Search results for: multiple antenna multiple-user wireless
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5627

Search results for: multiple antenna multiple-user wireless

4607 Molecular Cloning of CSP2s, PBP1 and PBP2 Genes of Rhyzopertha dominica

Authors: Suliman A. I. Ali, Mory Mandiana Diakite, Saqib Ali, Man-Qun Wang

Abstract:

Lesser grain borer, Rhyzopertha dominica, is a causing damages of stored grains all tropical and subtropical area in the global, according to the information of antenna cDNA library of R. dominica, three olfactory protein genes, including R.domica CSPs2, R.domica PBPs1, R.domica PBPs2 genes (GenBank accessions are KJ186798.1, KJ186830.1, KJ186831.1 separately.), were successfully cloned. For sequencing and phylogenetic analysis, R.domica CSPs1 and R.domica CSPs2 belonged to Minus-C CSPs showed that have 4 conserved cysteine residues, while R.domica PBPs1 and R.domica PBPs2 showed conserved amino acids in all PBPs six conserved cysteine residues. The results of transcription expression level of PBPs1 and PBPs2 of R. dominica showed that the expression level of R.domnica PBP2 is much higher than that of R.domnica PBP1. The variation transcription level at the different developmental time suggested the PBP1, and PBP2 had their particular job in searching food sources, mates and oviposition sites.

Keywords: Rhyzopertha dominica, CSPs, PBPs, molecular cloning

Procedia PDF Downloads 150
4606 Predictors of School Safety Awareness among Malaysian Primary School Teachers

Authors: Ssekamanya, Mastura Badzis, Khamsiah Ismail, Dayang Shuzaidah Bt Abduludin

Abstract:

With rising incidents of school violence worldwide, educators and researchers are trying to understand and find ways to enhance the safety of children at school. The purpose of this study was to investigate the extent to which the demographic variables of gender, age, length of service, position, academic qualification, and school location predicted teachers’ awareness about school safety practices in Malaysian primary schools. A stratified random sample of 380 teachers was selected in the central Malaysian states of Kuala Lumpur and Selangor. Multiple regression analysis revealed that none of the factors was a good predictor of awareness about school safety training, delivery methods of school safety information, and available school safety programs. Awareness about school safety activities was significantly predicted by school location (whether the school was located in a rural or urban area). While these results may reflect a general lack of awareness about school safety among primary school teachers in the selected locations, a national study needs to be conducted for the whole country.

Keywords: school safety awareness, predictors of school safety, multiple regression analysis, malaysian primary schools

Procedia PDF Downloads 474
4605 Design and Field Programmable Gate Array Implementation of Radio Frequency Identification for Boosting up Tag Data Processing

Authors: G. Rajeshwari, V. D. M. Jabez Daniel

Abstract:

Radio Frequency Identification systems are used for automated identification in various applications such as automobiles, health care and security. It is also called as the automated data collection technology. RFID readers are placed in any area to scan large number of tags to cover a wide distance. The placement of the RFID elements may result in several types of collisions. A major challenge in RFID system is collision avoidance. In the previous works the collision was avoided by using algorithms such as ALOHA and tree algorithm. This work proposes collision reduction and increased throughput through reading enhancement method with tree algorithm. The reading enhancement is done by improving interrogation procedure and increasing the data handling capacity of RFID reader with parallel processing. The work is simulated using Xilinx ISE 14.5 verilog language. By implementing this in the RFID system, we can able to achieve high throughput and avoid collision in the reader at a same instant of time. The overall system efficiency will be increased by implementing this.

Keywords: antenna, anti-collision protocols, data management system, reader, reading enhancement, tag

Procedia PDF Downloads 307
4604 Control Algorithm for Home Automation Systems

Authors: Marek Długosz, Paweł Skruch

Abstract:

One of purposes of home automation systems is to provide appropriate comfort to the users by suitable air temperature control and stabilization inside the rooms. The control of temperature level is not a simple task and the basic difficulty results from the fact that accurate parameters of the object of control, that is a building, remain unknown. Whereas the structure of the model is known, the identification of model parameters is a difficult task. In this paper, a control algorithm allowing the present temperature to be reached inside the building within the specified time without the need to know accurate parameters of the building itself is presented.

Keywords: control, home automation system, wireless networking, automation engineering

Procedia PDF Downloads 622
4603 Towards End-To-End Disease Prediction from Raw Metagenomic Data

Authors: Maxence Queyrel, Edi Prifti, Alexandre Templier, Jean-Daniel Zucker

Abstract:

Analysis of the human microbiome using metagenomic sequencing data has demonstrated high ability in discriminating various human diseases. Raw metagenomic sequencing data require multiple complex and computationally heavy bioinformatics steps prior to data analysis. Such data contain millions of short sequences read from the fragmented DNA sequences and stored as fastq files. Conventional processing pipelines consist in multiple steps including quality control, filtering, alignment of sequences against genomic catalogs (genes, species, taxonomic levels, functional pathways, etc.). These pipelines are complex to use, time consuming and rely on a large number of parameters that often provide variability and impact the estimation of the microbiome elements. Training Deep Neural Networks directly from raw sequencing data is a promising approach to bypass some of the challenges associated with mainstream bioinformatics pipelines. Most of these methods use the concept of word and sentence embeddings that create a meaningful and numerical representation of DNA sequences, while extracting features and reducing the dimensionality of the data. In this paper we present an end-to-end approach that classifies patients into disease groups directly from raw metagenomic reads: metagenome2vec. This approach is composed of four steps (i) generating a vocabulary of k-mers and learning their numerical embeddings; (ii) learning DNA sequence (read) embeddings; (iii) identifying the genome from which the sequence is most likely to come and (iv) training a multiple instance learning classifier which predicts the phenotype based on the vector representation of the raw data. An attention mechanism is applied in the network so that the model can be interpreted, assigning a weight to the influence of the prediction for each genome. Using two public real-life data-sets as well a simulated one, we demonstrated that this original approach reaches high performance, comparable with the state-of-the-art methods applied directly on processed data though mainstream bioinformatics workflows. These results are encouraging for this proof of concept work. We believe that with further dedication, the DNN models have the potential to surpass mainstream bioinformatics workflows in disease classification tasks.

Keywords: deep learning, disease prediction, end-to-end machine learning, metagenomics, multiple instance learning, precision medicine

Procedia PDF Downloads 130
4602 The Sexual Knowledge, Attitudes and Behaviors of College Students from Only-Child Families: A National Survey in China

Authors: Jiashu Shen

Abstract:

This study aims at exploring the characteristics of sexual knowledge, attitudes, and behaviors of Chinese college students from the 'one-child' families compared with those with siblings. This study utilized the data from the 'National College Student Survey on Sexual and Reproductive Health 2019'. Multiple logistic regression analyses were used to assess the association between the 'only-child' and their sexual knowledge, sexual attitudes, sexual behaviors, and risky sexual behaviors (RSB) stratified by sex and home regions, respectively. Compared with students with siblings, the 'only-child' students scored higher in sex-related knowledge (only-child students: 4.49 ± 2.28, students with siblings: 3.60 ± 2.27). Stronger associations between only-child and more liberal sexual attitudes were found in urban areas, including the approval of premarital sexual intercourse (OR: 1.51, 95% CI: 1.50-1.65) and multiple sexual partners (OR: 1.85, 95% CI: 1.72-1.99). For risky sexual behaviors, being only-child is more likely to use condoms in first sexual intercourse, especially among male students (OR: 0.68, 95% CI: 0.58-0.80). Only-child students are more likely to have more sexual knowledge, more liberal sexual attitude, and less risky sexual behavior. Further health policy and sex education should focus more on students with siblings.

Keywords: attitudes and behaviors, only-child students, sexual knowledge, students with siblings

Procedia PDF Downloads 186
4601 Proposal of Data Collection from Probes

Authors: M. Kebisek, L. Spendla, M. Kopcek, T. Skulavik

Abstract:

In our paper we describe the security capabilities of data collection. Data are collected with probes located in the near and distant surroundings of the company. Considering the numerous obstacles e.g. forests, hills, urban areas, the data collection is realized in several ways. The collection of data uses connection via wireless communication, LAN network, GSM network and in certain areas data are collected by using vehicles. In order to ensure the connection to the server most of the probes have ability to communicate in several ways. Collected data are archived and subsequently used in supervisory applications. To ensure the collection of the required data, it is necessary to propose algorithms that will allow the probes to select suitable communication channel.

Keywords: communication, computer network, data collection, probe

Procedia PDF Downloads 364
4600 An Integrated Web-Based Workflow System for Design of Computational Pipelines in the Cloud

Authors: Shuen-Tai Wang, Yu-Ching Lin

Abstract:

With more and more workflow systems adopting cloud as their execution environment, it presents various challenges that need to be addressed in order to be utilized efficiently. This paper introduces a method for resource provisioning based on our previous research of dynamic allocation and its pipeline processes. We present an abstraction for workload scheduling in which independent tasks get scheduled among various available processors of distributed computing for optimization. We also propose an integrated web-based workflow designer by taking advantage of the HTML5 technology and chaining together multiple tools. In order to make the combination of multiple pipelines executing on the cloud in parallel, we develop a script translator and an execution engine for workflow management in the cloud. All information is known in advance by the workflow engine and tasks are allocated according to the prior knowledge in the repository. This proposed effort has the potential to provide support for process definition, workflow enactment and monitoring of workflow processes. Users would benefit from the web-based system that allows creation and execution of pipelines without scripting knowledge.

Keywords: workflow systems, resources provisioning, workload scheduling, web-based, workflow engine

Procedia PDF Downloads 164
4599 Analysis of Decentralized on Demand Cross Layer in Cognitive Radio Ad Hoc Network

Authors: A. Sri Janani, K. Immanuel Arokia James

Abstract:

Cognitive radio ad hoc networks different unlicensed users may acquire different available channel sets. This non-uniform spectrum availability imposes special design challenges for broadcasting in CR ad hoc networks. Cognitive radio automatically detects available channels in wireless spectrum. This is a form of dynamic spectrum management. Cross-layer optimization is proposed, using this can allow far away secondary users can also involve into channel work. So it can increase the throughput and it will overcome the collision and time delay.

Keywords: cognitive radio, cross layer optimization, CR mesh network, heterogeneous spectrum, mesh topology, random routing optimization technique

Procedia PDF Downloads 362
4598 Load Management Using Multiple Sequential Load Shaping Techniques

Authors: Amira M. Attia, Karim H. Youssef, Nabil H. Abbasi

Abstract:

Demand Side Management (DSM) is an essential characteristic of current and future smart grid systems. As one of DSM functions, load management aims to control customers’ total electric consumption and utility’s load factor by using various load shaping techniques. However, applying load shaping techniques such as load shifting, peak clipping, or strategic conservation individually does not provide the desired level of improvement for load factor increment and/or customer’s bill reduction. In this paper, two load shaping techniques will be simulated as constrained optimization problems. The purpose is to reflect the application of combined load shifting and strategic conservation model together at the same time, and the application of combined load shifting and peak clipping model as well. The problem will be formulated and solved by using disciplined convex programming (CVX) based MATLAB® R2013b. Simulation results will be evaluated and compared for studying the most impactful multi-techniques model in improving load curve.

Keywords: convex programing, demand side management, load shaping, multiple, building energy optimization

Procedia PDF Downloads 318
4597 Factors Associated with Acute Kidney Injury in Multiple Trauma Patients with Rhabdomyolysis

Authors: Yong Hwang, Kang Yeol Suh, Yundeok Jang, Tae Hoon Kim

Abstract:

Introduction: Rhabdomyolysis is a syndrome characterized by muscle necrosis and the release of intracellular muscle constituents into the circulation. Acute kidney injury is a potential complication of severe rhabdomyolysis and the prognosis is substantially worse if renal failure develops. We try to identify the factors that were predictive of AKI in severe trauma patients with rhabdomyolysis. Methods: This retrospective study was conducted at the emergency department of a level Ⅰ trauma center. Patients enrolled that initial creatine phosphokinase (CPK) levels were higher than 1000 IU with acute multiple trauma, and more than 18 years older from Oct. 2012 to June 2016. We collected demographic data (age, gender, length of hospital day, and patients’ outcome), laboratory data (ABGA, lactate, hemoglobin. hematocrit, platelet, LDH, myoglobin, liver enzyme, and BUN/Cr), and clinical data (Injury Mechanism, RTS, ISS, AIS, and TRISS). The data were compared and analyzed between AKI and Non-AKI group. Statistical analyses were performed using IMB SPSS 20.0 statistics for Window. Results: Three hundred sixty-four patients were enrolled that AKI group were ninety-six and non-AKI group were two hundred sixty-eight. The base excess (HCO3), AST/ALT, LDH, and myoglobin in AKI group were significantly higher than non-AKI group from laboratory data (p ≤ 0.05). The injury severity score (ISS), revised Trauma Score (RTS), Abbreviated Injury Scale 3 and 4 (AIS 3 and 4) were showed significant results in clinical data. The patterns of CPK level were increased from first and second day, but slightly decreased from third day in both group. Seven patients had received hemodialysis treatment despite the bleeding risk and were survived in AKI group. Conclusion: We recommend that HCO3, CPK, LDH, and myoglobin should be checked and be concerned about ISS, RTS, AIS with injury mechanism at the early stage of treatment in the emergency department.

Keywords: acute kidney injury, emergencies, multiple trauma, rhabdomyolysis

Procedia PDF Downloads 342
4596 The Impact of Varying the Detector and Modulation Types on Inter Satellite Link (ISL) Realizing the Allowable High Data Rate

Authors: Asmaa Zaki M., Ahmed Abd El Aziz, Heba A. Fayed, Moustafa H. Aly

Abstract:

ISLs are the most popular choice for deep space communications because these links are attractive alternatives to present day microwave links. This paper explored the allowable high data rate in this link over different orbits, which is affected by variation in modulation scheme and detector type. Moreover, the objective of this paper is to optimize and analyze the performance of ISL in terms of Q-factor and Minimum Bit Error Rate (Min-BER) based on different detectors comprising some parameters.

Keywords: free space optics (FSO), field of view (FOV), inter satellite link (ISL), optical wireless communication (OWC)

Procedia PDF Downloads 401
4595 Description of a Structural Health Monitoring and Control System Using Open Building Information Modeling

Authors: Wahhaj Ahmed Farooqi, Bilal Ahmad, Sandra Maritza Zambrano Bernal

Abstract:

In view of structural engineering, monitoring of structural responses over time is of great importance with respect to recent developments of construction technologies. Recently, developments of advanced computing tools have enabled researcher’s better execution of structural health monitoring (SHM) and control systems. In the last decade, building information modeling (BIM) has substantially enhanced the workflow of planning and operating engineering structures. Typically, building information can be stored and exchanged via model files that are based on the Industry Foundation Classes (IFC) standard. In this study a modeling approach for semantic modeling of SHM and control systems is integrated into the BIM methodology using the IFC standard. For validation of the modeling approach, a laboratory test structure, a four-story shear frame structure, is modeled using a conventional BIM software tool. An IFC schema extension is applied to describe information related to monitoring and control of a prototype SHM and control system installed on the laboratory test structure. The SHM and control system is described by a semantic model applying Unified Modeling Language (UML). Subsequently, the semantic model is mapped into the IFC schema. The test structure is composed of four aluminum slabs and plate-to-column connections are fully fixed. In the center of the top story, semi-active tuned liquid column damper (TLCD) is installed. The TLCD is used to reduce effects of structural responses in context of dynamic vibration and displacement. The wireless prototype SHM and control system is composed of wireless sensor nodes. For testing the SHM and control system, acceleration response is automatically recorded by the sensor nodes equipped with accelerometers and analyzed using embedded computing. As a result, SHM and control systems can be described within open BIM, dynamic responses and information of damages can be stored, documented, and exchanged on the formal basis of the IFC standard.

Keywords: structural health monitoring, open building information modeling, industry foundation classes, unified modeling language, semi-active tuned liquid column damper, nondestructive testing

Procedia PDF Downloads 157
4594 Contactless and Multiple Space Debris Removal by Micro to Nanno Satellites

Authors: Junichiro Kawaguchi

Abstract:

Space debris problems have emerged and threatened the use of low earth orbit around the Earth owing to a large number of spacecraft. In debris removal, a number of research and patents have been proposed and published so far. They assume servicing spacecraft, robots to be built for accessing the target debris objects. The robots should be sophisticated enough automatically to access the debris articulating the attitude and the translation motion with respect to the debris. This paper presents the idea of using the torpedo-like third unsophisticated and disposable body, in addition to the first body of the servicing robot and the second body of the target debris. The third body is launched from the first body from a distance farer than the size of the second body. This paper presents the method and the system, so that the third body is launched from the first body. The third body carries both a net and an inflatable or extendible drag deceleration device and is built small and light. This method enables even a micro to nano satellite to perform contactless and multiple debris removal even via a single flight.

Keywords: ballute, debris removal, echo satellite, gossamer, gun-net, inflatable space structure, small satellite, un-cooperated target

Procedia PDF Downloads 129
4593 Performance Comparison and Visualization of COMSOL Multiphysics, Matlab, and Fortran for Predicting the Reservoir Pressure on Oil Production in a Multiple Leases Reservoir with Boundary Element Method

Authors: N. Alias, W. Z. W. Muhammad, M. N. M. Ibrahim, M. Mohamed, H. F. S. Saipol, U. N. Z. Ariffin, N. A. Zakaria, M. S. Z. Suardi

Abstract:

This paper presents the performance comparison of some computation software for solving the boundary element method (BEM). BEM formulation is the numerical technique and high potential for solving the advance mathematical modeling to predict the production of oil well in arbitrarily shaped based on multiple leases reservoir. The limitation of data validation for ensuring that a program meets the accuracy of the mathematical modeling is considered as the research motivation of this paper. Thus, based on this limitation, there are three steps involved to validate the accuracy of the oil production simulation process. In the first step, identify the mathematical modeling based on partial differential equation (PDE) with Poisson-elliptic type to perform the BEM discretization. In the second step, implement the simulation of the 2D BEM discretization using COMSOL Multiphysic and MATLAB programming languages. In the last step, analyze the numerical performance indicators for both programming languages by using the validation of Fortran programming. The performance comparisons of numerical analysis are investigated in terms of percentage error, comparison graph and 2D visualization of pressure on oil production of multiple leases reservoir. According to the performance comparison, the structured programming in Fortran programming is the alternative software for implementing the accurate numerical simulation of BEM. As a conclusion, high-level language for numerical computation and numerical performance evaluation are satisfied to prove that Fortran is well suited for capturing the visualization of the production of oil well in arbitrarily shaped.

Keywords: performance comparison, 2D visualization, COMSOL multiphysic, MATLAB, Fortran, modelling and simulation, boundary element method, reservoir pressure

Procedia PDF Downloads 494
4592 Operation Strategy of Multi-Energy Storage System Considering Power System Reliability

Authors: Wook-Won Kim, Je-Seok Shin, Jin-O Kim

Abstract:

As the penetration of Energy Storage System (ESS) increases in the power system due to higher performance and lower cost than ever, ESS is expanding its role to the ancillary service as well as the storage of extra energy from the intermittent renewable energy resources. For multi-ESS with different capacity and SOC level each other, it is required to make the optimal schedule of SOC level use the multi-ESS effectively. This paper proposes the energy allocation method for the multiple battery ESS with reliability constraint, in order to make the ESS discharge the required energy as long as possible. A simple but effective method is proposed in this paper, to satisfy the power for the spinning reserve requirement while improving the system reliability. Modelling of ESS is also proposed, and reliability is evaluated by using the combined reliability model which includes the proposed ESS model and conventional generation one. In the case study, it can be observed that the required power is distributed to each ESS adequately and accordingly, the SOC is scheduled to improve the reliability indices such as Loss of Load Probability (LOLP) and Loss of Load Expectation (LOLE).

Keywords: multiple energy storage system (MESS), energy allocation method, SOC schedule, reliability constraints

Procedia PDF Downloads 373
4591 An Industrial Workplace Alerting and Monitoring Platform to Prevent Workplace Injury and Accidents

Authors: Sanjay Adhikesaven

Abstract:

Workplace accidents are a critical problem that causes many deaths, injuries, and financial losses. Climate change has a severe impact on industrial workers, partially caused by global warming. To reduce such casualties, it is important to proactively find unsafe environments where injuries could occur by detecting the use of personal protective equipment (PPE) and identifying unsafe activities. Thus, we propose an industrial workplace alerting and monitoring platform to detect PPE use and classify unsafe activity in group settings involving multiple humans and objects over a long period of time. Our proposed method is the first to analyze prolonged actions involving multiple people or objects. It benefits from combining pose estimation with PPE detection in one platform. Additionally, we propose the first open-source annotated data set with video data from industrial workplaces annotated with the action classifications and detected PPE. The proposed system can be implemented within the surveillance cameras already present in industrial settings, making it a practical and effective solution.

Keywords: computer vision, deep learning, workplace safety, automation

Procedia PDF Downloads 106
4590 Multiple-Material Flow Control in Construction Supply Chain with External Storage Site

Authors: Fatmah Almathkour

Abstract:

Managing and controlling the construction supply chain (CSC) are very important components of effective construction project execution. The goals of managing the CSC are to reduce uncertainty and optimize the performance of a construction project by improving efficiency and reducing project costs. The heart of much SC activity is addressing risk, and the CSC is no different. The delivery and consumption of construction materials is highly variable due to the complexity of construction operations, rapidly changing demand for certain components, lead time variability from suppliers, transportation time variability, and disruptions at the job site. Current notions of managing and controlling CSC, involve focusing on one project at a time with a push-based material ordering system based on the initial construction schedule and, then, holding a tremendous amount of inventory. A two-stage methodology was proposed to coordinate the feed-forward control of advanced order placement with a supplier to a feedback local control in the form of adding the ability to transship materials between projects to improve efficiency and reduce costs. It focused on the single supplier integrated production and transshipment problem with multiple products. The methodology is used as a design tool for the CSC because it includes an external storage site not associated with one of the projects. The idea is to add this feature to a highly constrained environment to explore its effectiveness in buffering the impact of variability and maintaining project schedule at low cost. The methodology uses deterministic optimization models with objectives that minimizing the total cost of the CSC. To illustrate how this methodology can be used in practice and the types of information that can be gleaned, it is tested on a number of cases based on the real example of multiple construction projects in Kuwait.

Keywords: construction supply chain, inventory control supply chain, transshipment

Procedia PDF Downloads 124
4589 Multi-source Question Answering Framework Using Transformers for Attribute Extraction

Authors: Prashanth Pillai, Purnaprajna Mangsuli

Abstract:

Oil exploration and production companies invest considerable time and efforts to extract essential well attributes (like well status, surface, and target coordinates, wellbore depths, event timelines, etc.) from unstructured data sources like technical reports, which are often non-standardized, multimodal, and highly domain-specific by nature. It is also important to consider the context when extracting attribute values from reports that contain information on multiple wells/wellbores. Moreover, semantically similar information may often be depicted in different data syntax representations across multiple pages and document sources. We propose a hierarchical multi-source fact extraction workflow based on a deep learning framework to extract essential well attributes at scale. An information retrieval module based on the transformer architecture was used to rank relevant pages in a document source utilizing the page image embeddings and semantic text embeddings. A question answering framework utilizingLayoutLM transformer was used to extract attribute-value pairs incorporating the text semantics and layout information from top relevant pages in a document. To better handle context while dealing with multi-well reports, we incorporate a dynamic query generation module to resolve ambiguities. The extracted attribute information from various pages and documents are standardized to a common representation using a parser module to facilitate information comparison and aggregation. Finally, we use a probabilistic approach to fuse information extracted from multiple sources into a coherent well record. The applicability of the proposed approach and related performance was studied on several real-life well technical reports.

Keywords: natural language processing, deep learning, transformers, information retrieval

Procedia PDF Downloads 198
4588 dynr.mi: An R Program for Multiple Imputation in Dynamic Modeling

Authors: Yanling Li, Linying Ji, Zita Oravecz, Timothy R. Brick, Michael D. Hunter, Sy-Miin Chow

Abstract:

Assessing several individuals intensively over time yields intensive longitudinal data (ILD). Even though ILD provide rich information, they also bring other data analytic challenges. One of these is the increased occurrence of missingness with increased study length, possibly under non-ignorable missingness scenarios. Multiple imputation (MI) handles missing data by creating several imputed data sets, and pooling the estimation results across imputed data sets to yield final estimates for inferential purposes. In this article, we introduce dynr.mi(), a function in the R package, Dynamic Modeling in R (dynr). The package dynr provides a suite of fast and accessible functions for estimating and visualizing the results from fitting linear and nonlinear dynamic systems models in discrete as well as continuous time. By integrating the estimation functions in dynr and the MI procedures available from the R package, Multivariate Imputation by Chained Equations (MICE), the dynr.mi() routine is designed to handle possibly non-ignorable missingness in the dependent variables and/or covariates in a user-specified dynamic systems model via MI, with convergence diagnostic check. We utilized dynr.mi() to examine, in the context of a vector autoregressive model, the relationships among individuals’ ambulatory physiological measures, and self-report affect valence and arousal. The results from MI were compared to those from listwise deletion of entries with missingness in the covariates. When we determined the number of iterations based on the convergence diagnostics available from dynr.mi(), differences in the statistical significance of the covariate parameters were observed between the listwise deletion and MI approaches. These results underscore the importance of considering diagnostic information in the implementation of MI procedures.

Keywords: dynamic modeling, missing data, mobility, multiple imputation

Procedia PDF Downloads 169
4587 Project Paulina: A Human-Machine Interface for Individuals with Limited Mobility and Conclusions from Research and Development

Authors: Radoslaw Nagay

Abstract:

The Paulina Project aims to address the challenges faced by immobilized individuals, such as those with multiple sclerosis, muscle dystrophy, or spinal cord injuries, by developing a flexible hardware and software solution. This paper presents the research and development efforts of our team, which commenced in 2019 and is now in its final stage. Recognizing the diverse needs and limitations of individuals with limited mobility, we conducted in-depth testing with a group of 30 participants. The insights gained from these tests led to the complete redesign of the system. Our presentation covers the initial project ideas, observations from in-situ tests, and the newly developed system that is currently under construction. Moreover, in response to the financial constraints faced by many disabled individuals, we propose an affordable business model for the future commercialization of our invention. Through the Paulina Project, we strive to empower immobilized individuals, providing them with greater independence and improved quality of life.

Keywords: UI, human-machine interface, social inclusion, multiple sclerosis, muscular dystrophy, spinal cord injury, quadriplegic

Procedia PDF Downloads 75
4586 Image Classification with Localization Using Convolutional Neural Networks

Authors: Bhuyain Mobarok Hossain

Abstract:

Image classification and localization research is currently an important strategy in the field of computer vision. The evolution and advancement of deep learning and convolutional neural networks (CNN) have greatly improved the capabilities of object detection and image-based classification. Target detection is important to research in the field of computer vision, especially in video surveillance systems. To solve this problem, we will be applying a convolutional neural network of multiple scales at multiple locations in the image in one sliding window. Most translation networks move away from the bounding box around the area of interest. In contrast to this architecture, we consider the problem to be a classification problem where each pixel of the image is a separate section. Image classification is the method of predicting an individual category or specifying by a shoal of data points. Image classification is a part of the classification problem, including any labels throughout the image. The image can be classified as a day or night shot. Or, likewise, images of cars and motorbikes will be automatically placed in their collection. The deep learning of image classification generally includes convolutional layers; the invention of it is referred to as a convolutional neural network (CNN).

Keywords: image classification, object detection, localization, particle filter

Procedia PDF Downloads 313
4585 Collision Detection Algorithm Based on Data Parallelism

Authors: Zhen Peng, Baifeng Wu

Abstract:

Modern computing technology enters the era of parallel computing with the trend of sustainable and scalable parallelism. Single Instruction Multiple Data (SIMD) is an important way to go along with the trend. It is able to gather more and more computing ability by increasing the number of processor cores without the need of modifying the program. Meanwhile, in the field of scientific computing and engineering design, many computation intensive applications are facing the challenge of increasingly large amount of data. Data parallel computing will be an important way to further improve the performance of these applications. In this paper, we take the accurate collision detection in building information modeling as an example. We demonstrate a model for constructing a data parallel algorithm. According to the model, a complex object is decomposed into the sets of simple objects; collision detection among complex objects is converted into those among simple objects. The resulting algorithm is a typical SIMD algorithm, and its advantages in parallelism and scalability is unparalleled in respect to the traditional algorithms.

Keywords: data parallelism, collision detection, single instruction multiple data, building information modeling, continuous scalability

Procedia PDF Downloads 294
4584 Smart Irrigation Systems and Website: Based Platform for Farmer Welfare

Authors: Anusha Jain, Santosh Vishwanathan, Praveen K. Gupta, Shwetha S., Kavitha S. N.

Abstract:

Agriculture has a major impact on the Indian economy, with the highest employment ratio than any sector of the country. Currently, most of the traditional agricultural practices and farming methods are manual, which results in farmers not realizing their maximum productivity often due to increasing in labour cost, inefficient use of water sources leading to wastage of water, inadequate soil moisture content, subsequently leading to food insecurity of the country. This research paper aims to solve this problem by developing a full-fledged web application-based platform that has the capacity to associate itself with a Microcontroller-based Automated Irrigation System which schedules the irrigation of crops based on real-time soil moisture content employing soil moisture sensors centric to the crop’s requirements using WSN (Wireless Sensor Networks) and M2M (Machine To Machine Communication) concepts, thus optimizing the use of the available limited water resource, thereby maximizing the crop yield. This robust automated irrigation system provides end-to-end automation of Irrigation of crops at any circumstances such as droughts, irregular rainfall patterns, extreme weather conditions, etc. This platform will also be capable of achieving a nationwide united farming community and ensuring the welfare of farmers. This platform is designed to equip farmers with prerequisite knowledge on tech and the latest farming practices in general. In order to achieve this, the MailChimp mailing service is used through which interested farmers/individuals' email id will be recorded and curated articles on innovations in the world of agriculture will be provided to the farmers via e-mail. In this proposed system, service is enabled on the platform where nearby crop vendors will be able to enter their pickup locations, accepted prices and other relevant information. This will enable farmers to choose their vendors wisely. Along with this, we have created a blogging service that will enable farmers and agricultural enthusiasts to share experiences, helpful knowledge, hardships, etc., with the entire farming community. These are some of the many features that the platform has to offer.

Keywords: WSN (wireless sensor networks), M2M (M/C to M/C communication), automation, irrigation system, sustainability, SAAS (software as a service), soil moisture sensor

Procedia PDF Downloads 134
4583 Study on Multi-Point Stretch Forming Process for Double Curved Surface

Authors: Jiwoo Park, Junseok Yoon, Jeong Kim, Beomsoo Kang

Abstract:

Multi-Point Stretch Forming (MPSF) process is suitable for flexible manufacturing, and it has several advantages including that it could be applied to various forming such as sheet metal forming, single curved surface forming and double curved one. In this study, a systematic numerical simulation was carried out for atypical double curved surface forming using the multiple die stretch forming process. In this simulation, urethane pads were defined based on hyper-elastic material model as a cushion for the smooth forming surface. The deformation behaviour on elastic recovery was also investigated to consider the exact result after the last forming process, and then the experiment was also carried out to confirm the formability of this forming process. By comparing the simulation and experiment results, the suitability of the multiple die stretch forming process for the atypical double curved surface was verified. Consequently, it is confirmed that the multi-point stretch forming process has the capability and feasibility of being used to manufacture the double curved surfaces of sheet metal.

Keywords: multi-point stretch forming, double curved surface, numerical simulation, manufacturing

Procedia PDF Downloads 484
4582 Bag of Words Representation Based on Fusing Two Color Local Descriptors and Building Multiple Dictionaries

Authors: Fatma Abdedayem

Abstract:

We propose an extension to the famous method called Bag of words (BOW) which proved a successful role in the field of image categorization. Practically, this method based on representing image with visual words. In this work, firstly, we extract features from images using Spatial Pyramid Representation (SPR) and two dissimilar color descriptors which are opponent-SIFT and transformed-color-SIFT. Secondly, we fuse color local features by joining the two histograms coming from these descriptors. Thirdly, after collecting of all features, we generate multi-dictionaries coming from n random feature subsets that obtained by dividing all features into n random groups. Then, by using these dictionaries separately each image can be represented by n histograms which are lately concatenated horizontally and form the final histogram, that allows to combine Multiple Dictionaries (MDBoW). In the final step, in order to classify image we have applied Support Vector Machine (SVM) on the generated histograms. Experimentally, we have used two dissimilar image datasets in order to test our proposition: Caltech 256 and PASCAL VOC 2007.

Keywords: bag of words (BOW), color descriptors, multi-dictionaries, MDBoW

Procedia PDF Downloads 301
4581 Scene Classification Using Hierarchy Neural Network, Directed Acyclic Graph Structure, and Label Relations

Authors: Po-Jen Chen, Jian-Jiun Ding, Hung-Wei Hsu, Chien-Yao Wang, Jia-Ching Wang

Abstract:

A more accurate scene classification algorithm using label relations and the hierarchy neural network was developed in this work. In many classification algorithms, it is assumed that the labels are mutually exclusive. This assumption is true in some specific problems, however, for scene classification, the assumption is not reasonable. Because there are a variety of objects with a photo image, it is more practical to assign multiple labels for an image. In this paper, two label relations, which are exclusive relation and hierarchical relation, were adopted in the classification process to achieve more accurate multiple label classification results. Moreover, the hierarchy neural network (hierarchy NN) is applied to classify the image and the directed acyclic graph structure is used for predicting a more reasonable result which obey exclusive and hierarchical relations. Simulations show that, with these techniques, a much more accurate scene classification result can be achieved.

Keywords: convolutional neural network, label relation, hierarchy neural network, scene classification

Procedia PDF Downloads 463
4580 Influence of Single and Multiple Skin-Core Debonding on Free Vibration Characteristics of Innovative GFRP Sandwich Panels

Authors: Indunil Jayatilake, Warna Karunasena, Weena Lokuge

Abstract:

An Australian manufacturer has fabricated an innovative GFRP sandwich panel made from E-glass fiber skin and a modified phenolic core for structural applications. Debonding, which refers to separation of skin from the core material in composite sandwiches, is one of the most common types of damage in composites. The presence of debonding is of great concern because it not only severely affects the stiffness but also modifies the dynamic behaviour of the structure. Generally, it is seen that the majority of research carried out has been concerned about the delamination of laminated structures whereas skin-core debonding has received relatively minor attention. Furthermore, it is observed that research done on composite slabs having multiple skin-core debonding is very limited. To address this gap, a comprehensive research investigating dynamic behaviour of composite panels with single and multiple debonding is presented. The study uses finite-element modelling and analyses for investigating the influence of debonding on free vibration behaviour of single and multilayer composite sandwich panels. A broad parametric investigation has been carried out by varying debonding locations, debonding sizes and support conditions of the panels in view of both single and multiple debonding. Numerical models were developed with Strand7 finite element package by innovatively selecting the suitable elements to diligently represent their actual behavior. Three-dimensional finite element models were employed to simulate the physically real situation as close as possible, with the use of an experimentally and numerically validated finite element model. Comparative results and conclusions based on the analyses are presented. For similar extents and locations of debonding, the effect of debonding on natural frequencies appears greatly dependent on the end conditions of the panel, giving greater decrease in natural frequency when the panels are more restrained. Some modes are more sensitive to debonding and this sensitivity seems to be related to their vibration mode shapes. The fundamental mode seems generally the least sensitive mode to debonding with respect to the variation in free vibration characteristics. The results indicate the effectiveness of the developed three-dimensional finite element models in assessing debonding damage in composite sandwich panels

Keywords: debonding, free vibration behaviour, GFRP sandwich panels, three dimensional finite element modelling

Procedia PDF Downloads 319
4579 3D Interferometric Imaging Using Compressive Hardware Technique

Authors: Mor Diama L. O., Matthieu Davy, Laurent Ferro-Famil

Abstract:

In this article, inverse synthetic aperture radar (ISAR) is combined with compressive imaging techniques in order to perform 3D interferometric imaging. Interferometric ISAR (InISAR) imaging relies on a two-dimensional antenna array providing diversities in the elevation and azimuth directions. However, the signals measured over several antennas must be acquired by coherent receivers resulting in costly and complex hardware. This paper proposes to use a chaotic cavity as a compressive device to encode the signals arising from several antennas into a single output port. These signals are then reconstructed by solving an inverse problem. Our approach is demonstrated experimentally with a 3-elements L-shape array connected to a metallic compressive enclosure. The interferometric phases estimated from a unique broadband signal are used to jointly estimate the target’s effective rotation rate and the height of the dominant scattering centers of our target. Our experimental results show that the use of the compressive device does not adversely affect the performance of our imaging process. This study opens new perspectives to reduce the hardware complexity of high-resolution ISAR systems.

Keywords: interferometric imaging, inverse synthetic aperture radar, compressive device, computational imaging

Procedia PDF Downloads 163
4578 Brevicoryne brassicae Compatibility with Maize in Multiple Cropping System

Authors: Zunnu Raen Akhtar

Abstract:

Brevicoryne brassicae, aphid feeds on cabbage and Brassica sp. as preferred host. Brassica plants usually ripen when maize starts growing in multiple cropping systems. Experiment was conducted to observe suitability of B. brassicae by rearing it on maize as host. In a tritrophic eco-system, predator coccinellids can be found in the fields of brassica and maize. This experiment emphasized on issue of aphids growing incidence in a cropping system. Brassica is sown and harvested earlier than maize and is attacked by aphids, while maize is also attacked by aphids. Five mortality tests were conducted of B. brassicae fed on maize. Out of five mortality tests, 3 tests were conducted using 1st instar, while in two mortality tests, 2nd instars of aphids were used. Mortality tests revealed that first instar mortality was quite high on the second day, while in second instar larvae mortality was delayed up to third to the fourth day. These experiments reveal that aphids can use maize as substitute host at later instars as compared to young ones. These experiments can be foundation for studying further crop-insect interaction and sampling techniques used for this purpose.

Keywords: host suitability, B. brassicae, maize, tritrophic interaction

Procedia PDF Downloads 196