safeguards. Advocates argue that plea bargaining has yielded tangible benefits, including a reduction in case backlog and efficient allocation of resources, with notable support from judicial and prosecutorial authorities. Case examples demonstrate successful outcomes, with accused individuals benefitting from reduced sentences in exchange for guilty pleas. However, challenges persist, including procedural irregularities, inadequate statutory provisions, and concerns about coercion and imbalance of power between prosecutors and accused individuals. To enhance efficacy, recommendations focus on establishing monitoring mechanisms, stakeholder training, and public sensitization campaigns. In conclusion, while plea bargaining offers potential advantages in streamlining Uganda's criminal justice system, addressing its challenges requires careful consideration of procedural safeguards and stakeholder engagement to ensure fairness and integrity in the administration of justice.

Keywords: plea-bargaining, criminal-justice system, uganda, efficacy

Procedia PDF Downloads 33
2169 Mammographic Multi-View Cancer Identification Using Siamese Neural Networks

Authors: Alisher Ibragimov, Sofya Senotrusova, Aleksandra Beliaeva, Egor Ushakov, Yuri Markin

Abstract:

Mammography plays a critical role in screening for breast cancer in women, and artificial intelligence has enabled the automatic detection of diseases in medical images. Many of the current techniques used for mammogram analysis focus on a single view (mediolateral or craniocaudal view), while in clinical practice, radiologists consider multiple views of mammograms from both breasts to make a correct decision. Consequently, computer-aided diagnosis (CAD) systems could benefit from incorporating information gathered from multiple views. In this study, the introduce a method based on a Siamese neural network (SNN) model that simultaneously analyzes mammographic images from tri-view: bilateral and ipsilateral. In this way, when a decision is made on a single image of one breast, attention is also paid to two other images – a view of the same breast in a different projection and an image of the other breast as well. Consequently, the algorithm closely mimics the radiologist's practice of paying attention to the entire examination of a patient rather than to a single image. Additionally, to the best of our knowledge, this research represents the first experiments conducted using the recently released Vietnamese dataset of digital mammography (VinDr-Mammo). On an independent test set of images from this dataset, the best model achieved an AUC of 0.87 per image. Therefore, this suggests that there is a valuable automated second opinion in the interpretation of mammograms and breast cancer diagnosis, which in the future may help to alleviate the burden on radiologists and serve as an additional layer of verification.

Keywords: breast cancer, computer-aided diagnosis, deep learning, multi-view mammogram, siamese neural network

Procedia PDF Downloads 119
2168 Pareto System of Optimal Placement and Sizing of Distributed Generation in Radial Distribution Networks Using Particle Swarm Optimization

Authors: Sani M. Lawal, Idris Musa, Aliyu D. Usman

Abstract:

The Pareto approach of optimal solutions in a search space that evolved in multi-objective optimization problems is adopted in this paper, which stands for a set of solutions in the search space. This paper aims at presenting an optimal placement of Distributed Generation (DG) in radial distribution networks with an optimal size for minimization of power loss and voltage deviation as well as maximizing voltage profile of the networks. And these problems are formulated using particle swarm optimization (PSO) as a constraint nonlinear optimization problem with both locations and sizes of DG being continuous. The objective functions adopted are the total active power loss function and voltage deviation function. The multiple nature of the problem, made it necessary to form a multi-objective function in search of the solution that consists of both the DG location and size. The proposed PSO algorithm is used to determine optimal placement and size of DG in a distribution network. The output indicates that PSO algorithm technique shows an edge over other types of search methods due to its effectiveness and computational efficiency. The proposed method is tested on the standard IEEE 34-bus and validated with 33-bus test systems distribution networks. Results indicate that the sizing and location of DG are system dependent and should be optimally selected before installing the distributed generators in the system and also an improvement in the voltage profile and power loss reduction have been achieved.

Keywords: distributed generation, pareto, particle swarm optimization, power loss, voltage deviation

Procedia PDF Downloads 350
2167 To Design an Architectural Model for On-Shore Oil Monitoring Using Wireless Sensor Network System

Authors: Saurabh Shukla, G. N. Pandey

Abstract:

In recent times, oil exploration and monitoring in on-shore areas have gained much importance considering the fact that in India the oil import is 62 percent of the total imports. Thus, architectural model like wireless sensor network to monitor on-shore deep sea oil well is being developed to get better estimate of the oil prospects. The problem we are facing nowadays that we have very few restricted areas of oil left today. Countries like India don’t have much large areas and resources for oil and this problem with most of the countries that’s why it has become a major problem when we are talking about oil exploration in on-shore areas also the increase of oil prices has further ignited the problem. For this the use of wireless network system having relative simplicity, smallness in size and affordable cost of wireless sensor nodes permit heavy deployment in on-shore places for monitoring oil wells. Deployment of wireless sensor network in large areas will surely reduce the cost it will be very much cost effective. The objective of this system is to send real time information of oil monitoring to the regulatory and welfare authorities so that suitable action could be taken. This system architecture is composed of sensor network, processing/transmission unit and a server. This wireless sensor network system could remotely monitor the real time data of oil exploration and monitoring condition in the identified areas. For wireless sensor networks, the systems are wireless, have scarce power, are real-time, utilize sensors and actuators as interfaces, have dynamically changing sets of resources, aggregate behaviour is important and location is critical. In this system a communication is done between the server and remotely placed sensors. The server gives the real time oil exploration and monitoring conditions to the welfare authorities.

Keywords: sensor, wireless sensor network, oil, sensor, on-shore level

Procedia PDF Downloads 427
2166 Experimental Investigation of Mechanical Friction Influence in Semi-Hydraulic Clutch Actuation System Over Mileage

Authors: Abdul Azarrudin M. A., Pothiraj K., Kandasamy Satish

Abstract:

In the current automobile scenario, there comes a demand on more sophistication and comfort drive feel on passenger segments. The clutch pedal effort is one such customer touch feels in manual transmission vehicles, where the driver continuous to operate the clutch pedal in his entire the driving maneuvers. Hence optimum pedal efforts at green condition and over mileage to be ensured for fatigue free the driving. As friction is one the predominant factor and its tendency to challenge the technicality by causing the function degradation. One such semi-hydraulic systems shows load efficiency of about 70-75% over lifetime only due to the increase in friction which leads to the increase in pedal effort and cause fatigue to the vehicle driver. This work deals with the study of friction with different interfaces and its influence in the fulcrum points over mileage, with the objective of understanding the trend over mileage and determining the alternative ways of resolving it. In that one way of methodology is the reduction of friction by experimental investigation of various friction reduction interfaces like metal-to-metal interface and it has been tried out and is detailed further. Also, the specific attention has been put up considering the fulcrum load and its contact interfaces to move on with this study. The main results of the experimental data with the influence of three different contact interfaces are being presented with an ultimate intention of ending up into less fatigue with longer consistent pedal effort, thus smoothens the operation of the end user. The Experimental validation also has been done through rig-level test setup to depict the performance at static condition and in-parallel vehicle level test has also been performed to record the additional influences if any.

Keywords: automobile, clutch, friction, fork

Procedia PDF Downloads 104
2165 The Development Stages of Transformation of Water Policy Management in Victoria

Authors: Ratri Werdiningtyas, Yongping Wei, Andrew Western

Abstract:

The status quo of social-ecological systems is the results of not only natural processes but also the accumulated consequence of policies applied in the past. Often water management objectives are challenging and are only achieved to a limited degree on the ground. In choosing water management approaches, it is important to account for current conditions and important differences due to varied histories. Since the mid-nineteenth century, Victorian water management has evolved through a series of policy regime shifts. The main goal of this research to explore and identify the stages of the evolution of the water policy instruments as practiced in Victoria from 1890-2016. This comparative historical analysis has identified four stages in Victorian policy instrument development. In the first stage, the creation of policy instruments aimed to match the demand and supply of the resource (reserve condition). The second stage begins after natural system alone failed to balance supply and demand. The focus of the policy instrument shifted to an authority perspective in this stage. Later, the increasing number of actors interested in water led to another change in policy instrument. The third stage focused on the significant role of information from different relevant actors. The fourth and current stage is the most advanced, in that it involved the creation of a policy instrument for synergizing the previous three focal factors: reserve, authority, and information. When considering policy in other jurisdiction, these findings suggest that a key priority should be to reflect on the jurisdictions current position among these four evolutionary stages and try to make improve progressively rather than directly adopting approaches from elsewhere without understanding the current position.

Keywords: policy instrument, policy transformation, socio-ecolgical system, water management

Procedia PDF Downloads 130
2164 Buffer Allocation and Traffic Shaping Policies Implemented in Routers Based on a New Adaptive Intelligent Multi Agent Approach

Authors: M. Taheri Tehrani, H. Ajorloo

Abstract:

In this paper, an intelligent multi-agent framework is developed for each router in which agents have two vital functionalities, traffic shaping and buffer allocation and are positioned in the ports of the routers. With traffic shaping functionality agents shape the traffic forward by dynamic and real time allocation of the rate of generation of tokens in a Token Bucket algorithm and with buffer allocation functionality agents share their buffer capacity between each other based on their need and the conditions of the network. This dynamic and intelligent framework gives this opportunity to some ports to work better under burst and more busy conditions. These agents work intelligently based on Reinforcement Learning (RL) algorithm and will consider effective parameters in their decision process. As RL have limitation considering much parameter in its decision process due to the volume of calculations, we utilize our novel method which invokes Principle Component Analysis (PCA) on the RL and gives a high dimensional ability to this algorithm to consider as much as needed parameters in its decision process. This implementation when is compared to our previous work where traffic shaping was done without any sharing and dynamic allocation of buffer size for each port, the lower packet drop in the whole network specifically in the source routers can be seen. These methods are implemented in our previous proposed intelligent simulation environment to be able to compare better the performance metrics. The results obtained from this simulation environment show an efficient and dynamic utilization of resources in terms of bandwidth and buffer capacities pre allocated to each port.

Keywords: principal component analysis, reinforcement learning, buffer allocation, multi- agent systems

Procedia PDF Downloads 498
2163 Intelligent Fault Diagnosis for the Connection Elements of Modular Offshore Platforms

Authors: Jixiang Lei, Alexander Fuchs, Franz Pernkopf, Katrin Ellermann

Abstract:

Within the Space@Sea project, funded by the Horizon 2020 program, an island consisting of multiple platforms was designed. The platforms are connected by ropes and fenders. The connection is critical with respect to the safety of the whole system. Therefore, fault detection systems are investigated, which could detect early warning signs for a possible failure in the connection elements. Previously, a model-based method called Extended Kalman Filter was developed to detect the reduction of rope stiffness. This method detected several types of faults reliably, but some types of faults were much more difficult to detect. Furthermore, the model-based method is sensitive to environmental noise. When the wave height is low, a long time is needed to detect a fault and the accuracy is not always satisfactory. In this sense, it is necessary to develop a more accurate and robust technique that can detect all rope faults under a wide range of operational conditions. Inspired by this work on the Space at Sea design, we introduce a fault diagnosis method based on deep neural networks. Our method cannot only detect rope degradation by using the acceleration data from each platform but also estimate the contributions of the specific acceleration sensors using methods from explainable AI. In order to adapt to different operational conditions, the domain adaptation technique DANN is applied. The proposed model can accurately estimate rope degradation under a wide range of environmental conditions and help users understand the relationship between the output and the contributions of each acceleration sensor.

Keywords: fault diagnosis, deep learning, domain adaptation, explainable AI

Procedia PDF Downloads 162
2162 Facing Global Competition through Participation in Global Innovation Networks: The Case of Mechatronics District in the Veneto Region

Authors: Monica Plechero

Abstract:

Many firms belonging to Italian industrial districts faced a crisis starting from 2000 and upsurging during 2008-2014. To remain competitive in the global market, these firms and their local systems need to renovate their traditional competitive advantages, strengthen their link with global flows of knowledge. This may be particularly relevant in sectors such as the mechatronics, that combine traditional knowledge domain with new knowledge domains (e.g. mechanics, electronics, and informatics). This sector is nowadays one of the key sectors within the so-called ‘smart specialization strategy’ that can lead part of the Italian traditional industry towards new economic developmental opportunities. This paper, by investigating the mechatronics district of the Veneto region, wants to shed new light on how firms of a local system can gain from the globalization of innovation and innovation networks. Methodologically, the paper relies on primary data collected through a survey targeting firms of the local system, as well as on a number of qualitative case studies. The relevant role of medium size companies in the district emerges as evident, as they have wider opportunities to be involved in different processes of globalization of innovation. Indeed, with respect to small companies, the size of medium firms allows them to exploit strategically international markets and globally distributed knowledge. Supporting medium firms’ global innovation strategies, and incentivizing their role as district gatekeepers, may strengthen the competitive capability of the local system and provide new opportunities to positively face global competition.

Keywords: global innovation network, industrial district, internationalization, innovation, mechatronics, Veneto region

Procedia PDF Downloads 213
2161 Triangular Libration Points in the R3bp under Combined Effects of Oblateness, Radiation and Power-Law Profile

Authors: Babatunde James Falaye, Shi Hai Dong, Kayode John Oyewumi

Abstract:

We study the e ffects of oblateness up to J4 of the primaries and power-law density pro file (PDP) on the linear stability of libration location of an in nitesimal mass within the framework of restricted three body problem (R3BP), by using a more realistic model in which a disc with PDP is rotating around the common center of the system mass with perturbed mean motion. The existence and stability of triangular equilibrium points have been explored. It has been shown that triangular equilibrium points are stable for 0 < μ < μc and unstable for μc ≤ μ ≤ 1/2, where c denotes the critical mass parameter. We find that, the oblateness up to J2 of the primaries and the radiation reduces the stability range while the oblateness up to J4 of the primaries increases the size of stability both in the context where PDP is considered and ignored. The PDP has an e ect of about ≈0:01 reduction on the application of c to Earth-Moon and Jupiter-Moons systems. We find that the comprehensive eff ects of the perturbations have a stabilizing proclivity. However, the oblateness up to J2 of the primaries and the radiation of the primaries have tendency for instability, while coecients up to J4 of the primaries have stability predisposition. In the limiting case c = 0, and also by setting appropriate parameter(s) to zero, our results are in excellent agreement with the ones obtained previously. Libration points play a very important role in space mission and as a consequence, our results have a practical application in space dynamics and related areas. The model may be applied to study the navigation and station-keeping operations of spacecraft (in nitesimal mass) around the Jupiter (more massive) -Callisto (less massive) system, where PDP accounts for the circumsolar ring of asteroidal dust, which has a cloud of dust permanently in its wake.

Keywords: libration points, oblateness, power-law density profile, restricted three-body problem

Procedia PDF Downloads 305
2160 A Case-Study Analysis on the Necessity of Testing for Cyber Risk Mitigation on Maritime Transport

Authors: Polychronis Kapalidis

Abstract:

In recent years, researchers have started to turn their attention to cyber security and maritime security independently, neglecting, in most cases, to examine the areas where these two critical issues are intertwined. The impact of cybersecurity issues on the maritime economy is emerging dramatically. Maritime transport and all related activities are conducted by technology-intensive platforms, which today rely heavily on information systems. The paper’s argument is that when no defense is completely effective against cyber attacks, it is vital to test responses to the inevitable incursions. Hence, preparedness in the form of testing existing cybersecurity structure via different tools for potential attacks is vital for minimizing risks. Traditional criminal activities may further be facilitated and evolved through the misuse of cyberspace. Kidnap, piracy, fraud, theft of cargo and imposition of ransomware are the major of these activities that mainly target the industry’s most valuable asset; the ship. The paper, adopting a case-study analysis, based on stakeholder consultation and secondary data analysis, namely policy and strategic-related documentation, presents the importance of holistic testing in the sector. Arguing that poor understanding of the issue leads to the adoption of ineffective policies the paper will present the level of awareness within the industry and assess the risks and vulnerabilities of ships to these cybercriminal activities. It will conclude by suggesting that testing procedures must be focused on three main pillars within the maritime transport sector: the human factor, the infrastructure, and the procedures.

Keywords: cybercrime, cybersecurity, organized crime, risk mitigation

Procedia PDF Downloads 139
2159 An Investigation into the Impacts of High-Frequency Electromagnetic Fields Utilized in the 5G Technology on Insects

Authors: Veriko Jeladze, Besarion Partsvania, Levan Shoshiashvili

Abstract:

This paper addresses a very topical issue today. The frequency range 2.5-100 GHz contains frequencies that have already been used or will be used in modern 5G technologies. The wavelengths used in 5G systems will be close to the body dimensions of small size biological objects, particularly insects. Because the body and body parts dimensions of insects at these frequencies are comparable with the wavelength, the high absorption of EMF energy in the body tissues can occur(body resonance) and therefore can cause harmful effects, possibly the extinction of some of them. An investigation into the impact of radio-frequency nonionizing electromagnetic field (EMF) utilized in the future 5G on insects is of great importance as a very high number of 5G network components will increase the total EMF exposure in the environment. All ecosystems of the earth are interconnected. If one component of an ecosystem is disrupted, the whole system will be affected (which could cause cascading effects). The study of these problems is an important challenge for scientists today because the existing studies are incomplete and insufficient. Consequently, the purpose of this proposed research is to investigate the possible hazardous impact of RF-EMFs (including 5G EMFs) on insects. The project will study the effects of these EMFs on various insects that have different body sizes through computer modeling at frequencies from 2.5 to 100 GHz. The selected insects are honey bee, wasp, and ladybug. For this purpose, the detailed 3D discrete models of insects are created for EM and thermal modeling through FDTD and will be evaluated whole-body Specific Absorption Rates (SAR) at selected frequencies. All these studies represent a novelty. The proposed study will promote new investigations about the bio-effects of 5G-EMFs and will contribute to the harmonization of safe exposure levels and frequencies of 5G-EMFs'.

Keywords: electromagnetic field, insect, FDTD, specific absorption rate (SAR)

Procedia PDF Downloads 74
2158 Fight against Money Laundering with Optical Character Recognition

Authors: Saikiran Subbagari, Avinash Malladhi

Abstract:

Anti Money Laundering (AML) regulations are designed to prevent money laundering and terrorist financing activities worldwide. Financial institutions around the world are legally obligated to identify, assess and mitigate the risks associated with money laundering and report any suspicious transactions to governing authorities. With increasing volumes of data to analyze, financial institutions seek to automate their AML processes. In the rise of financial crimes, optical character recognition (OCR), in combination with machine learning (ML) algorithms, serves as a crucial tool for automating AML processes by extracting the data from documents and identifying suspicious transactions. In this paper, we examine the utilization of OCR for AML and delve into various OCR techniques employed in AML processes. These techniques encompass template-based, feature-based, neural network-based, natural language processing (NLP), hidden markov models (HMMs), conditional random fields (CRFs), binarizations, pattern matching and stroke width transform (SWT). We evaluate each technique, discussing their strengths and constraints. Also, we emphasize on how OCR can improve the accuracy of customer identity verification by comparing the extracted text with the office of foreign assets control (OFAC) watchlist. We will also discuss how OCR helps to overcome language barriers in AML compliance. We also address the implementation challenges that OCR-based AML systems may face and offer recommendations for financial institutions based on the data from previous research studies, which illustrate the effectiveness of OCR-based AML.

Keywords: anti-money laundering, compliance, financial crimes, fraud detection, machine learning, optical character recognition

Procedia PDF Downloads 125
2157 Thermophysical Properties of Glycine/L-Alanine in 1-Butyl-3-Methylimidazolium Bromide and in 1-Butyl-3-Methylimidazolium Chloride

Authors: Tarnveer Kaur

Abstract:

Amino acids, as fundamental structural units of peptides and proteins, have an important role in biological systems by affecting solubility, denaturation, and activity of biomolecules. A study of these effects on thermophysical properties of model compounds in the presence of electrolytes solutions provides information about solute-solvent and solute-solute interactions on biomolecules. Ionic liquids (ILs) as organic electrolytes and green solvents are composed of an organic cation and an inorganic anion, which are liquid at ambient conditions. In the past decade, extensive investigations showed that the use of ILs as reaction media for processes involving biologically relevant compounds is promising in view of their successful application in kinetic resolution, biocatalysis, biosynthesis, separation, and purification processes. The scope of this information is valuable to explore the interactions of amino acids in ILs. To reach this purpose, apparent molar volumes of glycine/L-alanine in aqueous solutions of 1-butyl-3-methylimidazolium bromide/chloride were determined from precise density measurements at temperatures T = (288.15-318.15) K and at atmospheric pressure. Positive values for all the studied amino acids indicate the dominance of hydrophilic-ionic interactions between amino acids and Ionic liquids. The effect of temperature on volumetric properties of glycine/L-alanine in solutions has been determined from the partial molar expansibility and second-order partial molar expansibility. Further, volumetric interaction parameters and hydration number have been calculated, which have been interpreted in terms of possible solute-solvent interactions.

Keywords: ILs, amino acids, volumetric properties, hydration numbers

Procedia PDF Downloads 155
2156 Plasmonic Nanoshells Based Metabolite Detection for in-vitro Metabolic Diagnostics and Therapeutic Evaluation

Authors: Deepanjali Gurav, Kun Qian

Abstract:

In-vitro metabolic diagnosis relies on designed materials-based analytical platforms for detection of selected metabolites in biological samples, which has a key role in disease detection and therapeutic evaluation in clinics. However, the basic challenge deals with developing a simple approach for metabolic analysis in bio-samples with high sample complexity and low molecular abundance. In this work, we report a designer plasmonic nanoshells based platform for direct detection of small metabolites in clinical samples for in-vitro metabolic diagnostics. We first synthesized a series of plasmonic core-shell particles with tunable nanoshell structures. The optimized plasmonic nanoshells as new matrices allowed fast, multiplex, sensitive, and selective LDI MS (Laser desorption/ionization mass spectrometry) detection of small metabolites in 0.5 μL of bio-fluids without enrichment or purification. Furthermore, coupling with isotopic quantification of selected metabolites, we demonstrated the use of these plasmonic nanoshells for disease detection and therapeutic evaluation in clinics. For disease detection, we identified patients with postoperative brain infection through glucose quantitation and daily monitoring by cerebrospinal fluid (CSF) analysis. For therapeutic evaluation, we investigated drug distribution in blood and CSF systems and validated the function and permeability of blood-brain/CSF-barriers, during therapeutic treatment of patients with cerebral edema for pharmacokinetic study. Our work sheds light on the design of materials for high-performance metabolic analysis and precision diagnostics in real cases.

Keywords: plasmonic nanoparticles, metabolites, fingerprinting, mass spectrometry, in-vitro diagnostics

Procedia PDF Downloads 121
2155 The Importance of Jewish Influence on Foundation of Manichaean Philosophical and Religious System

Authors: Tatyana Suvorkina

Abstract:

It is indisputable that the problem of the origin of Manichaeism is very complex. Manichaeism is characterized as a syncretic religion, which was influenced by many teachings, but it is difficult to define one which can be called fundamental. The aim of this paper is an attempt to regard Jewish apocalyptic tradition as one of the most defining source of formation of Manichaean systems. To realize this aim a comparison of the Manichean texts and the Jewish apocryphal literature is made. Consideration is given first to the Coptic Manichaean treatise Kephalaia, The Cologne Mani Codex and to books of Enoch. Under the article it is not denied that Manichaeism was influenced by different doctrines and, passed through centuries, it could adapt and strengthen this influence at an even deeper level. But the fact that the Judeo-Christian environment where Mani grew up and where the first sprouts of his teaching were formed had impact on future prophet seems obvious. Nevertheless, attempts to analyze the system of Mani within the Jewish tradition are quite rare, although such studies were carried out for Gnosticism. But Manichaeism, despite the Gnostic features it contains, is not 'one of the Gnostics' to place it under this term among the rest. Frequently, gnostic currents are pointed out as the main sources for the formation of Mani’s teachings. But it seems possible that Mani's interest in Gnosticism was motivated by the fact that he considered it as something close to that interpretation of Hebrew texts, which he aspired to undertake. The question of understanding the Manichaean system is connected not only with Manichaeism but also with other dualistic teachings, which were recognized by contemporaries as Manichaean. It is seen that polemics between Manicheans and Hellenized Christianity separated from Judaism and continued to separate with every century, were polemics between adherents of initially two different worldviews who had, however, a common source. Therefore an analysis of the controversy in the context of interpretations of this common source by disputing parties is seen very important for further study.

Keywords: dualism, Jewish apocalypticism, Manichaeism, syncretism

Procedia PDF Downloads 173
2154 Inclusive Education for Deaf and Hard-of-Hearing Students in China: Ideas, Practices, and Challenges

Authors: Xuan Zheng

Abstract:

China is home to one of the world’s largest Deaf and Hard of Hearing (DHH) populations. In the 1980s, the concept of inclusive education was introduced, giving rise to a unique “learning in regular class (随班就读)” model tailored to local contexts. China’s inclusive education for DHH students is diversifying with innovative models like special education classes at regular schools, regular classes at regular schools, resource classrooms, satellite classes, and bilingual-bimodal projects. The scope extends to preschool and higher education programs. However, the inclusive development of DHH students faces challenges. The prevailing pathological viewpoint on disabilities persists, emphasizing the necessity for favorable auditory and speech rehabilitation outcomes before DHH students can integrate into regular classes. In addition, inadequate support systems in inclusive schools result in poor academic performance and increased psychological disorders among the group, prompting a notable return to special education schools. Looking ahead, China’s inclusive education for DHH students needs a substantial shift from “learning in regular class” to “sharing equal regular education.” Particular attention should be devoted to the effective integration of DHH students who employ sign language into mainstream educational settings. It is crucial to strengthen regulatory frameworks and institutional safeguards, advance the professional development of educators specializing in inclusive education for DHH students, and consistently enhance resources tailored to this demographic. Furthermore, the establishment of a robust, multidimensional, and collaborative support network, engaging both families and educational institutions, is also a pivotal facet.

Keywords: deaf, hard of hearing, inclusive education, China

Procedia PDF Downloads 31
2153 Molecular Diagnosis of Influenza Strains Was Carried Out on Patients of the Social Security Clinic in Karaj Using the RT-PCR Technique

Authors: A. Ferasat, S. Rostampour Yasouri

Abstract:

Seasonal flu is a highly contagious infection caused by influenza viruses. These viruses undergo genetic changes that result in new epidemics across the globe. Medical attention is crucial in severe cases, particularly for the elderly, frail, and those with chronic illnesses, as their immune systems are often weaker. The purpose of this study was to detect new subtypes of the influenza A virus rapidly using a specific RT-PCR method based on the HA gene (hemagglutinin). In the winter and spring of 2022_2023, 120 embryonated egg samples were cultured, suspected of seasonal influenza. RNA synthesis, followed by cDNA synthesis, was performed. Finally, the PCR technique was applied using a pair of specific primers designed based on the HA gene. The PCR product was identified after purification, and the nucleotide sequence of purified PCR products was compared with the sequences in the gene bank. The results showed a high similarity between the sequence of the positive samples isolated from the patients and the sequence of the new strains isolated in recent years. This RT-PCR technique is entirely specific in this study, enabling the detection and multiplication of influenza and its subspecies from clinical samples. The RT-PCR technique based on the HA gene, along with sequencing, is a fast, specific, and sensitive diagnostic method for those infected with influenza viruses and its new subtypes. Rapid molecular diagnosis of influenza is essential for suspected people to control and prevent the spread of the disease to others. It also prevents the occurrence of secondary (sometimes fatal) pneumonia that results from influenza and pathogenic bacteria. The critical role of rapid diagnosis of new strains of influenza is to prepare a drug vaccine against the latest viruses that did not exist in the community last year and are entirely new viruses.

Keywords: influenza, molecular diagnosis, patients, RT-PCR technique

Procedia PDF Downloads 54
2152 Preparation of Electrospun PLA/ENR Fibers

Authors: Jaqueline G. L. Cosme, Paulo H. S. Picciani, Regina C. R. Nunes

Abstract:

Electrospinning is a technique for the fabrication of nanoscale fibers. The general electrospinning system consists of a syringe filled with polymer solution, a syringe pump, a high voltage source and a grounded counter electrode. During electrospinning a volumetric flow is set by the syringe pump and an electric voltage is applied. This forms an electric potential between the needle and the counter electrode (collector plate), which results in the formation of a Taylor cone and the jet. The jet is moved towards the lower potential, the counter electrode, wherein the solvent of the polymer solution is evaporated and the polymer fiber is formed. On the way to the counter electrode, the fiber is accelerated by the electric field. The bending instabilities that occur form a helical loop movements of the jet, which result from the coulomb repulsion of the surface charge. Trough bending instabilities the jet is stretched, so that the fiber diameter decreases. In this study, a thermoplastic/elastomeric binary blend of non-vulcanized epoxidized natural rubber (ENR) and poly(latic acid) (PLA) was electrospun using polymer solutions consisting of varying proportions of PCL and NR. Specifically, 15% (w/v) PLA/ENR solutions were prepared in /chloroform at proportions of 5, 10, 25, and 50% (w/w). The morphological and thermal properties of the electrospun mats were investigated by scanning electron microscopy (SEM) and differential scanning calorimetry analysis. The SEM images demonstrated the production of micrometer- and sub-micrometer-sized fibers with no bead formation. The blend miscibility was evaluated by thermal analysis, which showed that blending did not improve the thermal stability of the systems.

Keywords: epoxidized natural rubber, poly(latic acid), electrospinning, chemistry

Procedia PDF Downloads 395
2151 The Effects of Transcranial Direct Current Stimulation on Brain Oxygenation and Pleasure during Exercise

Authors: Alexandre H. Okano, Pedro M. D. Agrícola, Daniel G. Da S. Machado, Luiz I. Do N. Neto, Luiz F. Farias Junior, Paulo H. D. Nascimento, Rickson C. Mesquita, John F. Araujo, Eduardo B. Fontes, Hassan M. Elsangedy, Shinsuke Shimojo, Li M. Li

Abstract:

The prefrontal cortex is involved in the reward system and the insular cortex integrates the afferent inputs arriving from the body’ systems and turns into feelings. Therefore, modulating neuronal activity in these regions may change individuals’ perception in a given situation such as exercise. We tested whether transcranial direct current stimulation (tDCS) change cerebral oxygenation and pleasure during exercise. Fourteen volunteer healthy adult men were assessed into five different sessions. First, subjects underwent to a maximum incremental test on a cycle ergometer. Then, subjects were randomly assigned to a transcranial direct current stimulation (2mA for 15 min) intervention in a cross over design in four different conditions: anode and cathode electrodes on T3 and Fp2 targeting the insular cortex, and Fpz and F4 targeting prefrontal cortex, respectively; and their respective sham. These sessions were followed by 30 min of moderate intensity exercise. Brain oxygenation was measured in prefrontal cortex with a near infrared spectroscopy. Perceived exertion and pleasure were also measured during exercise. The asymmetry in prefrontal cortex oxygenation before the stimulation decreased only when it was applied over this region which did not occur after insular cortex or sham stimulation. Furthermore, pleasure was maintained during exercise only after prefrontal cortex stimulation (P > 0.7), while there was a decrease throughout exercise (P < 0.03) during the other conditions. We conclude that tDCS over the prefrontal cortex changes brain oxygenation in ventromedial prefrontal cortex and maintains perceived pleasure during exercise. Therefore, this technique might be used to enhance effective responses related to exercise.

Keywords: affect, brain stimulation, dopamine neuromodulation, pleasure, reward, transcranial direct current stimulation

Procedia PDF Downloads 307
2150 Exploring the Potential of Phase Change Materials in Construction Environments

Authors: A. Ait Ahsene F., B. Boughrara S.

Abstract:

The buildings sector accounts for a significant portion of global energy consumption, with much of this energy used to heat and cool indoor spaces. In this context, the integration of innovative technologies such as phase change materials (PCM) holds promising potential to improve the energy efficiency and thermal comfort of buildings. This research topic explores the benefits and challenges associated with the use of PCMs in buildings, focusing on their ability to store and release thermal energy to regulate indoor temperature. We investigated the different types of PCM available, their thermal properties, and their potential applications in various climate zones and building types. To evaluate and compare the performance of PCMs, our methodology includes a series of laboratory and field experiments. In the laboratory, we measure the thermal storage capacity, melting and solidification temperatures, latent heat, and thermal conductivity of various PCMs. These measurements make it possible to quantify the capacity of each PCM to store and release thermal energy, as well as its capacity to transfer this energy through the construction materials. Additionally, field studies are conducted to evaluate the performance of PCMs in real-world environments. We install PCM systems in real buildings and monitor their operation over time, measuring energy savings, occupant thermal comfort, and material durability. These empirical data allow us to compare the effectiveness of different types of PCMs under real-world use conditions. By combining the results of laboratory and field experiments, we provide a comprehensive analysis of the advantages and limitations of PCMs in buildings, as well as recommendations for their effective application in practice.

Keywords: energy saving, phase change materials, material sustainability, buildings sector

Procedia PDF Downloads 20
2149 Physiological Effects during Aerobatic Flights on Science Astronaut Candidates

Authors: Pedro Llanos, Diego García

Abstract:

Spaceflight is considered the last frontier in terms of science, technology, and engineering. But it is also the next frontier in terms of human physiology and performance. After more than 200,000 years humans have evolved under earth’s gravity and atmospheric conditions, spaceflight poses environmental stresses for which human physiology is not adapted. Hypoxia, accelerations, and radiation are among such stressors, our research involves suborbital flights aiming to develop effective countermeasures in order to assure sustainable human space presence. The physiologic baseline of spaceflight participants is subject to great variability driven by age, gender, fitness, and metabolic reserve. The objective of the present study is to characterize different physiologic variables in a population of STEM practitioners during an aerobatic flight. Cardiovascular and pulmonary responses were determined in Science Astronaut Candidates (SACs) during unusual attitude aerobatic flight indoctrination. Physiologic data recordings from 20 subjects participating in high-G flight training were analyzed. These recordings were registered by wearable sensor-vest that monitored electrocardiographic tracings (ECGs), signs of dysrhythmias or other electric disturbances during all the flight. The same cardiovascular parameters were also collected approximately 10 min pre-flight, during each high-G/unusual attitude maneuver and 10 min after the flights. The ratio (pre-flight/in-flight/post-flight) of the cardiovascular responses was calculated for comparison of inter-individual differences. The resulting tracings depicting the cardiovascular responses of the subjects were compared against the G-loads (Gs) during the aerobatic flights to analyze cardiovascular variability aspects and fluid/pressure shifts due to the high Gs. In-flight ECG revealed cardiac variability patterns associated with rapid Gs onset in terms of reduced heart rate (HR) and some scattered dysrhythmic patterns (15% premature ventricular contractions-type) that were considered as triggered physiological responses to high-G/unusual attitude training and some were considered as instrument artifact. Variation events were observed in subjects during the +Gz and –Gz maneuvers and these may be due to preload and afterload, sudden shift. Our data reveal that aerobatic flight influenced the breathing rate of the subject, due in part by the various levels of energy expenditure due to the increased use of muscle work during these aerobatic maneuvers. Noteworthy was the high heterogeneity in the different physiological responses among a relatively small group of SACs exposed to similar aerobatic flights with similar Gs exposures. The cardiovascular responses clearly demonstrated that SACs were subjected to significant flight stress. Routine ECG monitoring during high-G/unusual attitude flight training is recommended to capture pathology underlying dangerous dysrhythmias in suborbital flight safety. More research is currently being conducted to further facilitate the development of robust medical screening, medical risk assessment approaches, and suborbital flight training in the context of the evolving commercial human suborbital spaceflight industry. A more mature and integrative medical assessment method is required to understand the physiology state and response variability among highly diverse populations of prospective suborbital flight participants.

Keywords: g force, aerobatic maneuvers, suborbital flight, hypoxia, commercial astronauts

Procedia PDF Downloads 109
2148 Comparing the Embodied Carbon Impacts of a Passive House with the BC Energy Step Code Using Life Cycle Assessment

Authors: Lorena Polovina, Maddy Kennedy-Parrott, Mohammad Fakoor

Abstract:

The construction industry accounts for approximately 40% of total GHG emissions worldwide. In order to limit global warming to 1.5 degrees Celsius, ambitious reductions in the carbon intensity of our buildings are crucial. Passive House presents an opportunity to reduce operational carbon by as much as 90% compared to a traditional building through improving thermal insulation, limiting thermal bridging, increasing airtightness and heat recovery. Up until recently, Passive House design was mainly concerned with meeting the energy demands without considering embodied carbon. As buildings become more energy-efficient, embodied carbon becomes more significant. The main objective of this research is to calculate the embodied carbon impact of a Passive House and compare it with the BC Energy Step Code (ESC). British Columbia is committed to increasing the energy efficiency of buildings through the ESC, which is targeting net-zero energy-ready buildings by 2032. However, there is a knowledge gap in the embodied carbon impacts of more energy-efficient buildings, in particular Part 3 construction. In this case study, life cycle assessments (LCA) are performed on Part 3, a multi-unit residential building in Victoria, BC. The actual building is not constructed to the Passive House standard; however, the building envelope and mechanical systems are designed to comply with the Passive house criteria, as well as Steps 1 and 4 of the BC Energy Step Code (ESC) for comparison. OneClick LCA is used to perform the LCA of the case studies. Several strategies are also proposed to minimize the total carbon emissions of the building. The assumption is that there will not be significant differences in embodied carbon between a Passive House and a Step 4 building due to the building envelope.

Keywords: embodied carbon, energy modeling, energy step code, life cycle assessment

Procedia PDF Downloads 132
2147 Antimicrobial Activity of Some Plant Extracts against Clinical Pathogen and Candida Species

Authors: Marwan Khalil Qader, Arshad Mohammad Abdullah

Abstract:

Antimicrobial resistance is a major cause of significant morbidity and mortality globally. Seven plant extracts (Plantago mediastepposa, Quercusc infectoria, Punic granatum, Thymus lcotschyana, Ginger officeinals, Rhus angustifolia and Cinnamon) were collected from different regions of Kurdistan region of Iraq. These plants’ extracts were dissolved in absolute ethanol and distillate water, after which they were assayed in vitro as an antimicrobial activity against Candida tropicalis, Candida albicanus, Candida dublinensis, Candida krusei and Candida glabrata also against 2 Gram-positive (Bacillus subtilis and Staphylococcus aureus) and 3 Gram-negative bacteria (Escherichia coli, Pseudomonas aeruginosa and Klebsilla pneumonia). The antimicrobial activity was determined in ethanol extracts and distilled water extracts of these plants. The ethanolic extracts of Q. infectoria showed the maximum activity against all species of Candida fungus. The minimum inhibition zone of the Punic granatum ethanol extracts was 0.2 mg/ml for all microorganisms tested. Klebsilla pneumonia was the most sensitive bacterial strain to Quercusc infectoria and Rhus angustifolia ethanol extracts. Among both Gram-positive and Gram-negative bacteria tested with MIC of 0.2 mg/ml, the minimum inhibition zone of Ginger officeinals D. W. extracts was 0.2 mg/mL against Pseudomonas aeruginosa and Klebsilla pneumonia. The most sensitive bacterial strain to Thymus lcotschyana and Plantago mediastepposa D.W. extracts was S. aureus and E. coli.

Keywords: antimicrobial activity, pathogenic bacteria, plant extracts, chemical systems engineering

Procedia PDF Downloads 317
2146 Organic Matter Removal in Urban and Agroindustry Wastewater by Chemical Precipitation Process

Authors: Karina Santos Silvério, Fátima Carvalho, Maria Adelaide Almeida

Abstract:

The impacts caused by anthropogenic actions on the water environment have been one of the main challenges of modern society. Population growth, added to water scarcity and climate change, points to a need to increase the resilience of production systems to increase efficiency regarding the management of wastewater generated in the different processes. Based on this context, the study developed under the NETA project (New Strategies in Wastewater Treatment) aimed to evaluate the efficiency of the Chemical Precipitation Process (CPP), using the hydrated lime (Ca(OH )₂) as a reagent in wastewater from the agroindustry sector, namely swine wastewater, slaughterhouse and urban wastewater, in order to make the productive means 100% circular, causing a direct positive impact on the environment. The purpose of CPP is to innovate in the field of effluent treatment technologies, as it allows rapid application and is economically profitable. In summary, the study was divided into four main stages: 1) Application of the reagent in a single step, raising the pH to 12.5 2) Obtaining sludge and treated effluent. 3) Natural neutralization of the effluent through Carbonation using atmospheric CO₂. 4) Characterization and evaluation of the feasibility of the chemical precipitation technique in the treatment of different wastewaters through the technique of determining the chemical oxygen demand (COD) and other supporting physical-chemical parameters. The results showed an approximate average removal efficiency above 80% for all effluents, highlighting the swine effluent with 90% removal, followed by urban effluent with 88% and slaughterhouse with 81% on average. Significant improvement was also obtained with regard to color and odor removal after Carbonation to pH 8.00.

Keywords: agroindustry wastewater, urban wastewater, natural carbonatation, chemical precipitation technique

Procedia PDF Downloads 61
2145 Clustering for Detection of the Population at Risk of Anticholinergic Medication

Authors: A. Shirazibeheshti, T. Radwan, A. Ettefaghian, G. Wilson, C. Luca, Farbod Khanizadeh

Abstract:

Anticholinergic medication has been associated with events such as falls, delirium, and cognitive impairment in older patients. To further assess this, anticholinergic burden scores have been developed to quantify risk. A risk model based on clustering was deployed in a healthcare management system to cluster patients into multiple risk groups according to anticholinergic burden scores of multiple medicines prescribed to patients to facilitate clinical decision-making. To do so, anticholinergic burden scores of drugs were extracted from the literature, which categorizes the risk on a scale of 1 to 3. Given the patients’ prescription data on the healthcare database, a weighted anticholinergic risk score was derived per patient based on the prescription of multiple anticholinergic drugs. This study was conducted on over 300,000 records of patients currently registered with a major regional UK-based healthcare provider. The weighted risk scores were used as inputs to an unsupervised learning algorithm (mean-shift clustering) that groups patients into clusters that represent different levels of anticholinergic risk. To further evaluate the performance of the model, any association between the average risk score within each group and other factors such as socioeconomic status (i.e., Index of Multiple Deprivation) and an index of health and disability were investigated. The clustering identifies a group of 15 patients at the highest risk from multiple anticholinergic medication. Our findings also show that this group of patients is located within more deprived areas of London compared to the population of other risk groups. Furthermore, the prescription of anticholinergic medicines is more skewed to female than male patients, indicating that females are more at risk from this kind of multiple medications. The risk may be monitored and controlled in well artificial intelligence-equipped healthcare management systems.

Keywords: anticholinergic medicines, clustering, deprivation, socioeconomic status

Procedia PDF Downloads 186
2144 An Analysis of Economical Drivers and Technical Challenges for Large-Scale Biohydrogen Deployment

Authors: Rouzbeh Jafari, Joe Nava

Abstract:

This study includes learnings from an engineering practice normally performed on large scale biohydrogen processes. If properly scale-up is done, biohydrogen can be a reliable pathway for biowaste valorization. Most of the studies on biohydrogen process development have used model feedstock to investigate process key performance indicators (KPIs). This study does not intend to compare different technologies with model feedstock. However, it reports economic drivers and technical challenges which help in developing a road map for expanding biohydrogen economy deployment in Canada. BBA is a consulting firm responsible for the design of hydrogen production projects. Through executing these projects, activity has been performed to identify, register and mitigate technical drawbacks of large-scale hydrogen production. Those learnings, in this study, have been applied to the biohydrogen process. Through data collected by a comprehensive literature review, a base case has been considered as a reference, and several case studies have been performed. Critical parameters of the process were identified and through common engineering practice (process design, simulation, cost estimate, and life cycle assessment) impact of these parameters on the commercialization risk matrix and class 5 cost estimations were reported. The process considered in this study is food waste and woody biomass dark fermentation. To propose a reliable road map to develop a sustainable biohydrogen production process impact of critical parameters was studied on the end-to-end process. These parameters were 1) feedstock composition, 2) feedstock pre-treatment, 3) unit operation selection, and 4) multi-product concept. A couple of emerging technologies also were assessed such as photo-fermentation, integrated dark fermentation, and using ultrasound and microwave to break-down feedstock`s complex matrix and increase overall hydrogen yield. To properly report the impact of each parameter KPIs were identified as 1) Hydrogen yield, 2) energy consumption, 3) secondary waste generated, 4) CO2 footprint, 5) Product profile, 6) $/kg-H2 and 5) environmental impact. The feedstock is the main parameter defining the economic viability of biohydrogen production. Through parametric studies, it was found that biohydrogen production favors feedstock with higher carbohydrates. The feedstock composition was varied, by increasing one critical element (such as carbohydrate) and monitoring KPIs evolution. Different cases were studied with diverse feedstock, such as energy crops, wastewater slug, and lignocellulosic waste. The base case process was applied to have reference KPIs values and modifications such as pretreatment and feedstock mix-and-match were implemented to investigate KPIs changes. The complexity of the feedstock is the main bottleneck in the successful commercial deployment of the biohydrogen process as a reliable pathway for waste valorization. Hydrogen yield, reaction kinetics, and performance of key unit operations highly impacted as feedstock composition fluctuates during the lifetime of the process or from one case to another. In this case, concept of multi-product becomes more reliable. In this concept, the process is not designed to produce only one target product such as biohydrogen but will have two or multiple products (biohydrogen and biomethane or biochemicals). This new approach is being investigated by the BBA team and the results will be shared in another scientific contribution.

Keywords: biohydrogen, process scale-up, economic evaluation, commercialization uncertainties, hydrogen economy

Procedia PDF Downloads 85
2143 Factors Affecting Special Core Analysis Resistivity Parameters

Authors: Hassan Sbiga

Abstract:

Laboratory measurements methods were undertaken on core samples selected from three different fields (A, B, and C) from the Nubian Sandstone Formation of the central graben reservoirs in Libya. These measurements were conducted in order to determine the factors which affect resistivity parameters, and to investigate the effect of rock heterogeneity and wettability on these parameters. This included determining the saturation exponent (n) in the laboratory at two stages. The first stage was before wettability measurements were conducted on the samples, and the second stage was after the wettability measurements in order to find any effect on the saturation exponent. Another objective of this work was to quantify experimentally pores and porosity types (macro- and micro-porosity), which have an affect on the electrical properties, by integrating capillary pressure curves with other routine and special core analysis. These experiments were made for the first time to obtain a relation between pore size distribution and saturation exponent n. Changes were observed in the formation resistivity factor and cementation exponent due to ambient conditions and changes of overburden pressure. The cementation exponent also decreased from GHE-5 to GHE-8. Changes were also observed in the saturation exponent (n) and water saturation (Sw) before and after wettability measurement. Samples with an oil-wet tendency have higher irreducible brine saturation and higher Archie saturation exponent values than samples with an uniform water-wet surface. The experimental results indicate that there is a good relation between resistivity and pore type depending on the pore size. When oil begins to penetrate micro-pore systems in measurements of resistivity index versus brine saturation (after wettability measurement), a significant change in slope of the resistivity index relationship occurs.

Keywords: part of thesis, cementation, wettability, resistivity

Procedia PDF Downloads 231