Search results for: strength prediction models
10623 Reliability-Simulation of Composite Tubular Structure under Pressure by Finite Elements Methods
Authors: Abdelkader Hocine, Abdelhakim Maizia
Abstract:
The exponential growth of reinforced fibers composite materials use has prompted researchers to step up their work on the prediction of their reliability. Owing to differences between the properties of the materials used for the composite, the manufacturing processes, the load combinations and types of environment, the prediction of the reliability of composite materials has become a primary task. Through failure criteria, TSAI-WU and the maximum stress, the reliability of multilayer tubular structures under pressure is the subject of this paper, where the failure probability of is estimated by the method of Monte Carlo.Keywords: composite, design, monte carlo, tubular structure, reliability
Procedia PDF Downloads 46410622 Investigation Into the Effects of Egg Shells Powder and Groundnut Husk Ash on the Properties of Concrete
Authors: Usman B.M., Basheer O. B., . Ahmed A., Amali N. U., Taufeeq O.
Abstract:
This study presents an investigation into the improvement of strength properties of concrete using egg shell powder (ESP) and groundnut husk ash (GHA) as additives so as to reduce its high cost and find alternative disposal method for agricultural waste. A standard consistency test was carried out on the egg shell powder and groundnut husk ash. A prescribed concrete mix ratio of 1:2:4 concrete cubes (150mm by 150mm) and water-cement ratio of 0.6 were casted. A total of One hundred and forty four (144) cubes were cast and cured for 3, 7 and 28 days and compressive strength subsequently determined in comparison with the relevant specifications. Consistency test on the cement paste at the various concentrations exhibited an increase in the setting time as the concentration increases with the highest value recorded at 5% egg shell powder and groundnut husk ash concentration as 219 minutes for the initial setting time and 275 minutes for the final setting time as against the control specimen of 159 minutes and 234 minutes for both initial and final setting times respectively. The results of the investigations showed that GHA was predominantly of Silicon oxide (56.73%) and a combined SiO₂, Al₂O₃ and Fe₂O₃ content of 66.75%; and the result of the investigations showed that ESP was predominantly of Calcium oxide (52.75%) and a combined SiO₂, Al₂O₃ and Fe₂O₃ content of 3.86%. The addition of GHA and ESP in concrete showed slight different in compressive strength with increase in GHA and ESP additive up to 5% and high decrease in compressive strength with further increase in GHA and ESP content. The 28 days compressive strength of the concrete cubes; compared with that of the control; showed a slight increase. Thus the use of GHA and ESP as partial replacement of cement will provide an economic use of by-product and consequently produce a cheaper concrete construction without comprising its strengthKeywords: additive, concrete, eggshell powder, groundnut husk ash compressive strength
Procedia PDF Downloads 13710621 Evaluation of Parameters of Subject Models and Their Mutual Effects
Authors: A. G. Kovalenko, Y. N. Amirgaliyev, A. U. Kalizhanova, L. S. Balgabayeva, A. H. Kozbakova, Z. S. Aitkulov
Abstract:
It is known that statistical information on operation of the compound multisite system is often far from the description of actual state of the system and does not allow drawing any conclusions about the correctness of its operation. For example, from the world practice of operation of systems of water supply, water disposal, it is known that total measurements at consumers and at suppliers differ between 40-60%. It is connected with mathematical measure of inaccuracy as well as ineffective running of corresponding systems. Analysis of widely-distributed systems is more difficult, in which subjects, which are self-maintained in decision-making, carry out economic interaction in production, act of purchase and sale, resale and consumption. This work analyzed mathematical models of sellers, consumers, arbitragers and the models of their interaction in the provision of dispersed single-product market of perfect competition. On the basis of these models, the methods, allowing estimation of every subject’s operating options and systems as a whole are given.Keywords: dispersed systems, models, hydraulic network, algorithms
Procedia PDF Downloads 28410620 Air Handling Units Power Consumption Using Generalized Additive Model for Anomaly Detection: A Case Study in a Singapore Campus
Authors: Ju Peng Poh, Jun Yu Charles Lee, Jonathan Chew Hoe Khoo
Abstract:
The emergence of digital twin technology, a digital replica of physical world, has improved the real-time access to data from sensors about the performance of buildings. This digital transformation has opened up many opportunities to improve the management of the building by using the data collected to help monitor consumption patterns and energy leakages. One example is the integration of predictive models for anomaly detection. In this paper, we use the GAM (Generalised Additive Model) for the anomaly detection of Air Handling Units (AHU) power consumption pattern. There is ample research work on the use of GAM for the prediction of power consumption at the office building and nation-wide level. However, there is limited illustration of its anomaly detection capabilities, prescriptive analytics case study, and its integration with the latest development of digital twin technology. In this paper, we applied the general GAM modelling framework on the historical data of the AHU power consumption and cooling load of the building between Jan 2018 to Aug 2019 from an education campus in Singapore to train prediction models that, in turn, yield predicted values and ranges. The historical data are seamlessly extracted from the digital twin for modelling purposes. We enhanced the utility of the GAM model by using it to power a real-time anomaly detection system based on the forward predicted ranges. The magnitude of deviation from the upper and lower bounds of the uncertainty intervals is used to inform and identify anomalous data points, all based on historical data, without explicit intervention from domain experts. Notwithstanding, the domain expert fits in through an optional feedback loop through which iterative data cleansing is performed. After an anomalously high or low level of power consumption detected, a set of rule-based conditions are evaluated in real-time to help determine the next course of action for the facilities manager. The performance of GAM is then compared with other approaches to evaluate its effectiveness. Lastly, we discuss the successfully deployment of this approach for the detection of anomalous power consumption pattern and illustrated with real-world use cases.Keywords: anomaly detection, digital twin, generalised additive model, GAM, power consumption, supervised learning
Procedia PDF Downloads 15410619 Fast Bayesian Inference of Multivariate Block-Nearest Neighbor Gaussian Process (NNGP) Models for Large Data
Authors: Carlos Gonzales, Zaida Quiroz, Marcos Prates
Abstract:
Several spatial variables collected at the same location that share a common spatial distribution can be modeled simultaneously through a multivariate geostatistical model that takes into account the correlation between these variables and the spatial autocorrelation. The main goal of this model is to perform spatial prediction of these variables in the region of study. Here we focus on a geostatistical multivariate formulation that relies on sharing common spatial random effect terms. In particular, the first response variable can be modeled by a mean that incorporates a shared random spatial effect, while the other response variables depend on this shared spatial term, in addition to specific random spatial effects. Each spatial random effect is defined through a Gaussian process with a valid covariance function, but in order to improve the computational efficiency when the data are large, each Gaussian process is approximated to a Gaussian random Markov field (GRMF), specifically to the block nearest neighbor Gaussian process (Block-NNGP). This approach involves dividing the spatial domain into several dependent blocks under certain constraints, where the cross blocks allow capturing the spatial dependence on a large scale, while each individual block captures the spatial dependence on a smaller scale. The multivariate geostatistical model belongs to the class of Latent Gaussian Models; thus, to achieve fast Bayesian inference, it is used the integrated nested Laplace approximation (INLA) method. The good performance of the proposed model is shown through simulations and applications for massive data.Keywords: Block-NNGP, geostatistics, gaussian process, GRMF, INLA, multivariate models.
Procedia PDF Downloads 9710618 Behaviour of RC Columns at Elevated Temperatures by NDT Techniques
Authors: D. Jagath Kumari, K. Srinivasa Rao
Abstract:
Reinforced concrete column is an important structural element in a building. Concrete usually performs well in building fires. However, when it is subjected to prolonged fire exposure or unusually high temperatures, and then it will suffer significant distress. Because concrete pre-fire compressive strength generally exceeds design requirements, therefore an average strength reduction can be tolerated. However high temperature reduces the compressive strength of concrete so much that the concrete retains no useful structural strength. Therefore the residual strength and its performance of structure can be assed by NDT testing. In this paper, rebound hammer test and the ultrasonic pulse velocity (UPV) are used to evaluate the residual compressive strength and material integrity of post-fire-curing concrete subjected to elevated temperatures. Also considering the large availability of fly ash in most of the countries, an attempt was made to study the effect of high volume fly ash concrete exposed to elevated temperatures. 32 RC column specimens were made with a M20 grade concrete mix. Out of 32 column specimens 16 column specimens were made with OPC concrete and other 16 column specimens were made with HVFA concrete. All specimens having similar cross-section details. Columns were exposed to fire for temperatures from 100oC to 800o C with increments of 100o C for duration of 3 hours. Then the specimens allowed cooling to room temperature by two methods natural air cooling method and immediate water quenching method. All the specimens were tested identically, for the compressive strengths and material integrity by rebound hammer and ultrasonic pulse velocity meter respectively for study. These two tests were carried out on preheating and post heating of the column specimens. The percentage variation of compressive strengths of RCC columns with the increase in temperature has been studied and compared the results for both OPC and HVFA concretes. Physical observations of the heated columns were observed.Keywords: HVFA concrete, NDT testing, residual strength
Procedia PDF Downloads 38610617 Fuzzy Neuro Approach for Integrated Water Management System
Authors: Stuti Modi, Aditi Kambli
Abstract:
This paper addresses the need for intelligent water management and distribution system in smart cities to ensure optimal consumption and distribution of water for drinking and sanitation purposes. Water being a limited resource in cities require an effective system for collection, storage and distribution. In this paper, applications of two mostly widely used particular types of data-driven models, namely artificial neural networks (ANN) and fuzzy logic-based models, to modelling in the water resources management field are considered. The objective of this paper is to review the principles of various types and architectures of neural network and fuzzy adaptive systems and their applications to integrated water resources management. Final goal of the review is to expose and formulate progressive direction of their applicability and further research of the AI-related and data-driven techniques application and to demonstrate applicability of the neural networks, fuzzy systems and other machine learning techniques in the practical issues of the regional water management. Apart from this the paper will deal with water storage, using ANN to find optimum reservoir level and predicting peak daily demands.Keywords: artificial neural networks, fuzzy systems, peak daily demand prediction, water management and distribution
Procedia PDF Downloads 18610616 Ten Basic Exercises of Muay Thai Chaiya on Balance and Strength in Male Older Adults
Authors: K. Thawichai, R. Pornthep
Abstract:
This study examined the effects of ten basic exercises of Muay Thai Chaiya training for balance and strength in male older adults. Thirty male older adult volunteer from Thayang elderly clubs, Thayang, Petchaburi, Thailand. All participants were randomly assigned to two groups a training group and a control group. The training group (n=15) participated in eight week training program of ten basic exercises of Muay Thai Chaiya training and not to change or increase another exercise during of the study. In the control group, (n=15) did not participate in ten basic exercises of Muay Thai Chaiya training. Both groups were tested before and after eight weeks of the study period on balance in terms of single leg stance with eyes closed and strength in terms of the thirty second chair stand. The data of the study show that the participants of the training group perform significantly different higher scores in single leg stance with eyes closed and thirty second chair stand than the participants in the control group. The results of this study suggested that ten basic exercises of Muay Thai Chaiya training can use to improve balance and strength in male older adults.Keywords: balance, strength, Muay Thai Chaiya, older adults
Procedia PDF Downloads 45610615 Using Wearable Device with Neuron Network to Classify Severity of Sleep Disorder
Authors: Ru-Yin Yang, Chi Wu, Cheng-Yu Tsai, Yin-Tzu Lin, Wen-Te Liu
Abstract:
Background: Sleep breathing disorder (SDB) is a condition demonstrated by recurrent episodes of the airway obstruction leading to intermittent hypoxia and quality fragmentation during sleep time. However, the procedures for SDB severity examination remain complicated and costly. Objective: The objective of this study is to establish a simplified examination method for SDB by the respiratory impendence pattern sensor combining the signal processing and machine learning model. Methodologies: We records heart rate variability by the electrocardiogram and respiratory pattern by impendence. After the polysomnography (PSG) been done with the diagnosis of SDB by the apnea and hypopnea index (AHI), we calculate the episodes with the absence of flow and arousal index (AI) from device record. Subjects were divided into training and testing groups. Neuron network was used to establish a prediction model to classify the severity of the SDB by the AI, episodes, and body profiles. The performance was evaluated by classification in the testing group compared with PSG. Results: In this study, we enrolled 66 subjects (Male/Female: 37/29; Age:49.9±13.2) with the diagnosis of SDB in a sleep center in Taipei city, Taiwan, from 2015 to 2016. The accuracy from the confusion matrix on the test group by NN is 71.94 %. Conclusion: Based on the models, we established a prediction model for SDB by means of the wearable sensor. With more cases incoming and training, this system may be used to rapidly and automatically screen the risk of SDB in the future.Keywords: sleep breathing disorder, apnea and hypopnea index, body parameters, neuron network
Procedia PDF Downloads 15010614 Static Strain Aging in Ferritic and Austenitic Stainless Steels
Authors: Songul Kurucay, Mustafa Acarer, Harun Sepet
Abstract:
Static strain aging occurs when metallic materials are subjected to deformation and then heat treated at low temperatures such as 150-200oC. Static strain aging occurs in BCC metals and results and increasing in yield and tensile strength and decreasing ductility due to carbon and/or nitrogen atoms locking dislocations. The locked dislocations increase yield and tensile strength. In this study, static strain aging behaviors of ferritic and austenitic stainless steel were investigated. Ferritic stainless steel was prestained at %5, %10 and %15 and then aged at 150oC and 200oC for 30 minutes. Austenitic stainless steel was also prestained at %20 and %30 and then heat treated at 200, 400 and 600oC for 30 minutes. After the heat treatment, the tensile test was performed to determine the effect of prestain and heat treatment on the steels. Hardness measurements and detailed microstructure characterization were also done. While AISI 430 ferritic stainless steel sample which was prestained at 15% and aged at 200oC, showed the highest increasing in the yield strength, AISI 304 austenitic stainless steel which was prestained at 30% and aged at 600oC, has the highest yield strength. Microstructure photographs also support the mechanical test results.Keywords: austenitic stainless steel, ferritic stainless steel, static strain aging, tensile strength
Procedia PDF Downloads 44010613 Heat Treatment on Malaysian Hardwood Timbers: The Effect of Heat Exposure at Different Levels of Temperature on Bending Strength Properties
Authors: Nur Ilya Farhana Md Noh, Zakiah Ahmad
Abstract:
Heat treatment on timbers is a process of applying heat to modify and equip the timbers with new improvised characteristics. It is environmental friendly compared to the common practice of treating timber by chemical preservatives. Malaysian hardwood timbers; Pauh Kijang and Kapur in green condition were heat treated at 150°C, 170°C, 190°C and 210°C in a specially design electronic furnace in one hour duration. The objectives were to determine the effect of heat treatment on bending strength properties of heat treated Pauh Kijang and Kapur in term of Modulus of Elasticity (MOE) and Modulus of Rupture (MOR) and to examine the significance changes at each temperature levels applied. Untreated samples for each species were used as a control sample. The results indicated that the bending strength properties for both species of timbers were affected by the heat exposure. Both MOE and MOR values for heat treated Pauh Kijang were increased when subjected to the specified temperature levels except at 210°C. The values were dropped compared to the control sample and sample treated at 190°C. Heat treated Kapur shows the same pattern of increment on its MOE and MOR values after exposure to heat at three temperature levels used and the values dropped at 210°C. However, differ to Pauh Kijang, even though there were decrement occurred at 210°C but the value is still higher compared to the control sample. The increments of MOE and MOR values are an indicator that heat treatment had successfully improvised the bending strength properties of these two species of hardwood timber. As the good strength of Malaysian timbers used as structural material is limited in numbers and expensive, heat treating timber with low strength properties is an alternative way to overcome this issue. Heat treatment is an alternative method need to be explored and made available in Malaysia as this country is still practicing chemical preservative treatment on the timbers.Keywords: bending strength, hardwood timber, heat treatment, modulus of elasticity (MOE), modulus of rupture (MOR)
Procedia PDF Downloads 26410612 Study of Fly Ash Geopolymer Based Composites with Polyester Waste Addition
Authors: Konstantinos Sotiriadis, Olesia Mikhailova
Abstract:
In the present work, fly ash geopolymer based composites including polyester (PES) waste were studied. Specimens of three compositions were prepared: (a) fly ash geopolymer with 5% PES waste, (b) fly ash geopolymer mortar with 5% PES waste, (c) fly ash geopolymer mortar with 6.25% PES waste. Compressive and bending strength measurements, water absorption test and determination of thermal conductivity coefficient were performed. The results showed that the addition of sand in a mixture of geopolymer with 5% PES content led to higher compressive strength, while it increased water absorption and reduced thermal conductivity coefficient. The increase of PES addition in geopolymer mortars resulted in a more dense structure, indicated by the increase of strength and thermal conductivity and the decrease of water absorption.Keywords: fly ash, geopolymers, polyester waste, composites
Procedia PDF Downloads 42310611 Identification of Classes of Bilinear Time Series Models
Authors: Anthony Usoro
Abstract:
In this paper, two classes of bilinear time series model are obtained under certain conditions from the general bilinear autoregressive moving average model. Bilinear Autoregressive (BAR) and Bilinear Moving Average (BMA) Models have been identified. From the general bilinear model, BAR and BMA models have been proved to exist for q = Q = 0, => j = 0, and p = P = 0, => i = 0 respectively. These models are found useful in modelling most of the economic and financial data.Keywords: autoregressive model, bilinear autoregressive model, bilinear moving average model, moving average model
Procedia PDF Downloads 40710610 Strength Properties of Cement Mortar with Dark Glass Waste Powder as a Partial Sand Replacement
Authors: Ng Wei Yan, Lim Jee Hock, Lee Foo Wei, Mo Kim Hung, Yip Chun Chieh
Abstract:
The burgeoning accumulation of glass waste in Malaysia, particularly from the food and beverage industry, has become a prominent environmental concern, with disposal sites reaching saturation. This study introduces a distinct approach to addressing the twin challenges of landfill scarcity and natural resource conservation by repurposing discarded glass bottle waste into a viable construction material. The research presents a comprehensive evaluation of the strength characteristics of cement mortar when dark glass waste powder is used as a partial sand replacement. The experimental investigation probes the density, flow spread diameter, and key strength parameters—including compressive, splitting tensile, and flexural strengths—of the modified cement mortar. Remarkably, results indicate that a full replacement of sand with glass waste powder significantly improves the material's strength attributes. A specific mixture with a cement/sand/water ratio of 1:5:1.24 was found to be optimal, yielding an impressive compressive strength of 7 MPa at the 28-day mark, accompanied by a favourable 200 mm spread diameter in flow table tests. The findings of this study underscore the dual benefits of utilizing glass waste powder in cement mortar: mitigating Malaysia's glass waste dilemma and enhancing the performance of construction materials such as bricks and concrete products. Consequently, the research validates the premise that increasing the incorporation of glass waste as a sand substitute promotes not only environmental sustainability but also material innovation in the construction industry.Keywords: glass waste, strength properties, cement mortar, environmental friendly
Procedia PDF Downloads 6210609 Development of a Human Vibration Model Considering Muscles and Stiffness of Intervertebral Discs
Authors: Young Nam Jo, Moon Jeong Kang, Hong Hee Yoo
Abstract:
Most human vibration models have been modeled as a multibody system consisting of some rigid bodies and spring-dampers. These models are developed for certain posture and conditions. So, the models cannot be used in vibration analysis in various posture and conditions. The purpose of this study is to develop a human vibration model that represent human vibration characteristics under various conditions by employing a musculoskeletal model. To do this, the human vibration model is developed based on biomechanical models. In addition, muscle models are employed instead of spring-dampers. Activations of muscles are controlled by PD controller to maintain body posture under vertical vibration is applied. Each gain value of the controller is obtained to minimize the difference of apparent mass and acceleration transmissibility between experim ent and analysis by using an optimization method.Keywords: human vibration analysis, hill type muscle model, PD control, whole-body vibration
Procedia PDF Downloads 44810608 The Effects of Total Resistance Exercises Suspension Exercises Program on Physical Performance in Healthy Individuals
Authors: P. Cavlan, B. Kırmızıgil
Abstract:
Introduction: Each exercise in suspension exercises offer the use of gravity and body weight; and is thought to develop the equilibrium, flexibility and body stability necessary for daily life activities and sports, in addition to creating the correct functional force. Suspension exercises based on body weight focus the human body as an integrated system. Total Resistance Exercises (TRX) suspension training that physiotherapists, athletic health clinics, exercise centers of hospitals and chiropractic clinics now use for rehabilitation purposes. The purpose of this study is to investigate and compare the effects of TRX suspension exercises on physical performance in healthy individuals. Method: Healthy subjects divided into two groups; the study group and the control group with 40 individuals for each, between ages 20 to 45 with similar gender distributions. Study group had 2 sessions of suspension exercises per week for 8 weeks and control group had no exercises during this period. All the participants were given explosive strength, flexibility, strength and endurance tests before and after the 8 week period. The tests used for evaluation were respectively; standing long jump test and single leg (left and right) long jump tests, sit and reach test, sit up and back extension tests. Results: In the study group a statistically significant difference was found between prior- and final-tests in all evaluations, including explosive strength, flexibility, core strength and endurance of the group performing TRX exercises. These values were higher than the control groups’ values. The final test results were found to be statistically different between the study and control groups. Study group showed development in all values. Conclusions: In this study, which was conducted with the aim of investigating and comparing the effects of TRX suspension exercises on physical performance, the results of the prior-tests of both groups were similar. There was no significant difference between the prior and the final values in the control group. It was observed that in the study group, explosive strength, flexibility, strength, and endurance development was achieved after 8 weeks. According to these results, it was shown that TRX suspension exercise program improved explosive strength, flexibility, especially core strength and endurance; therefore the physical performance. Based on the results of our study, it was determined that the physical performance, an indispensable requirement of our life, was developed by the TRX suspension system. We concluded that TRX suspension exercises can be used to improve the explosive strength and flexibility in healthy individuals, as well as developing the muscle strength and endurance of the core region. The specific investigations could be done in this area so that programs that emphasize the TRX's physical performance features could be created.Keywords: core strength, endurance, explosive strength, flexibility, physical performance, suspension exercises
Procedia PDF Downloads 17110607 Circuit Models for Conducted Susceptibility Analyses of Multiconductor Shielded Cables
Authors: Saih Mohamed, Rouijaa Hicham, Ghammaz Abdelilah
Abstract:
This paper presents circuit models to analyze the conducted susceptibility of multiconductor shielded cables in frequency domains using Branin’s method, which is referred to as the method of characteristics. These models, Which can be used directly in the time and frequency domains, take into account the presence of both the transfer impedance and admittance. The conducted susceptibility is studied by using an injection current on the cable shield as the source. Two examples are studied, a coaxial shielded cable and shielded cables with two parallel wires (i.e., twinax cables). This shield has an asymmetry (one slot on the side). Results obtained by these models are in good agreement with those obtained by other methods.Keywords: circuit models, multiconductor shielded cables, Branin’s method, coaxial shielded cable, twinax cables
Procedia PDF Downloads 51610606 The Prediction of Reflection Noise and Its Reduction by Shaped Noise Barriers
Authors: I. L. Kim, J. Y. Lee, A. K. Tekile
Abstract:
In consequence of the very high urbanization rate of Korea, the number of traffic noise damages in areas congested with population and facilities is steadily increasing. The current environmental noise levels data in major cities of the country show that the noise levels exceed the standards set for both day and night times. This research was about comparative analysis in search for optimal soundproof panel shape and design factor that can minimize sound reflection noise. In addition to the normal flat-type panel shape, the reflection noise reduction of swelling-type, combined swelling and curved-type, and screen-type were evaluated. The noise source model Nord 2000, which often provides abundant information compared to models for the similar purpose, was used in the study to determine the overall noise level. Based on vehicle categorization in Korea, the noise levels for varying frequency from different heights of the sound source (directivity heights of Harmonize model) have been calculated for simulation. Each simulation has been made using the ray-tracing method. The noise level has also been calculated using the noise prediction program called SoundPlan 7.2, for comparison. The noise level prediction was made at 15m (R1), 30 m (R2) and at middle of the road, 2m (R3) receiving the point. By designing the noise barriers by shape and running the prediction program by inserting the noise source on the 2nd lane to the noise barrier side, among the 6 lanes considered, the reflection noise slightly decreased or increased in all noise barriers. At R1, especially in the cases of the screen-type noise barriers, there was no reduction effect predicted in all conditions. However, the swelling-type showed a decrease of 0.7~1.2 dB at R1, performing the best reduction effect among the tested noise barriers. Compared to other forms of noise barriers, the swelling-type was thought to be the most suitable for reducing the reflection noise; however, since a slight increase was predicted at R2, further research based on a more sophisticated categorization of related design factors is necessary. Moreover, as swellings are difficult to produce and the size of the modules are smaller than other panels, it is challenging to install swelling-type noise barriers. If these problems are solved, its applicable region will not be limited to other types of noise barriers. Hence, when a swelling-type noise barrier is installed at a downtown region where the amount of traffic is increasing every day, it will both secure visibility through the transparent walls and diminish any noise pollution due to the reflection. Moreover, when decorated with shapes and design, noise barriers will achieve a visual attraction than a flat-type one and thus will alleviate any psychological hardships related to noise, other than the unique physical soundproofing functions of the soundproof panels.Keywords: reflection noise, shaped noise barriers, sound proof panel, traffic noise
Procedia PDF Downloads 50910605 Using Soil Texture Field Observations as Ordinal Qualitative Variables for Digital Soil Mapping
Authors: Anne C. Richer-De-Forges, Dominique Arrouays, Songchao Chen, Mercedes Roman Dobarco
Abstract:
Most of the digital soil mapping (DSM) products rely on machine learning (ML) prediction models and/or the use or pedotransfer functions (PTF) in which calibration data come from soil analyses performed in labs. However, many other observations (often qualitative, nominal, or ordinal) could be used as proxies of lab measurements or as input data for ML of PTF predictions. DSM and ML are briefly described with some examples taken from the literature. Then, we explore the potential of an ordinal qualitative variable, i.e., the hand-feel soil texture (HFST) estimating the mineral particle distribution (PSD): % of clay (0-2µm), silt (2-50µm) and sand (50-2000µm) in 15 classes. The PSD can also be measured by lab measurements (LAST) to determine the exact proportion of these particle-sizes. However, due to cost constraints, HFST are much more numerous and spatially dense than LAST. Soil texture (ST) is a very important soil parameter to map as it is controlling many of the soil properties and functions. Therefore, comes an essential question: is it possible to use HFST as a proxy of LAST for calibration and/or validation of DSM predictions of ST? To answer this question, the first step is to compare HFST with LAST on a representative set where both information are available. This comparison was made on ca 17,400 samples representative of a French region (34,000 km2). The accuracy of HFST was assessed, and each HFST class was characterized by a probability distribution function (PDF) of its LAST values. This enables to randomly replace HFST observations by LAST values while respecting the PDF previously calculated and results in a very large increase of observations available for the calibration or validation of PTF and ML predictions. Some preliminary results are shown. First, the comparison between HFST classes and LAST analyses showed that accuracies could be considered very good when compared to other studies. The causes of some inconsistencies were explored and most of them were well explained by other soil characteristics. Then we show some examples applying these relationships and the increase of data to several issues related to DSM. The first issue is: do the PDF functions that were established enable to use HSFT class observations to improve the LAST soil texture prediction? For this objective, we replaced all HFST for topsoil by values from the PDF 100 time replicates). Results were promising for the PTF we tested (a PTF predicting soil water holding capacity). For the question related to the ML prediction of LAST soil texture on the region, we did the same kind of replacement, but we implemented a 10-fold cross-validation using points where we had LAST values. We obtained only preliminary results but they were rather promising. Then we show another example illustrating the potential of using HFST as validation data. As in numerous countries, the HFST observations are very numerous; these promising results pave the way to an important improvement of DSM products in all the countries of the world.Keywords: digital soil mapping, improvement of digital soil mapping predictions, potential of using hand-feel soil texture, soil texture prediction
Procedia PDF Downloads 22410604 High Performance Fibre Reinforced Alkali Activated Slag Concrete
Authors: A. Sivakumar, K. Srinivasan
Abstract:
The main objective of the study is focused in producing slag based geopolymer concrete obtained with the addition of alkali activator. Test results indicated that the reaction of silicates in slag is based on the reaction potential of sodium hydroxide and the formation of alumino-silicates. The study also comprises on the evaluation of the efficiency of polymer reaction in terms of the strength gain properties for different geopolymer mixtures. Geopolymer mixture proportions were designed for different binder to total aggregate ratio (0.3 & 0.45) and fine to coarse aggregate ratio (0.4 & 0.8). Geopolymer concrete specimens casted with normal curing conditions reported a maximum 28 days compressive strength of 54.75 MPa. The addition of glued steel fibres at 1.0% Vf in geopolymer concrete showed reasonable improvements on the compressive strength, split tensile strength and flexural properties of different geopolymer mixtures. Further, comparative assessment was made for different geopolymer mixtures and the reinforcing effects of steel fibres were investigated in different concrete matrix.Keywords: accelerators, alkali activators, geopolymer, hot air oven curing, polypropylene fibres, slag, steam curing, steel fibres
Procedia PDF Downloads 27310603 Optimization of Moisture Content for Highest Tensile Strength of Instant Soluble Milk Tablet and Flowability of Milk Powder
Authors: Siddharth Vishwakarma, Danie Shajie A., Mishra H. N.
Abstract:
Milk powder becomes very useful in the low milk supply area but the exact amount to add for one glass of milk and the handling is difficult. So, the idea of instant soluble milk tablet comes into existence for its high solubility and easy handling. The moisture content of milk tablets is increased by the direct addition of water with no additives for binding. The variation of the tensile strength of instant soluble milk tablets and the flowability of milk powder with the moisture content is analyzed and optimized for the highest tensile strength of instant soluble milk tablets and flowability, above a particular value of milk powder using response surface methodology. The flowability value is necessary for ease in quantifying the milk powder, as a feed, in the designed tablet making machine. The instant soluble nature of milk tablets purely depends upon the disintegration characteristic of tablets in water whose study is under progress. Conclusions: The optimization results are very useful in the commercialization of milk tablets.Keywords: flowability, milk powder, response surface methodology, tablet making machine, tensile strength
Procedia PDF Downloads 18110602 Numerical Flow Simulation around HSP Propeller in Open Water and behind a Vessel Wake Using RANS CFD Code
Authors: Kadda Boumediene, Mohamed Bouzit
Abstract:
The prediction of the flow around marine propellers and vessel hulls propeller interaction is one of the challenges of Computational fluid dynamics (CFD). The CFD has emerged as a potential tool in recent years and has promising applications. The objective of the current study is to predict the hydrodynamic performances of HSP marine propeller in open water and behind a vessel. The unsteady 3-D flow was modeled numerically along with respectively the K-ω standard and K-ω SST turbulence models for steady and unsteady cases. The hydrodynamic performances such us a torque and thrust coefficients and efficiency show good agreement with the experiment results.Keywords: seiun maru propeller, steady, unstead, CFD, HSP
Procedia PDF Downloads 30510601 Prediction of Coronary Artery Stenosis Severity Based on Machine Learning Algorithms
Authors: Yu-Jia Jian, Emily Chia-Yu Su, Hui-Ling Hsu, Jian-Jhih Chen
Abstract:
Coronary artery is the major supplier of myocardial blood flow. When fat and cholesterol are deposit in the coronary arterial wall, narrowing and stenosis of the artery occurs, which may lead to myocardial ischemia and eventually infarction. According to the World Health Organization (WHO), estimated 740 million people have died of coronary heart disease in 2015. According to Statistics from Ministry of Health and Welfare in Taiwan, heart disease (except for hypertensive diseases) ranked the second among the top 10 causes of death from 2013 to 2016, and it still shows a growing trend. According to American Heart Association (AHA), the risk factors for coronary heart disease including: age (> 65 years), sex (men to women with 2:1 ratio), obesity, diabetes, hypertension, hyperlipidemia, smoking, family history, lack of exercise and more. We have collected a dataset of 421 patients from a hospital located in northern Taiwan who received coronary computed tomography (CT) angiography. There were 300 males (71.26%) and 121 females (28.74%), with age ranging from 24 to 92 years, and a mean age of 56.3 years. Prior to coronary CT angiography, basic data of the patients, including age, gender, obesity index (BMI), diastolic blood pressure, systolic blood pressure, diabetes, hypertension, hyperlipidemia, smoking, family history of coronary heart disease and exercise habits, were collected and used as input variables. The output variable of the prediction module is the degree of coronary artery stenosis. The output variable of the prediction module is the narrow constriction of the coronary artery. In this study, the dataset was randomly divided into 80% as training set and 20% as test set. Four machine learning algorithms, including logistic regression, stepwise regression, neural network and decision tree, were incorporated to generate prediction results. We used area under curve (AUC) / accuracy (Acc.) to compare the four models, the best model is neural network, followed by stepwise logistic regression, decision tree, and logistic regression, with 0.68 / 79 %, 0.68 / 74%, 0.65 / 78%, and 0.65 / 74%, respectively. Sensitivity of neural network was 27.3%, specificity was 90.8%, stepwise Logistic regression sensitivity was 18.2%, specificity was 92.3%, decision tree sensitivity was 13.6%, specificity was 100%, logistic regression sensitivity was 27.3%, specificity 89.2%. From the result of this study, we hope to improve the accuracy by improving the module parameters or other methods in the future and we hope to solve the problem of low sensitivity by adjusting the imbalanced proportion of positive and negative data.Keywords: decision support, computed tomography, coronary artery, machine learning
Procedia PDF Downloads 22910600 The Effect of Three-Dimensional Morphology on Vulnerability Assessment of Atherosclerotic Plaque
Authors: M. Zareh, H. Mohammadi, B. Naser
Abstract:
Atherosclerotic plaque rupture is the main trigger of heart attack and brain stroke which are the leading cause of death in developed countries. Better understanding of rupture-prone plaque can help clinicians detect vulnerable plaques- rupture prone or instable plaques- and apply immediate medical treatment to prevent these life-threatening cardiovascular events. Therefore, there are plenty of studies addressing disclosure of vulnerable plaques properties. Necrotic core and fibrous tissue are two major tissues constituting atherosclerotic plaque; using histopathological and numerical approaches, many studies have demonstrated that plaque rupture is strongly associated with a large necrotic core and a thin fibrous cap, two morphological characteristic which can be acquired by two-dimensional imaging of atherosclerotic plaque present in coronary and carotid arteries. Plaque rupture is widely considered as a mechanical failure inside plaque tissue; this failure occurs when the stress within plaque excesses the strength of tissue material; hence, finite element method, a strong numerical approach, has been extensively applied to estimate stress distribution within plaques with different compositions which is then used for assessment of various vulnerability characteristics including plaque morphology, material properties and blood pressure. This study aims to evaluate significance of three-dimensional morphology on vulnerability degree of atherosclerotic plaque. To reach this end, different two-dimensional geometrical models of atherosclerotic plaques are considered based on available data and named Main 2D Models (M2M). Then, for each of these M2Ms, two three-dimensional idealistic models are created. These two 3D models represent two possible three-dimensional morphologies which might exist for a plaque with similar 2D morphology to one of M2Ms. Finite element method is employed to estimate stress, von-Mises stress, within each 3D models. Results indicate that for each M2Ms stress can significantly varies due to possible 3D morphological changes in that plaque. Also, our results show that an atherosclerotic plaque with thick cap may experience rupture if it has a critical 3D morphology. This study highlights the effect of 3D geometry of plaque on its instability degree and suggests that 3D morphology of plaque might be necessary to more effectively and accurately assess atherosclerotic plaque vulnerability.Keywords: atherosclerotic plaque, plaque rupture, finite element method, 3D model
Procedia PDF Downloads 30810599 Establishment of a Classifier Model for Early Prediction of Acute Delirium in Adult Intensive Care Unit Using Machine Learning
Authors: Pei Yi Lin
Abstract:
Objective: The objective of this study is to use machine learning methods to build an early prediction classifier model for acute delirium to improve the quality of medical care for intensive care patients. Background: Delirium is a common acute and sudden disturbance of consciousness in critically ill patients. After the occurrence, it is easy to prolong the length of hospital stay and increase medical costs and mortality. In 2021, the incidence of delirium in the intensive care unit of internal medicine was as high as 59.78%, which indirectly prolonged the average length of hospital stay by 8.28 days, and the mortality rate is about 2.22% in the past three years. Therefore, it is expected to build a delirium prediction classifier through big data analysis and machine learning methods to detect delirium early. Method: This study is a retrospective study, using the artificial intelligence big data database to extract the characteristic factors related to delirium in intensive care unit patients and let the machine learn. The study included patients aged over 20 years old who were admitted to the intensive care unit between May 1, 2022, and December 31, 2022, excluding GCS assessment <4 points, admission to ICU for less than 24 hours, and CAM-ICU evaluation. The CAMICU delirium assessment results every 8 hours within 30 days of hospitalization are regarded as an event, and the cumulative data from ICU admission to the prediction time point are extracted to predict the possibility of delirium occurring in the next 8 hours, and collect a total of 63,754 research case data, extract 12 feature selections to train the model, including age, sex, average ICU stay hours, visual and auditory abnormalities, RASS assessment score, APACHE-II Score score, number of invasive catheters indwelling, restraint and sedative and hypnotic drugs. Through feature data cleaning, processing and KNN interpolation method supplementation, a total of 54595 research case events were extracted to provide machine learning model analysis, using the research events from May 01 to November 30, 2022, as the model training data, 80% of which is the training set for model training, and 20% for the internal verification of the verification set, and then from December 01 to December 2022 The CU research event on the 31st is an external verification set data, and finally the model inference and performance evaluation are performed, and then the model has trained again by adjusting the model parameters. Results: In this study, XG Boost, Random Forest, Logistic Regression, and Decision Tree were used to analyze and compare four machine learning models. The average accuracy rate of internal verification was highest in Random Forest (AUC=0.86), and the average accuracy rate of external verification was in Random Forest and XG Boost was the highest, AUC was 0.86, and the average accuracy of cross-validation was the highest in Random Forest (ACC=0.77). Conclusion: Clinically, medical staff usually conduct CAM-ICU assessments at the bedside of critically ill patients in clinical practice, but there is a lack of machine learning classification methods to assist ICU patients in real-time assessment, resulting in the inability to provide more objective and continuous monitoring data to assist Clinical staff can more accurately identify and predict the occurrence of delirium in patients. It is hoped that the development and construction of predictive models through machine learning can predict delirium early and immediately, make clinical decisions at the best time, and cooperate with PADIS delirium care measures to provide individualized non-drug interventional care measures to maintain patient safety, and then Improve the quality of care.Keywords: critically ill patients, machine learning methods, delirium prediction, classifier model
Procedia PDF Downloads 7510598 On the Evaluation of Different Turbulence Models through the Displacement of Oil-Water Flow in Porous Media
Authors: Sidique Gawusu, Xiaobing Zhang
Abstract:
Turbulence models play a significant role in all computational fluid dynamics based modelling approaches. There is, however, no general turbulence model suitable for all flow scenarios. Therefore, a successful numerical modelling approach is only achievable if a more appropriate closure model is used. This paper evaluates different turbulence models in numerical modelling of oil-water flow within the Eulerian-Eulerian approach. A comparison among the obtained numerical results and published benchmark data showed reasonable agreement. The domain was meshed using structured mesh, and grid test was performed to ascertain grid independence. The evaluation of the models was made through analysis of velocity and pressure profiles across the domain. The models were tested for their suitability to accurately obtain a scalable and precise numerical experience. As a result, it is found that all the models except Standard-ω provide comparable results. The study also revealed new insights on flow in porous media, specifically oil reservoirs.Keywords: turbulence modelling, simulation, multi-phase flows, water-flooding, heavy oil
Procedia PDF Downloads 27910597 Modelling High-Frequency Crude Oil Dynamics Using Affine and Non-Affine Jump-Diffusion Models
Authors: Katja Ignatieva, Patrick Wong
Abstract:
We investigated the dynamics of high frequency energy prices, including crude oil and electricity prices. The returns of underlying quantities are modelled using various parametric models such as stochastic framework with jumps and stochastic volatility (SVCJ) as well as non-parametric alternatives, which are purely data driven and do not require specification of the drift or the diffusion coefficient function. Using different statistical criteria, we investigate the performance of considered parametric and nonparametric models in their ability to forecast price series and volatilities. Our models incorporate possible seasonalities in the underlying dynamics and utilise advanced estimation techniques for the dynamics of energy prices.Keywords: stochastic volatility, affine jump-diffusion models, high frequency data, model specification, markov chain monte carlo
Procedia PDF Downloads 10410596 Machine Learning for Disease Prediction Using Symptoms and X-Ray Images
Authors: Ravija Gunawardana, Banuka Athuraliya
Abstract:
Machine learning has emerged as a powerful tool for disease diagnosis and prediction. The use of machine learning algorithms has the potential to improve the accuracy of disease prediction, thereby enabling medical professionals to provide more effective and personalized treatments. This study focuses on developing a machine-learning model for disease prediction using symptoms and X-ray images. The importance of this study lies in its potential to assist medical professionals in accurately diagnosing diseases, thereby improving patient outcomes. Respiratory diseases are a significant cause of morbidity and mortality worldwide, and chest X-rays are commonly used in the diagnosis of these diseases. However, accurately interpreting X-ray images requires significant expertise and can be time-consuming, making it difficult to diagnose respiratory diseases in a timely manner. By incorporating machine learning algorithms, we can significantly enhance disease prediction accuracy, ultimately leading to better patient care. The study utilized the Mask R-CNN algorithm, which is a state-of-the-art method for object detection and segmentation in images, to process chest X-ray images. The model was trained and tested on a large dataset of patient information, which included both symptom data and X-ray images. The performance of the model was evaluated using a range of metrics, including accuracy, precision, recall, and F1-score. The results showed that the model achieved an accuracy rate of over 90%, indicating that it was able to accurately detect and segment regions of interest in the X-ray images. In addition to X-ray images, the study also incorporated symptoms as input data for disease prediction. The study used three different classifiers, namely Random Forest, K-Nearest Neighbor and Support Vector Machine, to predict diseases based on symptoms. These classifiers were trained and tested using the same dataset of patient information as the X-ray model. The results showed promising accuracy rates for predicting diseases using symptoms, with the ensemble learning techniques significantly improving the accuracy of disease prediction. The study's findings indicate that the use of machine learning algorithms can significantly enhance disease prediction accuracy, ultimately leading to better patient care. The model developed in this study has the potential to assist medical professionals in diagnosing respiratory diseases more accurately and efficiently. However, it is important to note that the accuracy of the model can be affected by several factors, including the quality of the X-ray images, the size of the dataset used for training, and the complexity of the disease being diagnosed. In conclusion, the study demonstrated the potential of machine learning algorithms for disease prediction using symptoms and X-ray images. The use of these algorithms can improve the accuracy of disease diagnosis, ultimately leading to better patient care. Further research is needed to validate the model's accuracy and effectiveness in a clinical setting and to expand its application to other diseases.Keywords: K-nearest neighbor, mask R-CNN, random forest, support vector machine
Procedia PDF Downloads 15410595 Investigating the Properties of Nylon Fiber Reinforced Asphalt Concrete
Authors: Hasan Taherkhani
Abstract:
The performance of asphalt pavements is highly dependent on the mechanical properties of asphaltic layers. Improving the mechanical properties of asphaltic mixtures by fiber reinforcement is a common method. Randomly distribution of fibers in the bituminous mixtures and placing between the particles develop reinforcing property in all directions in the mixture and improve their engineering properties. In this research, the effects of the nylon fiber length and content on some engineering properties of a typical binder course asphalt concrete have been investigated. The fibers at different contents of 0.3, 0.4 and 0.5% (by the weight of total mixture), each at three different lengths of 10, 25 and 40 mm have been used, and the properties of the mixtures, such as, volumetric properties, Marshall stability, flow, Marshall quotient, indirect tensile strength and moisture damage have been studied. It is found that the highest Marshall quotient is obtained by using 0.4% of 25mm long nylon fibers. The results also show that the indirect tensile strength and tensile strength ratio, which is an indication of moisture damage of asphalt concrete, decreases with increasing the length of fibers and fiber content.Keywords: asphalt concrete, moisture damage, nylon fiber, tensile strength,
Procedia PDF Downloads 40810594 Strength of the Basement Wall Combined with a Temporary Retaining Wall for Excavation
Authors: Soo-yeon Seo, Su-jin Jung
Abstract:
In recent years, the need for remodeling of many apartments built 30 years ago is increasing. Therefore, researches on the structural reinforcement technology of existing apartments have been conducted. On the other hand, there is a growing need for research on the existing underground space expansion technology to expand the parking space required for remodeling. When expanding an existing underground space, for earthworks, an earth retaining wall must be installed between the existing apartment building and it. In order to maximize the possible underground space, it is necessary to minimize the thickness of the portion of earth retaining wall and underground basement wall. In this manner, the calculation procedure is studied for the evaluation of shear strength of the composite basement wall corresponding to shear span-to-depth ratio in this study. As a result, it was shown that the proposed calculation procedure can be used to evaluate the shear strength of the composite basement wall as safe. On the other hand, when shear span-to-depth ratio is small, shear strength is very underestimated.Keywords: underground space expansion, combined structure, temporary retaining wall, basement wall, shear connectors
Procedia PDF Downloads 143