Search results for: partial pressure
4208 Respiratory Indices and Sports Performance: A Comparision between Different Levels Basketballers
Authors: Ranjan Chakravarty, Satpal Yadav, Biswajit Basumatary, Arvind S. Sajwan
Abstract:
The purpose of this study is to compare the basketball players of different level on selected respiratory indices. Ninety male basketball players from different universities those who participated in intercollegiate and inter- varsity championship. Selected respiratory indices were resting pulse rate, resting blood pressure, vital capacity and resting respiratory rate. Mean and standard deviation of selected respiratory indices were calculated and three different levels i.e. beginners, intermediate and advanced were compared by using analysis of variance. In order to test the hypothesis, level of significance was set at 0.05. It was concluded that variability does not exist among the basketball players of different groups with respect to their selected respiratory indices i.e. resting pulse rate, resting blood pressure, vital capacity and resting respiratory rate.Keywords: respiratory indices, sports performance, basketball players, intervarsity level
Procedia PDF Downloads 3384207 The Effect of Pulling and Rotation Speed on the Jet Grout Columns
Authors: İbrahim Hakkı Erkan, Özcan Tan
Abstract:
The performance of jet grout columns was affected by many controlled and uncontrolled parameters. The leading parameters for the controlled ones can be listed as injection pressure, rod pulling speed, rod rotation speed, number of nozzles, nozzle diameter and Water/Cement ratio. And the uncontrolled parameters are soil type, soil structure, soil layering condition, underground water level, the changes in strength parameters and the rheologic properties of cement in time. In this study, the performance of jet grout columns and the effects of pulling speed and rotation speed were investigated experimentally. For this purpose, a laboratory type jet grouting system was designed for the experiments. Through this system, jet grout columns were produced in three different conditions. The results of the study showed that the grout pressure and the lifting speed significantly affect the performance of the jet grouting columns.Keywords: jet grout, sandy soils, soil improvement, soilcreate
Procedia PDF Downloads 2514206 Task Kicking Performance with Biomechanical Instrumentation
Authors: T. Hirata, M. G. Silva, L. M. Rosa
Abstract:
The balance ability during task kick in soccer is a determining factor in the execution of functional movements that require a high-performance motor coordination. The current experiment explored it during an instep soccer kick and functional task kicking. Their kicking performance was measured in terms of the sway characteristics using lateral and antero-posterior balance of the center of pressure (COP) for the supporting leg and the kinematic data, the supporting leg’s knee angle. The motion was realized with one-legged stance of five male indoor soccer players and using the trigger device ball controller. The results showed large balance in antero-posterior direction than in lateral direction. However, each player adopts a different way to kick the ball, and the media-lateral displacement of the COP showed no correlation with the balance skill.Keywords: kicking performance, center of pressure, one-legged stance, balance ability
Procedia PDF Downloads 6174205 A Comparative Study of Mechanisms across Different Online Social Learning Types
Authors: Xinyu Wang
Abstract:
In the context of the rapid development of Internet technology and the increasing prevalence of online social media, this study investigates the impact of digital communication on social learning. Through three behavioral experiments, we explore both affective and cognitive social learning in online environments. Experiment 1 manipulates the content of experimental materials and two forms of feedback, emotional valence, sociability, and repetition, to verify whether individuals can achieve online emotional social learning through reinforcement using two social learning strategies. Results reveal that both social learning strategies can assist individuals in affective, social learning through reinforcement, with feedback-based learning strategies outperforming frequency-dependent strategies. Experiment 2 similarly manipulates the content of experimental materials and two forms of feedback to verify whether individuals can achieve online knowledge social learning through reinforcement using two social learning strategies. Results show that similar to online affective social learning, individuals adopt both social learning strategies to achieve cognitive social learning through reinforcement, with feedback-based learning strategies outperforming frequency-dependent strategies. Experiment 3 simultaneously observes online affective and cognitive social learning by manipulating the content of experimental materials and feedback at different levels of social pressure. Results indicate that online affective social learning exhibits different learning effects under different levels of social pressure, whereas online cognitive social learning remains unaffected by social pressure, demonstrating more stable learning effects. Additionally, to explore the sustained effects of online social learning and differences in duration among different types of online social learning, all three experiments incorporate two test time points. Results reveal significant differences in pre-post-test scores for online social learning in Experiments 2 and 3, whereas differences are less apparent in Experiment 1. To accurately measure the sustained effects of online social learning, the researchers conducted a mini-meta-analysis of all effect sizes of online social learning duration. Results indicate that although the overall effect size is small, the effect of online social learning weakens over time.Keywords: online social learning, affective social learning, cognitive social learning, social learning strategies, social reinforcement, social pressure, duration
Procedia PDF Downloads 494204 Evaluation of Turbulence Modelling of Gas-Liquid Two-Phase Flow in a Venturi
Authors: Mengke Zhan, Cheng-Gang Xie, Jian-Jun Shu
Abstract:
A venturi flowmeter is a common device used in multiphase flow rate measurement in the upstream oil and gas industry. Having a robust computational model for multiphase flow in a venturi is desirable for understanding the gas-liquid and fluid-pipe interactions and predicting pressure and phase distributions under various flow conditions. A steady Eulerian-Eulerian framework is used to simulate upward gas-liquid flow in a vertical venturi. The simulation results are compared with experimental measurements of venturi differential pressure and chord-averaged gas holdup in the venturi throat section. The choice of turbulence model is nontrivial in the multiphase flow modelling in a venturi. The performance cross-comparison of the k-ϵ model, Reynolds stress model (RSM) and shear-stress transport (SST) k-ω turbulence model is made in the study. In terms of accuracy and computational cost, the SST k-ω turbulence model is observed to be the most efficient.Keywords: computational fluid dynamics (CFD), gas-liquid flow, turbulence modelling, venturi
Procedia PDF Downloads 1734203 A Comparison of Design and Off-Design Performances of a Centrifugal Compressor
Authors: Zeynep Aytaç, Nuri Yücel
Abstract:
Today, as the need for high efficiency and fuel-efficient engines have increased, centrifugal compressor designs are expected to be high-efficient and have high-pressure ratios than ever. The present study represents a design methodology of centrifugal compressor placed in a mini jet engine for the design and off-design points with the utilization of computational fluid dynamics (CFD) and compares the performance characteristics at the mentioned two points. Although the compressor is expected to provide the required specifications at the design point, it is known that it is important for the design to deliver the required parameters at the off-design point also as it will not operate at the design point always. It was observed that the obtained mass flow rate, pressure ratio, and efficiency values are within the limits of the design specifications for the design and off-design points. Despite having different design inputs for the mentioned two points, they reveal similar flow characteristics in the general frame.Keywords: centrifugal compressor, computational fluid dynamics, design point, off-design point
Procedia PDF Downloads 1454202 Excitation Experiments of a Cone Loudspeaker and Vibration-Acoustic Analysis Using FEM
Authors: Y. Hu, X. Zhao, T. Yamaguchi, M. Sasajima, Y. Koike
Abstract:
To focus on the vibration mode of a cone loudspeaker, which acts as an electroacoustic transducer, excitation experiments were performed using two types of loudspeaker units: one employing an impulse hammer and the other a sweep signal. The on-axis sound pressure frequency properties of the loudspeaker were evaluated, and the characteristic properties of the loudspeakers were successfully determined in both excitation experiments. Moreover, under conditions identical to the experiment conditions, a coupled analysis of the vibration-acoustics of the cone loudspeaker was performed using an acoustic analysis software program that considers the impact of damping caused by air viscosity. The result of sound pressure frequency properties with the numerical analysis are the most closely match that measured in the excitation experiments over a wide range of frequency bands.Keywords: anechoic room, finite element method, impulse hammer, loudspeaker, reverberation room, sweep signal
Procedia PDF Downloads 4364201 Risk Factors for Post-Induction Hypotension Among Elderly Patients Undergoing Elective Non-Cardiac Surgery Under General Anesthesia
Authors: Karuna Sutthibenjakul, Sunisa Chatmongkolchart
Abstract:
Background: Postinduction hypotension is common and occurs more often in elderly patients. We aimed to determine risk factors for hypotension after induction among elderly patients (aged 65 years and older) who underwent elective non-cardiac surgery under general anesthesia. Methods: This cohort study analyzed from 580 data between December 2017 and July 2018 at a tertiary university hospital in south of Thailand. Hypotension is defined as more than 30% decrease mean arterial pressure from baseline after induction within 20 minutes or the use of vasopressive agent to treat low blood pressure. Intraoperative parameters were blood pressure and heart rate at T0, TEI, T5, T10, T15 and T20 (immediately after arrival at operating room, time after intubation, 5, 10, 15 and 20 minutes after intubation) respectively. Results: The median age was 72.5 (68, 78) years. A prevalence of post-induction hypotension was 64.8%. The highest prevalence (39.7%) was at 15 minutes after intubation. The association of post-induction hypotension is rising with diuretic drug as preoperative medication (P-value=0.016), hematocrit level (P-value=0.031) and the degree of hypertension immediately after arrival at operating room (P-value<0.001). Increasing fentanyl dosage during induction was associated with hypotension at intubation time (P-value<0.01) and 5 minutes after intubation (P-value<0.001). There was no statistically significant difference in the increasing propofol dosage. Conclusion: The degree of hypertension immediately after arrival at operating room and increasing fentanyl dosage were a significant risk factors for postinduction hypotension in elderly patients.Keywords: risk factors, post-induction, hypotension, elderly
Procedia PDF Downloads 1324200 The Healing 'Touch' of Music: A Neuro-Acoustics Approach to Understand Its Therapeutic Effect
Authors: Jagmeet S. Kanwal, Julia F. Langley
Abstract:
Music can heal the body, but a mechanistic understanding of this phenomenon is lacking. This study explores the effects of music presentation on neurologic and physiologic responses leading to metabolic changes in the human body. The mind and body co-exist in a corporeal entity and within this framework, sickness ensues when the mind-body balance goes awry. It is further hypothesized that music has the capacity to directly reset this balance. Two lines of inquiry taken together can provide a mechanistic understanding of this phenomenon 1) Empirical evidence for a sound-sensitive pressure sensor system in the body, and 2) The notion of a “healing center” within the brain that is activated by specific patterns of sounds. From an acoustics perspective, music is spatially distributed as pressure waves ranging from a few cm to several meters in wavelength. These waves interact and propagate in three-dimensions in unique ways, depending on the wavelength. Furthermore, music creates dynamically changing wave-fronts. Frequencies between 200 Hz and 1 kHz generate wavelengths that range from 5'6" to 1 foot. These dimensions are in the range of the body size of most people making it plausible that these pressure waves can geometrically interact with the body surface and create distinct patterns of pressure stimulation across the skin surface. For humans, short wavelength, high frequency (> 200 Hz) sounds are best received via cochlear receptors. For low frequency (< 200 Hz), long wavelength sound vibrations, however, the whole body may act as an ideal receiver. A vast array of highly sensitive pressure receptors (Pacinian corpuscles) is present just beneath the skin surface, as well as in the tendons, bones, several organs in the abdomen, and the sexual organs. Per the available empirical evidence, these receptors contribute to music perception by allowing the whole body to function as a sound receiver, and knowledge of how they function is essential to fully understanding the therapeutic effect of music. Neuroscientific studies have established that music stimulates the limbic system that can trigger states of anxiety, arousal, fear, and other emotions. These emotional states of brain activity play a crucial role in filtering top-down feedback from thoughts and bottom-up sensory inputs to the autonomic system, which automatically regulates bodily functions. Music likely exerts its pleasurable and healing effects by enhancing functional and effective connectivity and feedback mechanisms between brain regions that mediate reward, autonomic, and cognitive processing. Stimulation of pressure receptors under the skin by low-frequency music-induced sensations can activate multiple centers in the brain, including the amygdala, the cingulate cortex, and nucleus accumbens. Melodies in music in the low (< 600 Hz) frequency range may augment auditory inputs after convergence of the pressure-sensitive inputs from the vagus nerve onto emotive processing regions within the limbic system. The integration of music-generated auditory and somato-visceral inputs may lead to a synergistic input to the brain that promotes healing. Thus, music can literally heal humans through “touch” as it energizes the brain’s autonomic system for restoring homeostasis.Keywords: acoustics, brain, music healing, pressure receptors
Procedia PDF Downloads 1674199 Interpretation and Prediction of Geotechnical Soil Parameters Using Ensemble Machine Learning
Authors: Goudjil kamel, Boukhatem Ghania, Jlailia Djihene
Abstract:
This paper delves into the development of a sophisticated desktop application designed to calculate soil bearing capacity and predict limit pressure. Drawing from an extensive review of existing methodologies, the study meticulously examines various approaches employed in soil bearing capacity calculations, elucidating their theoretical foundations and practical applications. Furthermore, the study explores the burgeoning intersection of artificial intelligence (AI) and geotechnical engineering, underscoring the transformative potential of AI- driven solutions in enhancing predictive accuracy and efficiency.Central to the research is the utilization of cutting-edge machine learning techniques, including Artificial Neural Networks (ANN), XGBoost, and Random Forest, for predictive modeling. Through comprehensive experimentation and rigorous analysis, the efficacy and performance of each method are rigorously evaluated, with XGBoost emerging as the preeminent algorithm, showcasing superior predictive capabilities compared to its counterparts. The study culminates in a nuanced understanding of the intricate dynamics at play in geotechnical analysis, offering valuable insights into optimizing soil bearing capacity calculations and limit pressure predictions. By harnessing the power of advanced computational techniques and AI-driven algorithms, the paper presents a paradigm shift in the realm of geotechnical engineering, promising enhanced precision and reliability in civil engineering projects.Keywords: limit pressure of soil, xgboost, random forest, bearing capacity
Procedia PDF Downloads 254198 Development of Interactional Competence: Listener Responses of Long-Term Stay Abroad Chinese L1 Speakers in Australian Universities
Authors: Wei Gao
Abstract:
The current study investigates the change of listener responses in social conversations of the second language (L2) speakers who are staying abroad with Chinese L1 speakers in Australian universities and how their long-term stay abroad impacted their design for L2 recipient actions. There is a limited amount of empirical work on L2 English listener response acquisition, particularly regarding the influence of long-term stay abroad in English-speaking countries. Little is known whether the development of L2 listener responses and the improvement of interactional competence is affected by the prolonged residency in the target L2 country. Forty-eight participants were recruited, and they participated in the designed speaking task through Computer-Mediated Communication. Results showed that long-term stay abroad Chinese L1 speakers demonstrated an English-like pattern of listener responses in communication. Long-term stay abroad experience had a significant impact on L2 English listener responses production and organization in social conversation. Long-term stay abroad L1 Chinese speakers had an active and productive response in listenership than their non-stay abroad counterparts in terms of frequency and placement in producing listener responses. However, the L2 English listener response production only occurred to be partial in response tokens, such as backchannels and reactive expressions, also in resumptive openers' employment. This study shows that L2 English listener responses could be acquired during a long-term stay abroad in English-speaking countries but showed partial acquisition in collaborative finishes production. In addition, the most prominent finding was that Chinese L1 speakers changed their overall listener responses pattern from L1 Chinese to L2 English. The study reveals specific interactional changes in English L2 listener responses acquisition. It generates pedagogical implications for cross-cultural communication and L2 pragmatics acquisition during a long-term stay abroad.Keywords: listener responses, stay abroad, interactional competence, L2 pragmatics acquisition
Procedia PDF Downloads 854197 Prominent Lipid Parameters Correlated with Trunk-to-Leg and Appendicular Fat Ratios in Severe Pediatric Obesity
Authors: Mustafa M. Donma, Orkide Donma
Abstract:
The examination of both serum lipid fractions and body’s lipid composition are quite informative during the evaluation of obesity stages. Within this context, alterations in lipid parameters are commonly observed. The variations in the fat distribution of the body are also noteworthy. Total cholesterol (TC), triglycerides (TRG), low density lipoprotein-cholesterol (LDL-C), high density lipoprotein-cholesterol (HDL-C) are considered as the basic lipid fractions. Fat deposited in trunk and extremities may give considerable amount of information and different messages during discrete health states. Ratios are also derived from distinct fat distribution in these areas. Trunk-to-leg fat ratio (TLFR) and trunk-to-appendicular fat ratio (TAFR) are the most recently introduced ratios. In this study, lipid fractions and TLFR, as well as TAFR, were evaluated, and the distinctions among healthy, obese (OB), and morbid obese (MO) groups were investigated. Three groups [normal body mass index (N-BMI), OB, MO] were constituted from a population aged 6 to 18 years. Ages and sexes of the groups were matched. The study protocol was approved by the Non-interventional Ethics Committee of Tekirdag Namik Kemal University. Written informed consent forms were obtained from the parents of the participants. Anthropometric measurements (height, weight, waist circumference, hip circumference, head circumference, neck circumference) were obtained and recorded during the physical examination. Body mass index values were calculated. Total, trunk, leg, and arm fat mass values were obtained by TANITA Bioelectrical Impedance Analysis. These values were used to calculate TLFR and TAFR. Systolic (SBP) and diastolic blood pressures (DBP) were measured. Routine biochemical tests including TC, TRG, LDL-C, HDL-C, and insulin were performed. Data were evaluated using SPSS software. p value smaller than 0.05 was accepted as statistically significant. There was no difference among the age values and gender ratios of the groups. Any statistically significant difference was not observed in terms of DBP, TLFR as well as serum lipid fractions. Higher SBP values were measured both in OB and MO children than those with N-BMI. TAFR showed a significant difference between N-BMI and OB groups. Statistically significant increases were detected between insulin values of N-BMI group and OB as well as MO groups. There were bivariate correlations between LDL and TLFR (r=0.396; p=0.037) as well as TAFR values (r=0.413; p=0.029) in MO group. When adjusted for SBP and DBP, partial correlations were calculated as (r=0.421; p=0.032) and (r=0.438; p=0.025) for LDL-TLFR as well as LDL-TAFR, respectively. Much stronger partial correlations were obtained for the same couples (r=0.475; p=0.019 and r=0.473; p=0.020, respectively) upon controlling for TRG and HDL-C. Much stronger partial correlations observed in MO children emphasize the potential transition from morbid obesity to metabolic syndrome. These findings have concluded that LDL-C may be suggested as a discriminating parameter between OB and MO children.Keywords: children, lipid parameters, obesity, trunk-to-leg fat ratio, trunk-to-appendicular fat ratio
Procedia PDF Downloads 1144196 Robust Numerical Solution for Flow Problems
Authors: Gregor Kosec
Abstract:
Simple and robust numerical approach for solving flow problems is presented, where involved physical fields are represented through the local approximation functions, i.e., the considered field is approximated over a local support domain. The approximation functions are then used to evaluate the partial differential operators. The type of approximation, the size of support domain, and the type and number of basis function can be general. The solution procedure is formulated completely through local computational operations. Besides local numerical method also the pressure velocity is performed locally with retaining the correct temporal transient. The complete locality of the introduced numerical scheme has several beneficial effects. One of the most attractive is the simplicity since it could be understood as a generalized Finite Differences Method, however, much more powerful. Presented methodology offers many possibilities for treating challenging cases, e.g. nodal adaptivity to address regions with sharp discontinuities or p-adaptivity to treat obscure anomalies in physical field. The stability versus computation complexity and accuracy can be regulated by changing number of support nodes, etc. All these features can be controlled on the fly during the simulation. The presented methodology is relatively simple to understand and implement, which makes it potentially powerful tool for engineering simulations. Besides simplicity and straightforward implementation, there are many opportunities to fully exploit modern computer architectures through different parallel computing strategies. The performance of the method is presented on the lid driven cavity problem, backward facing step problem, de Vahl Davis natural convection test, extended also to low Prandtl fluid and Darcy porous flow. Results are presented in terms of velocity profiles, convergence plots, and stability analyses. Results of all cases are also compared against published data.Keywords: fluid flow, meshless, low Pr problem, natural convection
Procedia PDF Downloads 2344195 Hydraulic Characteristics of Mine Tailings by Metaheuristics Approach
Authors: Akhila Vasudev, Himanshu Kaushik, Tadikonda Venkata Bharat
Abstract:
A large number of mine tailings are produced every year as part of the extraction process of phosphates, gold, copper, and other materials. Mine tailings are high in water content and have very slow dewatering behavior. The efficient design of tailings dam and economical disposal of these slurries requires the knowledge of tailings consolidation behavior. The large-strain consolidation theory closely predicts the self-weight consolidation of these slurries as the theory considers the conservation of mass and momentum conservation and considers the hydraulic conductivity as a function of void ratio. Classical laboratory techniques, such as settling column test, seepage consolidation test, etc., are expensive and time-consuming for the estimation of hydraulic conductivity variation with void ratio. Inverse estimation of the constitutive relationships from the measured settlement versus time curves is explored. In this work, inverse analysis based on metaheuristics techniques will be explored for predicting the hydraulic conductivity parameters for mine tailings from the base excess pore water pressure dissipation curve and the initial conditions of the mine tailings. The proposed inverse model uses particle swarm optimization (PSO) algorithm, which is based on the social behavior of animals searching for food sources. The finite-difference numerical solution of the forward analytical model is integrated with the PSO algorithm to solve the inverse problem. The method is tested on synthetic data of base excess pore pressure dissipation curves generated using the finite difference method. The effectiveness of the method is verified using base excess pore pressure dissipation curve obtained from a settling column experiment and further ensured through comparison with available predicted hydraulic conductivity parameters.Keywords: base excess pore pressure, hydraulic conductivity, large strain consolidation, mine tailings
Procedia PDF Downloads 1364194 Effects of Different Mechanical Treatments on the Physical and Chemical Properties of Turmeric
Authors: Serpa A. M., Gómez Hoyos C., Velásquez-Cock J. A., Ruiz L. F., Vélez Acosta L. M., Gañan P., Zuluaga R.
Abstract:
Turmeric (Curcuma Longa L) is an Indian rhizome known for its biological properties, derived from its active compounds such as curcuminoids. Curcumin, the main polyphenol in turmeric, only represents around 3.5% of the dehydrated rhizome and extraction yields between 41 and 90% have been reported. Therefore, for every 1000 tons of turmeric powder used for the extraction of curcumin, around 970 tons of residues are generated. The present study evaluates the effect of different mechanical treatments (waring blender, grinder and high-pressure homogenization) on the physical and chemical properties of turmeric, as an alternative for the transformation of the entire rhizome. Suspensions of turmeric (10, 20 y 30%) were processed by waring blender during 3 min at 12000 rpm, while the samples treated by grinder were processed evaluating two different Gaps (-1 and -1,5). Finally, the process by high-pressure homogenization, was carried out at 500 bar. According to the results, the luminosity of the samples increases with the severity of the mechanical treatment, due to the stabilization of the color associated with the inactivation of the oxidative enzymes. Additionally, according to the microstructure of the samples, the process by grinder (Gap -1,5) and by high-pressure homogenization allowed the largest size reduction, reaching sizes up to 3 m (measured by optical microscopy). This processes disrupts the cells and breaks their fragments into small suspended particles. The infrared spectra obtained from the samples using an attenuated total reflectance accessory indicates changes in the 800-1200 cm⁻¹ region, related mainly to changes in the starch structure. Finally, the thermogravimetric analysis shows the presence of starch, curcumin and some minerals in the suspensions.Keywords: characterization, mechanical treatments, suspensions, turmeric rhizome
Procedia PDF Downloads 1634193 Nucleotide Based Validation of the Endangered Plant Diospyros mespiliformis (Ebenaceae) by Evaluating Short Sequence Region of Plastid rbcL Gene
Authors: Abdullah Alaklabi, Ibrahim A. Arif, Sameera O. Bafeel, Ahmad H. Alfarhan, Anis Ahamed, Jacob Thomas, Mohammad A. Bakir
Abstract:
Diospyros mespiliformis (Hochst. ex A.DC.; Ebenaceae) is a large deciduous medicinal plant. This plant species is currently listed as endangered in Saudi Arabia. Molecular identification of this plant species based on short sequence regions (571 and 664 bp) of plastid rbcL (ribulose-1, 5-biphosphate carboxylase) gene was investigated in this study. The endangered plant specimens were collected from Al-Baha, Saudi Arabia (GPS coordinate: 19.8543987, 41.3059349). Phylogenetic tree inferred from the rbcL gene sequences showed that this species is very closely related with D. brandisiana. The close relationship was also observed among D. bejaudii, D. Philippinensis and D. releyi (≥99.7% sequence homology). The partial rbcL gene sequence region (571 bp) that was amplified by rbcL primer-pair rbcLaF-rbcLaR failed to discriminate D. mespiliformis from the closely related plant species, D. brandisiana. In contrast, primer-pair rbcL1F-rbcL724R yielded longer amplicon, discriminated the species from D. brandisiana and demonstrated nucleotide variations in 3 different sites (645G>T; 663A>C; 710C>G). Although D. mespiliformis (EU980712) and D. brandisiana (EU980656) are very closely related species (99.4%); however, studied specimen showed 100% sequence homology with D. mespiliformis and 99.6% with D. brandisiana. The present findings showed that rbcL short sequence region (664 bp) of plastid rbcL gene, amplified by primer-pair rbcL1F-rbcL724R, can be used for authenticating samples of D. mespiliforformis and may provide help in authentic identification and management process of this medicinally valuable endangered plant species.Keywords: Diospyros mespiliformis, endangered plant, identification partial rbcL
Procedia PDF Downloads 4334192 Study of Morning-Glory Spillway Structure in Hydraulic Characteristics by CFD Model
Authors: Mostafa Zandi, Ramin Mansouri
Abstract:
Spillways are one of the most important hydraulic structures of dams that provide the stability of the dam and downstream areas at the time of flood. Morning-Glory spillway is one of the common spillways for discharging the overflow water behind dams, these kinds of spillways are constructed in dams with small reservoirs. In this research, the hydraulic flow characteristics of a morning-glory spillways are investigated with CFD model. Two dimensional unsteady RANS equations were solved numerically using Finite Volume Method. The PISO scheme was applied for the velocity-pressure coupling. The mostly used two-equation turbulence models, k- and k-, were chosen to model Reynolds shear stress term. The power law scheme was used for discretization of momentum, k , and equations. The VOF method (geometrically reconstruction algorithm) was adopted for interface simulation. The results show that the fine computational grid, the input speed condition for the flow input boundary, and the output pressure for the boundaries that are in contact with the air provide the best possible results. Also, the standard wall function is chosen for the effect of the wall function, and the turbulent model k -ε (Standard) has the most consistent results with experimental results. When the jet is getting closer to end of basin, the computational results increase with the numerical results of their differences. The lower profile of the water jet has less sensitivity to the hydraulic jet profile than the hydraulic jet profile. In the pressure test, it was also found that the results show that the numerical values of the pressure in the lower landing number differ greatly in experimental results. The characteristics of the complex flows over a Morning-Glory spillway were studied numerically using a RANS solver. Grid study showed that numerical results of a 57512-node grid had the best agreement with the experimental values. The desired downstream channel length was preferred to be 1.5 meter, and the standard k-ε turbulence model produced the best results in Morning-Glory spillway. The numerical free-surface profiles followed the theoretical equations very well.Keywords: morning-glory spillway, CFD model, hydraulic characteristics, wall function
Procedia PDF Downloads 774191 Comparative Analysis of High Lift Airfoils for Motorsports Applications
Authors: M. Fozan Ur Rab, Mahrukh, M. Alam, N. Sheikh
Abstract:
The purpose of this study is to analyze various high lift low Reynolds number airfoils using two-dimensional Computational Fluid Dynamics (CFD) code in the isolated flow field and select optimum airfoil to suit the motorsports application. The airfoil is selected after comparing the stall behavior, transition location, pressure recovery, pressure distribution and boundary layer characteristics of various airfoils. The prime consideration while selecting airfoil is highest Cl while achieving the sustainable performance over a range of Reynolds numbers encountered on the race track. The increase in Cl is always accompanied by the increase in Cd but this must be compromised since the main goal is to increase an aerodynamic grip. It is always desirable to increase the down-force in Formula One (F1)/Formula Student (FS) to gain reduction in lap time. This paper establishes the criteria for selection of high lift low Reynolds number airfoil while considering various parameters which affect the performance of airfoils.Keywords: aerodynamics, airfoil, downforce, formula student, lap time
Procedia PDF Downloads 2884190 Liquid Phase Catalytic Dehydrogenation of Secondary Alcohols to Ketone
Authors: Anıl Dinçer, Dilek Duranoğlu
Abstract:
Ketones, which are widely used as solvent and chemical intermediates in chemical process industry, are commercially produced by using catalytic dehydrogenation of secondary alcohols at higher temperature (300-500ºC), and pressure (1-5 bar). Although it is possible to obtain high conversion values (60-87%) via gas phase catalytic dehydrogenation, working high temperature and pressure can result in side reactions and shorten the catalyst life. In order to overcome these challenges, catalytic dehydrogenation in the presence of an appropriate liquid solvent has been started to use. Hence, secondary alcohols can be converted to respective ketones at relatively low temperature (150-200ºC) under atmospheric pressure. In this study, methyl ethyl ketone and acetone was produced via catalytic dehydrogenation of appropriate secondary alcohols (isopropyl alcohol and sec-butyl alcohol) in the presence of liquid solvent at 160-190ºC. Obtained methyl ethyl ketone and acetone were analyzed by using FTIR and GC spectrometer. Effects of temperature, amount of catalyst and solvent on conversion and reaction rate were investigated. Optimum process conditions, which gave high conversion and reaction rate, were determined. According to GC results, 70% of secondary butyl alcohol and 42% of isopropyl alcohol was converted to related ketone (methyl ethyl ketone and acetone, respectively) at optimum process conditions. After distillation, 99.13% methyl ethyl ketone and 99.20% acetone was obtained. Consequently, liquid phase dehydrogenation process, which can compete with commercial gas phase process, was developed.Keywords: dehydrogenation, liquid phase, methyl ethyl ketone, secondary alcohol
Procedia PDF Downloads 2994189 Failure Analysis of Fuel Pressure Supply from an Aircraft Engine
Authors: M. Pilar Valles-gonzalez, Alejandro Gonzalez Meije, Ana Pastor Muro, Maria Garcia-Martinez, Beatriz Gonzalez Caballero
Abstract:
This paper studies a failure case of a fuel pressure supply tube from an aircraft engine. Multiple fracture cases of the fuel pressure control tube from aircraft engines have been reported. The studied set was composed of the mentioned tube, a welded connecting pipe, where the fracture has been produced, and a union nut. The fracture has been produced in one most critical zones of the tube, in a region next to the supporting body of the union nut to the connector. The tube material was X6CrNiTi18-10, an austenitic stainless steel. Chemical composition was determined using an X-Ray fluorescence spectrometer (XRF) and combustion equipment. Furthermore, the material has been mechanical, by hardness test, and microstructural characterized using a stereomicroscope and an optical microscope. The results confirmed that it is within specifications. To determine the macrofractographic features, a visual examination and a stereo microscope of the tube fracture surface have been carried out. The results revealed a tube plastic macrodeformation, surface damaged, and signs of a possible corrosion process. Fracture surface was also inspected by scanning electron microscopy (FE-SEM), equipped with a microanalysis system by X-ray dispersive energy (EDX), to determine the microfractographic features in order to find out the failure mechanism involved in the fracture. Fatigue striations, which are typical from a progressive fracture by a fatigue mechanism, have been observed. The origin of the fracture has been placed in defects located on the outer wall of the tube, leading to a final overload fracture.Keywords: aircraft engine, fatigue, FE-SEM, fractography, fracture, fuel tube, microstructure, stainless steel
Procedia PDF Downloads 1554188 Mechanistic Studies of Compacted and Sintered Rock Salt
Authors: Claudia H. Swanson, Jens Günster
Abstract:
This research addresses the densification via compaction and sintering of naturally occurring rock salt which was motivated by the fact that in a saline environment rock salt is thermodynamically stable and does show a mechanical behavior compatible to the surrounding host material. The sintering of rock salt powder compacts was systematically investigated using temperature and pressure as variables for the sinter process. The behavior of rock salt showed segregations of anhydrite, CaSO4 - the major impurity found in rock salt, to the grain boundaries between individual sodium chloride crystals. Powder compacts treated with lower pressures lost those anhydrite segregates over time while high pressure treated compacts remained with anhydrite segregates. The density reached in this study is 2.008 g cm-3 corresponding to a density of 92.5 % of the theoretical value. This high density is making the sintering a promising technique for rock salt as applications in underground appropriate environment.Keywords: rock salt, sinter, anhydrite, nuclear safety
Procedia PDF Downloads 4894187 Uniqueness and Repeatability Analysis for Slim Tube Determined Minimum Miscibility Pressure
Authors: Waqar Ahmad Butt, Gholamreza Vakili Nezhaad, Ali Soud Al Bemani, Yahya Al Wahaibi
Abstract:
Miscible gas injection processes as secondary recovery methods can be applied to a huge number of mature reservoirs to improve the trapped oil displacement. Successful miscible gas injection processes require an accurate estimation of the minimum miscibility pressure (MMP) to make injection process feasible, economical, and effective. There are several methods of MMP determination like slim tube approach, vanishing interfacial tension and rising bubble apparatus but slim tube is the deployed experimental technique in this study. Slim tube method is assumed to be non-standardized for MMP determination with respect to both operating procedure and design. Therefore, 25 slim tube runs were being conducted with three different coil lengths (12, 18 and 24 m) of constant diameter using three different injection rates (0.08, 0.1 and 0.15 cc/min) to evaluate uniqueness and repeatability of determined MMP. A trend of decrease in MMP with increase in coil length was found. No unique trend was found between MMP and injection rate. Lowest MMP and highest recovery were observed with highest coil length and lowest injection rate. It shows that slim tube measured MMP does not depend solely on interacting fluids characteristics but also affected by used coil selection and injection rate choice. Therefore, both slim tube design and procedure need to be standardized. It is recommended to use lowest possible injection rate and estimated coil length depending upon the distance between injections and producing wells for accurate and reliable MMP determination.Keywords: coil length, injection rate, minimum miscibility pressure, multiple contacts miscibility
Procedia PDF Downloads 2544186 Investigation of the Working Processes in Thermocompressor Operating on Cryogenic Working Fluid
Authors: Evgeny V. Blagin, Aleksandr I. Dovgjallo, Dmitry A. Uglanov
Abstract:
This article deals with research of the working process in the thermocompressor which operates on cryogenic working fluid. Thermocompressor is device suited for the conversation of heat energy directly to the potential energy of pressure. Suggested thermocompressor is suited for operation during liquid natural gas (LNG) re-gasification and is placed after evaporator. Such application of thermocompressor allows using of the LNG cold energy for rising of working fluid pressure, which then can be used for electricity generation or another purpose. Thermocompressor consists of two chambers divided by the regenerative heat exchanger. Calculation algorithm for unsteady calculation of thermocompressor working process was suggested. The results of this investigation are to change of thermocompressor’s chambers temperature and pressure during the working cycle. These distributions help to find out the parameters, which significantly influence thermocompressor efficiency. These parameters include regenerative heat exchanger coefficient of the performance (COP) dead volume of the chambers, working frequency of the thermocompressor etc. Exergy analysis was performed to estimate thermocompressor efficiency. Cryogenic thermocompressor operated on nitrogen working fluid was chosen as a prototype. Calculation of the temperature and pressure change was performed with taking into account heat fluxes through regenerator and thermocompressor walls. Temperature of the cold chamber significantly differs from the results of steady calculation, which is caused by friction of the working fluid in regenerator and heat fluxes from the hot chamber. The rise of the cold chamber temperature leads to decreasing of thermocompressor delivery volume. Temperature of hot chamber differs negligibly because losses due to heat fluxes to a cold chamber are compensated by the friction of the working fluid in the regenerator. Optimal working frequency was selected. Main results of the investigation: -theoretical confirmation of thermocompressor operation capability on the cryogenic working fluid; -optimal working frequency was found; -value of the cold chamber temperature differs from the starting value much more than the temperature of the hot chamber; -main parameters which influence thermocompressor performance are regenerative heat exchanger COP and heat fluxes through regenerator and thermocompressor walls.Keywords: cold energy, liquid natural gas, thermocompressor, regenerative heat exchanger
Procedia PDF Downloads 5834185 Identification of Key Parameters for Benchmarking of Combined Cycle Power Plants Retrofit
Authors: S. Sabzchi Asl, N. Tahouni, M. H. Panjeshahi
Abstract:
Benchmarking of a process with respect to energy consumption, without accomplishing a full retrofit study, can save both engineering time and money. In order to achieve this goal, the first step is to develop a conceptual-mathematical model that can easily be applied to a group of similar processes. In this research, we have aimed to identify a set of key parameters for the model which is supposed to be used for benchmarking of combined cycle power plants. For this purpose, three similar combined cycle power plants were studied. The results showed that ambient temperature, pressure and relative humidity, number of HRSG evaporator pressure levels and relative power in part load operation are the main key parameters. Also, the relationships between these parameters and produced power (by gas/ steam turbine), gas turbine and plant efficiency, temperature and mass flow rate of the stack flue gas were investigated.Keywords: combined cycle power plant, energy benchmarking, modelling, retrofit
Procedia PDF Downloads 3054184 Numerical Study on Vortex-Driven Pressure Oscillation and Roll Torque Characteristics in a SRM with Two Inhibitors
Authors: Ji-Seok Hong, Hee-Jang Moon, Hong-Gye Sung
Abstract:
The details of flow structures and the coupling mechanism between vortex shedding and acoustic excitation in a solid rocket motor with two inhibitors have been investigated using 3D Large Eddy Simulation (LES) and Proper Orthogonal Decomposition (POD) analysis. The oscillation frequencies and vortex shedding periods from two inhibitors compare reasonably well with the experimental data and numerical result. A total of four different locations of the rear inhibitor has been numerically tested to characterize the coupling relation of vortex shedding frequency and acoustic mode. The major source of triggering pressure oscillation in the combustor is the resonance with the acoustic longitudinal half mode. It was observed that the counter-rotating vortices in the nozzle flow produce roll torque.Keywords: large eddy simulation, proper orthogonal decomposition, SRM instability, flow-acoustic coupling
Procedia PDF Downloads 5694183 Nonlinear Vibration of FGM Plates Subjected to Acoustic Load in Thermal Environment Using Finite Element Modal Reduction Method
Authors: Hassan Parandvar, Mehrdad Farid
Abstract:
In this paper, a finite element modeling is presented for large amplitude vibration of functionally graded material (FGM) plates subjected to combined random pressure and thermal load. The material properties of the plates are assumed to vary continuously in the thickness direction by a simple power law distribution in terms of the volume fractions of the constituents. The material properties depend on the temperature whose distribution along the thickness can be expressed explicitly. The von Karman large deflection strain displacement and extended Hamilton's principle are used to obtain the governing system of equations of motion in structural node degrees of freedom (DOF) using finite element method. Three-node triangular Mindlin plate element with shear correction factor is used. The nonlinear equations of motion in structural degrees of freedom are reduced by using modal reduction method. The reduced equations of motion are solved numerically by 4th order Runge-Kutta scheme. In this study, the random pressure is generated using Monte Carlo method. The modeling is verified and the nonlinear dynamic response of FGM plates is studied for various values of volume fraction and sound pressure level under different thermal loads. Snap-through type behavior of FGM plates is studied too.Keywords: nonlinear vibration, finite element method, functionally graded material (FGM) plates, snap-through, random vibration, thermal effect
Procedia PDF Downloads 2634182 Mechanical Behavior of Laminated Glass Cylindrical Shell with Hinged Free Boundary Conditions
Authors: Ebru Dural, M. Zulfu Asık
Abstract:
Laminated glass is a kind of safety glass, which is made by 'sandwiching' two glass sheets and a polyvinyl butyral (PVB) interlayer in between them. When the glass is broken, the interlayer in between the glass sheets can stick them together. Because of this property, the hazards of sharp projectiles during natural and man-made disasters reduces. They can be widely applied in building, architecture, automotive, transport industries. Laminated glass can easily undergo large displacements even under their own weight. In order to explain their true behavior, they should be analyzed by using large deflection theory to represent nonlinear behavior. In this study, a nonlinear mathematical model is developed for the analysis of laminated glass cylindrical shell which is free in radial directions and restrained in axial directions. The results will be verified by using the results of the experiment, carried out on laminated glass cylindrical shells. The behavior of laminated composite cylindrical shell can be represented by five partial differential equations. Four of the five equations are used to represent axial displacements and radial displacements and the fifth one for the transverse deflection of the unit. Governing partial differential equations are derived by employing variational principles and minimum potential energy concept. Finite difference method is employed to solve the coupled differential equations. First, they are converted into a system of matrix equations and then iterative procedure is employed. Iterative procedure is necessary since equations are coupled. Problems occurred in getting convergent sequence generated by the employed procedure are overcome by employing variable underrelaxation factor. The procedure developed to solve the differential equations provides not only less storage but also less calculation time, which is a substantial advantage in computational mechanics problems.Keywords: laminated glass, mathematical model, nonlinear behavior, PVB
Procedia PDF Downloads 3204181 Effect of Different Parameters of Converging-Diverging Vortex Finders on Cyclone Separator Performance
Abstract:
The present study is done to explore design modifications of the vortex finder, as it has a significant effect on the cyclone separator performance. It is evident that modifications of the vortex finder improve the performance of the cyclone separator significantly. The study conducted strives to improve the overall performance of cyclone separators by utilizing a converging-diverging (CD) vortex finder instead of the traditional uniform diameter vortex finders. The velocity and pressure fields inside a Stairmand cyclone separator with body diameter 0.29m and vortex finder diameter 0.1305m are calculated. The commercial software, Ansys Fluent v14.0 is used to simulate the flow field in a uniform diameter cyclone and six cyclones modified with CD vortex finders. Reynolds stress model is used to simulate the effects of turbulence on the fluid and particulate phases, discrete phase model is used to calculate the particle trajectories. The performance of the modified vortex finders is compared with the traditional vortex finder. The effects of the lengths of the converging and diverging sections, the throat diameter and the end diameters of the convergent divergent section are also studied to achieve enhanced performance. The pressure and velocity fields inside the vortex finder are presented by means of contour plots and velocity vectors and changes in the flow pattern due to variation of the geometrical variables are also analysed. Results indicate that a convergent-divergent vortex finder is capable of decreasing the pressure drop than that achieved through a uniform diameter vortex finder. It is also observed that the end diameters of the CD vortex finder, the throat diameter and the length of the diverging part of the vortex finder have a significant impact on the cyclone separator performance. Increase in the lower diameter of the vortex finder by 66% results in 11.5% decrease in the dimensionless pressure drop (Euler number) with 5.8% decrease in separation efficiency. Whereas 50% decrease in the throat diameter gives 5.9% increase in the Euler number with 10.2% increase in the separation efficiency and increasing the length of the diverging part gives 10.28% increase in the Euler number with 5.74% increase in the separation efficiency. Increasing the upper diameter of the CD vortex finder is seen to produce an adverse effect on the performance as it increases the pressure drop significantly and decreases the separation efficiency. Increase in length of the converging is not seen to affect the performance significantly. From the present study, it is concluded that convergent-divergent vortex finders can be used in place of uniform diameter vortex finders to achieve a better cyclone separator performance.Keywords: convergent-divergent vortex finder, cyclone separator, discrete phase modeling, Reynolds stress model
Procedia PDF Downloads 1744180 Peristaltic Transport of a Jeffrey Fluid with Double-Diffusive Convection in Nanofluids in the Presence of Inclined Magnetic Field
Authors: Safia Akram
Abstract:
In this article, the effects of peristaltic transport with double-diffusive convection in nanofluids through an asymmetric channel with different waveforms is presented. Mathematical modelling for two-dimensional and two directional flows of a Jeffrey fluid model along with double-diffusive convection in nanofluids are given. Exact solutions are obtained for nanoparticle fraction field, concentration field, temperature field, stream functions, pressure gradient and pressure rise in terms of axial and transverse coordinates under the restrictions of long wavelength and low Reynolds number. With the help of computational and graphical results the effects of Brownian motion, thermophoresis, Dufour, Soret, and Grashof numbers (thermal, concentration, nanoparticles) on peristaltic flow patterns with double-diffusive convection are discussed.Keywords: nanofluid particles, peristaltic flow, Jeffrey fluid, magnetic field, asymmetric channel, different waveforms
Procedia PDF Downloads 3844179 Performances Analysis of the Pressure and Production of an Oil Zone by Simulation of the Flow of a Fluid through the Porous Media
Authors: Makhlouf Mourad, Medkour Mihoub, Bouchher Omar, Messabih Sidi Mohamed, Benrachedi Khaled
Abstract:
This work is the modeling and simulation of fluid flow (liquid) through porous media. This type of flow occurs in many situations of interest in applied sciences and engineering, fluid (oil) consists of several individual substances in pure, single-phase flow is incompressible and isothermal. The porous medium is isotropic, homogeneous optionally, with the rectangular format and the flow is two-dimensional. Modeling of hydrodynamic phenomena incorporates Darcy's law and the equation of mass conservation. Correlations are used to model the density and viscosity of the fluid. A finite volume code is used in the discretization of differential equations. The nonlinearity is treated by Newton's method with relaxation coefficient. The results of the simulation of the pressure and the mobility of liquid flowing through porous media are presented, analyzed, and illustrated.Keywords: Darcy equation, middle porous, continuity equation, Peng Robinson equation, mobility
Procedia PDF Downloads 219