Search results for: energy decomposition analysis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33189

Search results for: energy decomposition analysis

32169 Biorefinery Annexed to South African Sugar Mill: Energy Sufficiency Analysis

Authors: S. Farzad, M. Ali Mandegari, J. F. Görgens

Abstract:

The South African Sugar Industry, which has a significant impact on the national economy, is currently facing problems due to increasing energy price and low global sugar price. The available bagasse is already combusted in low-efficiency boilers of the sugar mills while bagasse is generally recognized as a promising feedstock for second generation bioethanol production. Establishment of biorefinery annexed to the existing sugar mills, as an alternative for the revitalization of sugar industry producing biofuel and electricity has been proposed and considered in this study. Since the scale is an important issue in the feasibility of the technology, this study has taken into account a typical sugar mill with 300 ton/hr sugar cane capacity. The biorefinery simulation is carried out using Aspen PlusTM V8.6, in which the sugar mill’s power and steam demand has been considered. Hence, sugar mills in South Africa can be categorized as highly efficient, efficient, and not efficient with steam consumption of 33, 40, and 60 tons of steam per ton of cane and electric power demand of 10 MW; three different scenarios are studied. The sugar cane bagasse and tops/trash are supplied to the biorefinery process and the wastes/residues (mostly lignin) from the process are burnt in the CHP plant in order to produce steam and electricity for the biorefinery and sugar mill as well. Considering the efficient sugar mill, the CHP plant has generated 5 MW surplus electric powers, but the obtained energy is not enough for self-sufficiency of the plant (Biorefinery and Sugar mill) due to lack of 34 MW heat. One of the advantages of second generation biorefinery is its low impact on the environment and carbon footprint, thus the plant should be self-sufficient in energy without using fossil fuels. For this reason, a portion of fresh bagasse should be sent to the CHP plant to meet the energy requirements. An optimization procedure was carried out to find out the appropriate portion to be burnt in the combustor. As a result, 20% of the bagasse is re-routed to the combustor which leads to 5 tons of LP Steam and 8.6 MW electric power surpluses.

Keywords: biorefinery, sugarcane bagasse, sugar mill, energy analysis, bioethanol

Procedia PDF Downloads 468
32168 A Combined Feature Extraction and Thresholding Technique for Silence Removal in Percussive Sounds

Authors: B. Kishore Kumar, Pogula Rakesh, T. Kishore Kumar

Abstract:

The music analysis is a part of the audio content analysis used to analyze the music by using the different features of audio signal. In music analysis, the first step is to divide the music signal to different sections based on the feature profiles of the music signal. In this paper, we present a music segmentation technique that will effectively segmentize the signal and thresholding technique to remove silence from the percussive sounds produced by percussive instruments, which uses two features of music, namely signal energy and spectral centroid. The proposed method impose thresholds on both the features which will vary depends on the music signal. Depends on the threshold, silence part is removed and the segmentation is done. The effectiveness of the proposed method is analyzed using MATLAB.

Keywords: percussive sounds, spectral centroid, spectral energy, silence removal, feature extraction

Procedia PDF Downloads 577
32167 Power Production Performance of Different Wave Energy Converters in the Southwestern Black Sea

Authors: Ajab G. Majidi, Bilal Bingölbali, Adem Akpınar

Abstract:

This study aims to investigate the amount of energy (economic wave energy potential) that can be obtained from the existing wave energy converters in the high wave energy potential region of the Black Sea in terms of wave energy potential and their performance at different depths in the region. The data needed for this purpose were obtained using the calibrated nested layered SWAN wave modeling program version 41.01AB, which was forced with Climate Forecast System Reanalysis (CFSR) winds from 1979 to 2009. The wave dataset at a time interval of 2 hours was accumulated for a sub-grid domain for around Karaburun beach in Arnavutkoy, a district of Istanbul city. The annual sea state characteristic matrices for the five different depths along with a vertical line to the coastline were calculated for 31 years. According to the power matrices of different wave energy converter systems and characteristic matrices for each possible installation depth, the probability distribution tables of the specified mean wave period or wave energy period and significant wave height were calculated. Then, by using the relationship between these distribution tables, according to the present wave climate, the energy that the wave energy converter systems at each depth can produce was determined. Thus, the economically feasible potential of the relevant coastal zone was revealed, and the effect of different depths on energy converter systems is presented. The Oceantic at 50, 75 and 100 m depths and Oyster at 5 and 25 m depths presents the best performance. In the 31-year long period 1998 the most and 1989 is the least dynamic year.

Keywords: annual power production, Black Sea, efficiency, power production performance, wave energy converter

Procedia PDF Downloads 128
32166 Gas Sweetening Process Simulation: Investigation on Recovering Waste Hydraulic Energy

Authors: Meisam Moghadasi, Hassan Ali Ozgoli, Foad Farhani

Abstract:

In this research, firstly, a commercial gas sweetening unit with methyl-di-ethanol-amine (MDEA) solution is simulated and comprised in an integrated model in accordance with Aspen HYSYS software. For evaluation purposes, in the second step, the results of the simulation are compared with operating data gathered from South Pars Gas Complex (SPGC). According to the simulation results, the considerable energy potential contributed to the pressure difference between absorber and regenerator columns causes this energy driving force to be applied in power recovery turbine (PRT). In the last step, the amount of waste hydraulic energy is calculated, and its recovery methods are investigated.

Keywords: gas sweetening unit, simulation, MDEA, power recovery turbine, waste-to-energy

Procedia PDF Downloads 170
32165 Evaluation on Effective Size and Hysteresis Characteristics of CHS Damper

Authors: Daniel Y. Abebe, Jaehyouk Choi

Abstract:

This study aims to evaluate the effective size and hysteresis characteristics of Circular Hollow Steel (CHS) damper. CHS damper is among steel dampers which are used widely for seismic energy dissipation because they are easy to install, maintain and are low cost. CHS damper dissipates seismic energy through metallic deformation due to the geometrical elasticity of circular shape and fatigue resistance around connection part. After calculating the effective size, which is found to be height to diameter ratio of √ ("3”), nonlinear FE analyses were conducted to evaluate the hysteresis characteristics. To verify the analysis simulation quasi static loading was carried out and the result was compared and satisfactory result was obtained.

Keywords: SS400 steel, circular hollow steel damper, effective size, quasi static loading, FE analysis

Procedia PDF Downloads 419
32164 Comparison of Traditional and Green Building Designs in Egypt: Energy Saving

Authors: Hala M. Abdel Mageed, Ahmed I. Omar, Shady H. E. Abdel Aleem

Abstract:

This paper describes in details a commercial green building that has been designed and constructed in Marsa Matrouh, Egypt. The balance between homebuilding and the sustainable environment has been taken into consideration in the design and construction of this building. The building consists of one floor with 3 m height and 2810 m2 area while the envelope area is 1400 m2. The building construction fulfills the natural ventilation requirements. The glass curtain walls are about 50% of the building and the windows area is 300 m2. 6 mm greenish gray tinted temper glass as outer board lite, 6 mm safety glass as inner board lite and 16 mm thick dehydrated air spaces are used in the building. Visible light with 50% transmission, 0.26 solar factor, 0.67 shading coefficient and 1.3 W/m2.K thermal insulation U-value are implemented to realize the performance requirements. Optimum electrical distribution for lighting system, air conditions and other electrical loads has been carried out. Power and quantity of each type of the lighting system lamps and the energy consumption of the lighting system are investigated. The design of the air conditions system is based on summer and winter outdoor conditions. Ventilated, air conditioned spaces and fresh air rates are determined. Variable Refrigerant Flow (VRF) is the air conditioning system used in this building. The VRF outdoor units are located on the roof of the building and connected to indoor units through refrigerant piping. Indoor units are distributed in all building zones through ducts and air outlets to ensure efficient air distribution. The green building energy consumption is evaluated monthly all over one year and compared with the consumed energy in the non-green conditions using the Hourly Analysis Program (HAP) model. The comparison results show that the total energy consumed per year in the green building is about 1,103,221 kWh while the non-green energy consumption is about 1,692,057 kWh. In other words, the green building total annual energy cost is reduced from 136,581 $ to 89,051 $. This means that, the energy saving and consequently the money-saving of this green construction is about 35%. In addition, 13 points are awarded by applying one of the most popular worldwide green energy certification programs (Leadership in Energy and Environmental Design “LEED”) as a rating system for the green construction. It is concluded that this green building ensures sustainability, saves energy and offers an optimum energy performance with minimum cost.

Keywords: energy consumption, energy saving, green building, leadership in energy and environmental design, sustainability

Procedia PDF Downloads 291
32163 Gas Network Noncooperative Game

Authors: Teresa Azevedo PerdicoúLis, Paulo Lopes Dos Santos

Abstract:

The conceptualisation of the problem of network optimisation as a noncooperative game sets up a holistic interactive approach that brings together different network features (e.g., com-pressor stations, sources, and pipelines, in the gas context) where the optimisation objectives are different, and a single optimisation procedure becomes possible without having to feed results from diverse software packages into each other. A mathematical model of this type, where independent entities take action, offers the ideal modularity and subsequent problem decomposition in view to design a decentralised algorithm to optimise the operation and management of the network. In a game framework, compressor stations and sources are under-stood as players which communicate through network connectivity constraints–the pipeline model. That is, in a scheme similar to tatonnementˆ, the players appoint their best settings and then interact to check for network feasibility. The devolved degree of network unfeasibility informs the players about the ’quality’ of their settings, and this two-phase iterative scheme is repeated until a global optimum is obtained. Due to network transients, its optimisation needs to be assessed at different points of the control interval. For this reason, the proposed approach to optimisation has two stages: (i) the first stage computes along the period of optimisation in order to fulfil the requirement just mentioned; (ii) the second stage is initialised with the solution found by the problem computed at the first stage, and computes in the end of the period of optimisation to rectify the solution found at the first stage. The liability of the proposed scheme is proven correct on an abstract prototype and three example networks.

Keywords: connectivity matrix, gas network optimisation, large-scale, noncooperative game, system decomposition

Procedia PDF Downloads 144
32162 Virtual Process Hazard Analysis (Pha) Of a Nuclear Power Plant (Npp) Using Failure Mode and Effects Analysis (Fmea) Technique

Authors: Lormaine Anne A. Branzuela, Elysa V. Largo, Monet Concepcion M. Detras, Neil C. Concibido

Abstract:

The electricity demand is still increasing, and currently, the Philippine government is investigating the feasibility of operating the Bataan Nuclear Power Plant (BNPP) to address the country’s energy problem. However, the lack of process safety studies on BNPP focused on the effects of hazardous substances on the integrity of the structure, equipment, and other components, have made the plant operationalization questionable to the public. The three major nuclear power plant incidents – TMI-2, Chernobyl, and Fukushima – have made many people hesitant to include nuclear energy in the energy matrix. This study focused on the safety evaluation of possible operations of a nuclear power plant installed with a Pressurized Water Reactor (PWR), which is similar to BNPP. Failure Mode and Effects Analysis (FMEA) is one of the Process Hazard Analysis (PHA) techniques used for the identification of equipment failure modes and minimizing its consequences. Using the FMEA technique, this study was able to recognize 116 different failure modes in total. Upon computation and ranking of the risk priority number (RPN) and criticality rating (CR), it showed that failure of the reactor coolant pump due to earthquakes is the most critical failure mode. This hazard scenario could lead to a nuclear meltdown and radioactive release, as identified by the FMEA team. Safeguards and recommended risk reduction strategies to lower the RPN and CR were identified such that the effects are minimized, the likelihood of occurrence is reduced, and failure detection is improved.

Keywords: PHA, FMEA, nuclear power plant, bataan nuclear power plant

Procedia PDF Downloads 117
32161 Performance Evaluation of Reinforced Concrete Framed Structure with Steel Bracing and Supplemental Energy Dissipation

Authors: Swanand Patil, Pankaj Agarwal

Abstract:

In past few decades, seismic performance objectives have shifted from earthquake resistance to earthquake resilience of the structures, especially for the lifeline buildings. Features such as negligible post-earthquake damage and replaceable damaged components, makes energy dissipating systems a valid choice for a seismically resilient building. In this study, various energy dissipation devices are applied on an eight-storey moment resisting RC building model. The energy dissipating devices include both hysteresis-based and viscous type of devices. The seismic response of the building is obtained for different positioning and mechanical properties of the devices. The investigation is carried forward to the deficiently ductile RC frame also. The performance assessment is done on the basis of drift ratio, mode shapes and displacement response of the model structures. Nonlinear dynamic analysis shows largely improved displacement response. The damping devices improve displacement response more efficiently in the deficient ductile frames than that in the perfectly moment resisting frames. This finding is important considering the number of deficient buildings in India and the world. The placement and mechanical properties of the dampers prove to be a crucial part in modelling, analyzing and designing of the structures with supplemental energy dissipation.

Keywords: earthquake resilient structures, lifeline buildings, retrofitting of structures, supplemental energy dissipation

Procedia PDF Downloads 341
32160 Energy Atlas: Geographic Information Systems-Based Energy Analysis and Planning Tool

Authors: Katarina Pogacnik, Ursa Zakrajsek, Nejc Sirk, Ziga Lampret

Abstract:

Due to an increase in living standards along with global population growth and a trend of urbanization, municipalities and regions are faced with an ever rising energy demand. A challenge has arisen for cities around the world to modify the energy supply chain in order to reduce its consumption and CO₂ emissions. The aim of our work is the development of a computational-analytical platform for dynamic support in decision-making and the determination of economic and technical indicators of energy efficiency in a smart city, named Energy Atlas. Similar products in this field focuse on a narrower approach, whereas in order to achieve its aim, this platform encompasses a wider spectrum of beneficial and important information for energy planning on a local or regional scale. GIS based interactive maps provide an extensive database on the potential, use and supply of energy and renewable energy sources along with climate, transport and spatial data of the selected municipality. Beneficiaries of Energy atlas are local communities, companies, investors, contractors as well as residents. The Energy Atlas platform consists of three modules named E-Planning, E-Indicators and E-Cooperation. The E-Planning module is a comprehensive data service, which represents a support towards optimal decision-making and offers a sum of solutions and feasibility of measures and their effects in the area of efficient use of energy and renewable energy sources. The E-Indicators module identifies, collects and develops optimal data and key performance indicators and develops an analytical application service for dynamic support in managing a smart city in regards to energy use and sustainable environment. In order to support cooperation and direct involvement of citizens of the smart city, the E-cooperation is developed with the purpose of integrating the interdisciplinary and sociological aspects of energy end-users. Interaction of all the above-described modules contributes to regional development because it enables for a precise assessment of the current situation, strategic planning, detection of potential future difficulties and also the possibility of public involvement in decision-making. From the implementation of the technology in Slovenian municipalities of Ljubljana, Piran, and Novo mesto, there is evidence to suggest that the set goals are to be achieved to a great extent. Such thorough urban energy planning tool is viewed as an important piece of the puzzle towards achieving a low-carbon society, circular economy and therefore, sustainable society.

Keywords: circular economy, energy atlas, energy management, energy planning, low-carbon society

Procedia PDF Downloads 299
32159 Central Energy Management for Optimizing Utility Grid Power Exchange with a Network of Smart Homes

Authors: Sima Aznavi, Poria Fajri, Hanif Livani

Abstract:

Smart homes are small energy systems which may be equipped with renewable energy sources, storage devices, and loads. Energy management strategy plays a main role in the efficient operation of smart homes. Effective energy scheduling of the renewable energy sources and storage devices guarantees efficient energy management in households while reducing the energy imports from the grid. Nevertheless, despite such strategies, independently day ahead energy schedules for multiple households can cause undesired effects such as high power exchange with the grid at certain times of the day. Therefore, the interactions between multiple smart home day ahead energy projections is a challenging issue in a smart grid system and if not managed appropriately, the imported energy from the power network can impose additional burden on the distribution grid. In this paper, a central energy management strategy for a network consisting of multiple households each equipped with renewable energy sources, storage devices, and Plug-in Electric Vehicles (PEV) is proposed. The decision-making strategy alongside the smart home energy management system, minimizes the energy purchase cost of the end users, while at the same time reducing the stress on the utility grid. In this approach, the smart home energy management system determines different operating scenarios based on the forecasted household daily load and the components connected to the household with the objective of minimizing the end user overall cost. Then, selected projections for each household that are within the same cost range are sent to the central decision-making system. The central controller then organizes the schedules to reduce the overall peak to average ratio of the total imported energy from the grid. To validate this approach simulations are carried out for a network of five smart homes with different load requirements and the results confirm that by applying the proposed central energy management strategy, the overall power demand from the grid can be significantly flattened. This is an effective approach to alleviate the stress on the network by distributing its energy to a network of multiple households over a 24- hour period.

Keywords: energy management, renewable energy sources, smart grid, smart home

Procedia PDF Downloads 237
32158 Use of Cassava Waste and Its Energy Potential

Authors: I. Inuaeyen, L. Phil, O. Eni

Abstract:

Fossil fuels have been the main source of global energy for many decades, accounting for about 80% of global energy need. This is beginning to change however with increasing concern about greenhouse gas emissions which comes mostly from fossil fuel combustion. Greenhouse gases such as carbon dioxide are responsible for stimulating climate change. As a result, there has been shift towards more clean and renewable energy sources of energy as a strategy for stemming greenhouse gas emission into the atmosphere. The production of bio-products such as bio-fuel, bio-electricity, bio-chemicals, and bio-heat etc. using biomass materials in accordance with the bio-refinery concept holds a great potential for reducing high dependence on fossil fuel and their resources. The bio-refinery concept promotes efficient utilisation of biomass material for the simultaneous production of a variety of products in order to minimize or eliminate waste materials. This will ultimately reduce greenhouse gas emissions into the environment. In Nigeria, cassava solid waste from cassava processing facilities has been identified as a vital feedstock for bio-refinery process. Cassava is generally a staple food in Nigeria and one of the most widely cultivated foodstuff by farmers across Nigeria. As a result, there is an abundant supply of cassava waste in Nigeria. In this study, the aim is to explore opportunities for converting cassava waste to a range of bio-products such as butanol, ethanol, electricity, heat, methanol, furfural etc. using a combination of biochemical, thermochemical and chemical conversion routes. . The best process scenario will be identified through the evaluation of economic analysis, energy efficiency, life cycle analysis and social impact. The study will be carried out by developing a model representing different process options for cassava waste conversion to useful products. The model will be developed using Aspen Plus process simulation software. Process economic analysis will be done using Aspen Icarus software. So far, comprehensive survey of literature has been conducted. This includes studies on conversion of cassava solid waste to a variety of bio-products using different conversion techniques, cassava waste production in Nigeria, modelling and simulation of waste conversion to useful products among others. Also, statistical distribution of cassava solid waste production in Nigeria has been established and key literatures with useful parameters for developing different cassava waste conversion process has been identified. In the future work, detailed modelling of the different process scenarios will be carried out and the models validated using data from literature and demonstration plants. A techno-economic comparison of the various process scenarios will be carried out to identify the best scenario using process economics, life cycle analysis, energy efficiency and social impact as the performance indexes.

Keywords: bio-refinery, cassava waste, energy, process modelling

Procedia PDF Downloads 359
32157 Carbon Electrode Materials for Supercapacitors

Authors: Yu. Mateyshina, A. Ulihin, N. Uvarov

Abstract:

Supercapacitors are one of the most promising devices for energy storage applications as they can provide higher power density than batteries and higher energy density than conventional dielectric capacitors. Carbon materials with various microtextures are considered as main candidates for supercapacitors in terms of high surface area, interconnected pore structure, controlled pore size, high electrical conductivity and environmental friendliness. The specific capacitance (C) of the electrode material of the Electrochemical Double Layer Capacitors (EDLC) is known to depend on the specific surface area (Ss) and the pore structure. Activated carbons are most commonly used in supercapacitors because of their high surface area (Ss ≥ 1000 m2/g), good adhesion to electrolytes and low cost. In this work, electrochemical properties of new microporous and mesoporous carbon electrode materials were studied. The aim of the work was to investigate the relationship between the specific capacitance and specific surface area in a series of materials prepared from different organic precursors.. As supporting matrixes different carbon samples with Ss = 100-2000 m2/g were used. The materials were modified by treatment in acids (H2SO4, HNO3, acetic acid) in order to enable surface hydrophilicity. Then nanoparticles of transition metal oxides (for example NiO) were deposited on the carbon surfaces using methods of salts impregnation, mechanical treatment in ball mills and the precursors decomposition. The electrochemical characteristics of electrode hybrid materials were investigated in a symmetrical two-electrode cell using an impedance spectroscopy, voltammetry in both potentiodynamic and galvanostatic modes. It was shown that the value of C for the materials under study strongly depended on the preparation method of the electrode and the type of electrolyte (1 M H2SO4, 6 M KOH, 1 M LiClO4 in acetonitryl). Specific capacity may be increased by the introduction of nanoparticles from 50-100 F/g for initial carbon materials to 150-300 F/g for nanocomposites which may be used in supercapacitors. The work is supported by the по SC-14.604.21.0013.

Keywords: supercapacitors, carbon electrode, mesoporous carbon, electrochemistry

Procedia PDF Downloads 290
32156 Copula Autoregressive Methodology for Simulation of Solar Irradiance and Air Temperature Time Series for Solar Energy Forecasting

Authors: Andres F. Ramirez, Carlos F. Valencia

Abstract:

The increasing interest in renewable energies strategies application and the path for diminishing the use of carbon related energy sources have encouraged the development of novel strategies for integration of solar energy into the electricity network. A correct inclusion of the fluctuating energy output of a photovoltaic (PV) energy system into an electric grid requires improvements in the forecasting and simulation methodologies for solar energy potential, and the understanding not only of the mean value of the series but the associated underlying stochastic process. We present a methodology for synthetic generation of solar irradiance (shortwave flux) and air temperature bivariate time series based on copula functions to represent the cross-dependence and temporal structure of the data. We explore the advantages of using this nonlinear time series method over traditional approaches that use a transformation of the data to normal distributions as an intermediate step. The use of copulas gives flexibility to represent the serial variability of the real data on the simulation and allows having more control on the desired properties of the data. We use discrete zero mass density distributions to assess the nature of solar irradiance, alongside vector generalized linear models for the bivariate time series time dependent distributions. We found that the copula autoregressive methodology used, including the zero mass characteristics of the solar irradiance time series, generates a significant improvement over state of the art strategies. These results will help to better understand the fluctuating nature of solar energy forecasting, the underlying stochastic process, and quantify the potential of a photovoltaic (PV) energy generating system integration into a country electricity network. Experimental analysis and real data application substantiate the usage and convenience of the proposed methodology to forecast solar irradiance time series and solar energy across northern hemisphere, southern hemisphere, and equatorial zones.

Keywords: copula autoregressive, solar irradiance forecasting, solar energy forecasting, time series generation

Procedia PDF Downloads 311
32155 Flexible Design of Triboelectric Nanogenerators for Efficient Vibration Energy Harvesting

Authors: Meriam Khelifa

Abstract:

In recent years, many studies have focused on the harvesting of the vibrations energy to produce electrical energy using contact separation (CS) triboelectric nanogenerators (TENG). The simplest design for a TENG consists of a capacitor comprising a single moving electrode. The conversion efficiency of vibration energy into electrical energy can, in principle, reach 100%. But to actually achieve this objective, it is necessary to optimize the parameters of the TENG, such as the dielectric constant and the thickness of the insulator, the load resistance, etc. In particular, the use of a switch which is actioned at optimal times within the TENG cycle is essential. Using numerical modeling and experimental design, we applied a methodology to find the TENG parameters which optimize the energy transfer efficiency (ETE) to almost 100% for any vibration frequency and amplitude. The rather simple design of a TENG is promising as an environment friendly device. It opens the doors for harvesting acoustic vibrations from the environment and to design effective protection against environmental noise.

Keywords: vibrations, CS TENG, efficiency, design of experiments

Procedia PDF Downloads 82
32154 Effect of Transition Metal (Fe, Mn) Ion Doping on TiO2 Nano Particles

Authors: Kirit Siddhapara, Dimple Shah

Abstract:

In this research, we have studied the doping behaviors of two transition metal ion dopants on the crystal phase, particle sizes, XRD patterns, EDAX spectra, and photoreactivity of TiO2 nanoparticles. The crystalline size of TiO2 is close to 4 nm Calculated from (1 0 1) peak by using FWHM method in Scherrer’s equation. Test metal ion concentrations ranged from 1% to 4 at.%, we report the growth of [Fe, Mn]xTiO2 nanocrystals prepared by Sol-Gel technique, followed by freeze-drying treatment at -30°C temperature for 12hrs. The obtained Gel was thermally treated at different temperature like 200°C, 400°C, 600°C, 800°C. Thermal gravimetric analysis (TGA) shows that dopant concentration affects thermal decomposition. The photoreactivities of transition metal ion-doped TiO2 nanoparticles under UV irradiation were quantified by the degradation of formaldehyde.

Keywords: growth from solution, sol-gel method, nanomaterials, oxides, magnetic materials, titanium compounds

Procedia PDF Downloads 422
32153 Behaviours of Energy Spectrum at Low Reynolds Numbers in Grid Turbulence

Authors: Md Kamruzzaman, Lyazid Djenidi, R. A. Antonia

Abstract:

This paper reports an experimental investigation of the energy spectrum of turbulent velocity fields at low Reynolds numbers ( Rλ ) in grid turbulence. Hot wire measurements are carried out in grid turbulence with subjected to a 1.36:1 contraction of the wind tunnel. Three different grids are used: (i) large square perforated grid (mesh size 43.75 mm), (ii) small square perforated grid (mesh size 14 and (iii) woven mesh grid (mesh size 5mm). The results indicate that the energy spectrum at small Rλ does not follow Kolmogorov’s universal scaling. It is further found that the critical Reynolds number,Rλ,ϲ below which the scaling breaks down is around 25.

Keywords: energy spectrum, Taylor microscale, Reynolds number, turbulent kinetic energy, decay exponent

Procedia PDF Downloads 281
32152 Financing Energy Efficiency: Innovative Options

Authors: Rahul Ravindranathan, R. P. Gokul

Abstract:

India, in its efforts towards economic and social development, is currently experiencing a heavy demand for energy. Due to the lack of sufficient domestic energy reserves, the country is highly dependent on energy imports which has increased rapidly at a rate of about 12 % per annum since 2005. Hence, India is currently focusing its efforts to manage this energy supply and demand gap and eventually achieve energy security. One of the most cost effective means to reduce this gap is by adopting Energy efficiency measures in the country. Initial assessments have shown that Energy efficiency measures have an energy conservation potential of about 23%. For an estimated investment potential of USD 8 Billion, the annual energy savings was estimated to be about 180 Billion Units per annum. In order to explore this huge energy conservation potential, many critical factors need to be considered to achieve practical energy savings. Financing options for these investments is one such major factor. Not only has India come out with various policy level as well as technology level drives to promote Energy efficiency but it has also developed various financing schemes to promote investment in Energy Efficiency projects. The Public sector has already come out with certain financing schemes such as the Partial Risk Guarantee Fund (PRGF), Venture Capital Fund (VCF), Partial Risk Sharing Fund (PRSF) etc., and various sectors are gradually utilizing these schemes to implement energy saving measures. However, additional financing options are required in order to explore the untouched energy conservation potential in the country. Hence, there is a need to develop some innovative financing options for India which would motivate the private sectors as well as financing institutions to invest in these energy saving measures. This paper shall review the existing financing schemes launched by the Government of India and highlight the key benefits as well as challenges with respect to these schemes. In addition to this, the paper would also review new and innovative financing schemes for India and how the same could be adopted in other parts of the globe especially in South and South East Asia. This review would provide an insight to the various Governments as well as Financial Institutions in coming out with new financing schemes for their country.

Keywords: energy, efficiency, financing, India

Procedia PDF Downloads 334
32151 Heating of the Ions by Electromagnetic Ion Cyclotron (EMIC) Waves Using Magnetospheric Multiscale (MMS) Satellite Observation

Authors: A. A. Abid

Abstract:

The magnetospheric multiscale (MMS) satellite observations in the inner magnetosphere were used to detect the proton band of the electromagnetic ion cyclotron (EMIC) waves on December 14, 2015, which have been significantly contributing to the dynamics of the magnetosphere. It has been examined that the intensity of EMIC waves gradually increases by decreasing the L shell. The waves are triggered by hot proton thermal anisotropy. The low-energy cold protons (ions) can be activated by the EMIC waves when the EMIC wave intensity is high. As a result, these previously invisible protons are now visible. As a result, the EMC waves also excite the helium ions. The EMIC waves, whose frequency in the magnetosphere of the Earth ranges from 0.001 Hz to 5 Hz, have drawn a lot of attention for their ability to carry energy. Since these waves act as a mechanism for the loss of energetic electrons from the Van Allen radiation belt to the atmosphere, therefore, it is necessary to understand how and where they can be produced, as well as the direction of waves along the magnetic field lines. This work examines how the excitation of EMIC waves is affected by the energy of hot proton temperature anisotropy, and It has a minimum resonance energy of 6.9 keV and a range of 7 to 26 keV. On the hot protons, however, the reverse effect can be seen for energies below the minimum resonance energy. It is demonstrated that throughout the energy range of 1 eV to 100 eV, the number density and temperature anisotropy of the protons likewise rise as the intensity of the EMIC waves increases. Key Points: 1. The analysis of EMIC waves produced by hot proton temperature anisotropy using MMS data. 2. The number density and temperature anisotropy of the cold protons increases owing to high-intensity EMIC waves. 3. The cold protons with an energy range of 1-100eV are energized by EMIC waves using the Magnetospheric Multiscale (MMS) satellite not been discussed before

Keywords: EMIC waves, temperature anisotropy of hot protons, energization of the cold proton, magnetospheric multiscale (MMS) satellite observations

Procedia PDF Downloads 107
32150 Wireless Information Transfer Management and Case Study of a Fire Alarm System in a Residential Building

Authors: Mohsen Azarmjoo, Mehdi Mehdizadeh Koupaei, Maryam Mehdizadeh Koupaei, Asghar Mahdlouei Azar

Abstract:

The increasing prevalence of wireless networks in our daily lives has made them indispensable. The aim of this research is to investigate the management of information transfer in wireless networks and the integration of renewable solar energy resources in a residential building. The focus is on the transmission of electricity and information through wireless networks, as well as the utilization of sensors and wireless fire alarm systems. The research employs a descriptive approach to examine the transmission of electricity and information on a wireless network with electric and optical telephone lines. It also investigates the transmission of signals from sensors and wireless fire alarm systems via radio waves. The methodology includes a detailed analysis of security, comfort conditions, and costs related to the utilization of wireless networks and renewable solar energy resources. The study reveals that it is feasible to transmit electricity on a network cable using two pairs of network cables without the need for separate power cabling. Additionally, the integration of renewable solar energy systems in residential buildings can reduce dependence on traditional energy carriers. The use of sensors and wireless remote information processing can enhance the safety and efficiency of energy usage in buildings and the surrounding spaces.

Keywords: renewable energy, intelligentization, wireless sensors, fire alarm system

Procedia PDF Downloads 45
32149 Cooperative Communication of Energy Harvesting Synchronized-OOK IR-UWB Based Tags

Authors: M. A. Mulatu, L. C. Chang, Y. S. Han

Abstract:

Energy harvesting tags with cooperative communication capabilities are emerging as possible infrastructure for internet of things (IoT) applications. This paper studies about the \ cooperative transmission strategy for a network of energy harvesting active networked tags (EnHANTs), that is adapted to the available energy resource and identification request. We consider a network of EnHANT-equipped objects to communicate with the destination either directly or by cooperating with neighboring objects. We formulate the the problem as a Markov decision process (MDP) under synchronised On/Off keying (S-OOK) pulse modulation format. The simulation results are provided to show the the performance of the cooperative transmission policy and compared against the greedy and conservative policies of single-link transmission.

Keywords: cooperative communication, transmission strategy, energy harvesting, Markov decision process, value iteration

Procedia PDF Downloads 484
32148 Solar Photovoltaic System (PV) Usages on Residential Houses in the Absheron Peninsula Region of the Republic of Azerbaijan: Obstacles and Opportunities

Authors: Elnur Abbasov

Abstract:

Energy security and climate change comprise some of the most important concerns facing humankind today and probably in the future if they are not addressed appropriately. In order to stabilize the global climate, there is the need for the world to lessen its use of fossil energy, which requires enhancement of current energy efficiency as well as the development of novel energy sources, such as energy obtained from renewable sources. There is no doubt that the steady transition towards a solar-based economy is likely to result in the development of completely new sectors, behaviours, and jobs that are pro-environmental. Azerbaijan Republic as the largest nation state in the South Caucasus Region has the potential for using and developing the renewable sources of energy in order to support the environmental challenge resolution associated with the climate change, improving the environmental situation in the country. Solar PV comprises one of the direct usages of solar energy. In this paper, sustainable PV usage scenario in residential houses was introduced to reduce negative environmental effects of land use, water consumption, air pollution etc. It was recommended by an author that, PV systems can be part of function and design of residential building components: such as roofs, walls, windows.

Keywords: energy efficiency, environmentally friendly, photovoltaic engineering, sustainable energy usage scenario

Procedia PDF Downloads 235
32147 Design and Thermal Simulation Analysis of the Chinese Accelerator Driven Sub-Critical System Injector-I Cryomodule

Authors: Rui-Xiong Han, Rui Ge, Shao-Peng Li, Lin Bian, Liang-Rui Sun, Min-Jing Sang, Rui Ye, Ya-Ping Liu, Xiang-Zhen Zhang, Jie-Hao Zhang, Zhuo Zhang, Jian-Qing Zhang, Miao-Fu Xu

Abstract:

The Chinese Accelerator Driven Sub-critical system (C-ADS) uses a high-energy proton beam to bombard the metal target and generate neutrons to deal with the nuclear waste. The Chinese ADS proton linear has two 0~10 MeV injectors and one 10~1500 MeV superconducting linac. Injector-I is studied by the Institute of High Energy Physics (IHEP) under construction in the Beijing, China. The linear accelerator consists of two accelerating cryomodules operating at the temperature of 2 Kelvin. This paper describes the structure and thermal performances analysis of the cryomodule. The analysis takes into account all the main contributors (support posts, multilayer insulation, current leads, power couplers, and cavities) to the static and dynamic heat load at various cryogenic temperature levels. The thermal simulation analysis of the cryomodule is important theory foundation of optimization and commissioning.

Keywords: C-ADS, cryomodule, structure, thermal simulation, static heat load, dynamic heat load

Procedia PDF Downloads 387
32146 Renewable Energy Industry Trends and Its Contributions to the Development of Energy Resilience in an Era of Accelerating Climate Change

Authors: A. T. Asutosh, J. Woo, M. Kouhirostami, M. Sam, A. Khantawang, C. Cuales, W. Ryor, C. Kibert

Abstract:

Climate change and global warming vortex have grown to alarming proportions. Therefore, the need for a shift in the conceptualization of energy production is paramount. Energy practices have been created in the current situation. Fossil fuels continue their prominence, at the expense of renewable sources. Despite this abundance, a large percentage of the world population still has no access to electricity but there have been encouraging signs in global movement from nonrenewable to renewable energy but means to reverse climate change have been elusive. Worldwide, organizations have put tremendous effort into innovation. Conferences and exhibitions act as a platform that allows a broad exchange of information regarding trends in the renewable energy field. The Solar Power International (SPI) conference and exhibition is a gathering of concerned activists, and probably the largest convention of its kind. This study investigates current development in the renewable energy field, analyzing means by which industry is being applied to the issue. In reviewing the 2019 SPI conference, it was found innovations in recycling and assessing the environmental impacts of the solar products that need critical attention. There is a huge movement in the electrical storage but there exists a large gap in the development of security systems. This research will focus on solar energy, but impacts will be relevant to the entire renewable energy market.

Keywords: climate change, renewable energy, solar, trends, research, solar power international, SPI

Procedia PDF Downloads 101
32145 Scenarios of Digitalization and Energy Efficiency in the Building Sector in Brazil: 2050 Horizon

Authors: Maria Fatima Almeida, Rodrigo Calili, George Soares, João Krause, Myrthes Marcele Dos Santos, Anna Carolina Suzano E. Silva, Marcos Alexandre Da

Abstract:

In Brazil, the building sector accounts for 1/6 of energy consumption and 50% of electricity consumption. A complex sector with several driving actors plays an essential role in the country's economy. Currently, the digitalization readiness in this sector is still low, mainly due to the high investment costs and the difficulty of estimating the benefits of digital technologies in buildings. Nevertheless, the potential contribution of digitalization for increasing energy efficiency in the building sector in Brazil has been pointed out as relevant in the political and sectoral contexts, both in the medium and long-term horizons. To contribute to the debate on the possible evolving trajectories of digitalization in the building sector in Brazil and to subsidize the formulation or revision of current public policies and managerial decisions, three future scenarios were created to anticipate the potential energy efficiency in the building sector in Brazil due to digitalization by 2050. This work aims to present these scenarios as a basis to foresight the potential energy efficiency in this sector, according to different digitalization paces - slow, moderate, or fast in the 2050 horizon. A methodological approach was proposed to create alternative prospective scenarios, combining the Global Business Network (GBN) and the Laboratory for Investigation in Prospective Strategy and Organisation (LIPSOR) methods. This approach consists of seven steps: (i) definition of the question to be foresighted and time horizon to be considered (2050); (ii) definition and classification of a set of key variables, using the prospective structural analysis; (iii) identification of the main actors with an active role in the digital and energy spheres; (iv) characterization of the current situation (2021) and identification of main uncertainties that were considered critical in the development of alternative future scenarios; (v) scanning possible futures using morphological analysis; (vi) selection and description of the most likely scenarios; (vii) foresighting the potential energy efficiency in each of the three scenarios, namely slow digitalization; moderate digitalization, and fast digitalization. Each scenario begins with a core logic and then encompasses potentially related elements, including potential energy efficiency. Then, the first scenario refers to digitalization at a slow pace, with induction by the government limited to public buildings. In the second scenario, digitalization is implemented at a moderate pace, induced by the government in public, commercial, and service buildings, through regulation integrating digitalization and energy efficiency mechanisms. Finally, in the third scenario, digitalization in the building sector is implemented at a fast pace in the country and is strongly induced by the government, but with broad participation of private investments and accelerated adoption of digital technologies. As a result of the slow pace of digitalization in the sector, the potential for energy efficiency stands at levels below 10% of the total of 161TWh by 2050. In the moderate digitalization scenario, the potential reaches 20 to 30% of the total 161TWh by 2050. Furthermore, in the rapid digitalization scenario, it will reach 30 to 40% of the total 161TWh by 2050.

Keywords: building digitalization, energy efficiency, scenario building, prospective structural analysis, morphological analysis

Procedia PDF Downloads 104
32144 Analysis of Sea Waves Characteristics and Assessment of Potential Wave Power in Egyptian Mediterranean Waters

Authors: Ahmed A. El-Gindy, Elham S. El-Nashar, Abdallah Nafaa, Sameh El-Kafrawy

Abstract:

The generation of energy from marine energy became one of the most preferable resources since it is a clean source and friendly to environment. Egypt has long shores along Mediterranean with important cities that need energy resources with significant wave energy. No detailed studies have been done on wave energy distribution in the Egyptian waters. The objective of this paper is to assess the energy wave power available in the Egyptian waters for the choice of the most suitable devices to be used in this area. This paper deals the characteristics and power of the offshore waves in the Egyptian waters. Since the field observations of waves are not frequent and need much technical work, the European Centre for Medium-Range Weather Forecasts (ECMWF) interim reanalysis data in Mediterranean, with a grid size 0.75 degree, which is a relatively course grid, are considered in the present study for preliminary assessment of sea waves characteristics and power. The used data covers the period from 2012 to 2014. The data used are significant wave height (swh), mean wave period (mwp) and wave direction taken at six hourly intervals, at seven chosen stations, and at grid points covering the Egyptian waters. The wave power (wp) formula was used to calculate energy flux. Descriptive statistical analysis including monthly means and standard deviations of the swh, mwp, and wp. The percentiles of wave heights and their corresponding power are done, as a tool of choice of the best technology suitable for the site. The surfer is used to show spatial distributions of wp. The analysis of data at chosen 7 stations determined the potential of wp off important Egyptian cities. Offshore of Al Saloum and Marsa Matruh, the highest wp occurred in January and February (16.93-18.05) ± (18.08-22.12) kw/m while the lowest occurred in June and October (1.49-1.69) ± (1.45-1.74) kw/m. In front of Alexandria and Rashid, the highest wp occurred in January and February (16.93-18.05) ± (18.08-22.12) kw/m while the lowest occurred in June and September (1.29-2.01) ± (1.31-1.83) kw/m. In front of Damietta and Port Said, the highest wp occurred in February (14.29-17.61) ± (21.61-27.10) kw/m and the lowest occurred in June (0.94-0.96) ± (0.71-0.72) kw/m. In winter, the probabilities of waves higher than 0.8 m in percentage were, at Al Saloum and Marsa Matruh (76.56-80.33) ± (11.62-12.05), at Alexandria and Rashid (73.67-74.79) ± (16.21-18.59) and at Damietta and Port Said (66.28-68.69) ± (17.88-17.90). In spring, the percentiles were, at Al Saloum and Marsa Matruh, (48.17-50.92) ± (5.79-6.56), at Alexandria and Rashid, (39.38-43.59) ± (9.06-9.34) and at Damietta and Port Said, (31.59-33.61) ± (10.72-11.25). In summer, the probabilities were, at Al Saloum and Marsa Matruh (57.70-66.67) ± (4.87-6.83), at Alexandria and Rashid (59.96-65.13) ± (9.14-9.35) and at Damietta and Port Said (46.38-49.28) ± (10.89-11.47). In autumn, the probabilities were, at Al Saloum and Marsa Matruh (58.75-59.56) ± (2.55-5.84), at Alexandria and Rashid (47.78-52.13) ± (3.11-7.08) and at Damietta and Port Said (41.16-42.52) ± (7.52-8.34).

Keywords: distribution of sea waves energy, Egyptian Mediterranean waters, waves characteristics, waves power

Procedia PDF Downloads 182
32143 The Environmental and Economic Analysis of Extended Input-Output Table for Thailand’s Biomass Pellet Industry

Authors: Prangvalai Buasan, Boonrod Sajjakulnukit, Thongchart Bowonthumrongchai

Abstract:

The demand for biomass pellets in the industrial sector has significantly increased since 2020. The revised version of Thailand’s power development plan as well as the Alternative Energy Development Plan, aims to promote biomass fuel consumption by around 485 MW by 2030. The replacement of solid fossil fuel with biomass pellets will affect medium-term and long-term national benefits for all industries throughout the supply chain. Therefore, the evaluation of environmental and economic impacts throughout the biomass pellet supply chain needs to be performed to provide better insight into the goods and financial flow of this activity. This study extended the national input-output table for the biomass pellet industry and applied the input-output analysis (IOA) method, a sort of macroeconomic analysis, to interpret the result of transactions between industries in the monetary unit when the revised national power development plan was adopted and enforced. Greenhouse gas emissions from consuming energy and raw material through the supply chain are also evaluated. The total intermediate transactions of all economic sectors, which included the biomass pellets sector (CASE 2), increased by 0.02% when compared with the conservative case (CASE 1). The control total, which is the sum of total intermediate transactions and value-added, the control total of CASE 2 is increased by 0.07% when compared with CASE 1. The pellet production process emitted 432.26 MtCO2e per year. The major sharing of the GHG is from the plantation process of raw biomass.

Keywords: input-output analysis, environmental extended input-output analysis, macroeconomic planning, biomass pellets, renewable energy

Procedia PDF Downloads 89
32142 Energy Efficient Shading Strategies for Windows of Hospital ICUs in the Desert

Authors: A. Sherif, A. El Zafarany, R. Arafa

Abstract:

Hospitals, everywhere, are considered heavy energy consumers. Hospital Intensive Care Unit spaces pose a special challenge, where design guidelines requires the provision of external windows for day-lighting and external view. Window protection strategies could be employed to reduce energy loads without detriment effect on comfort or health care. This paper addresses the effectiveness of using various window strategies on the annual cooling, heating and lighting energy use of a typical Hospital Intensive Unit space. Series of experiments were performed using the EnergyPlus simulation software for a typical Intensive Care Unit (ICU) space in Cairo, located in the Egyptian desert. This study concluded that the use of shading systems is more effective in conserving energy in comparison with glazing of different types, in the Cairo ICUs. The highest energy savings in the West and South orientations were accomplished by external perforated solar screens, followed by overhangs positioned at a protection angle of 45°.

Keywords: energy, hospital, intensive care units, shading

Procedia PDF Downloads 279
32141 An Improved Adaptive Dot-Shape Beamforming Algorithm Research on Frequency Diverse Array

Authors: Yanping Liao, Zenan Wu, Ruigang Zhao

Abstract:

Frequency diverse array (FDA) beamforming is a technology developed in recent years, and its antenna pattern has a unique angle-distance-dependent characteristic. However, the beam is always required to have strong concentration, high resolution and low sidelobe level to form the point-to-point interference in the concentrated set. In order to eliminate the angle-distance coupling of the traditional FDA and to make the beam energy more concentrated, this paper adopts a multi-carrier FDA structure based on proposed power exponential frequency offset to improve the array structure and frequency offset of the traditional FDA. The simulation results show that the beam pattern of the array can form a dot-shape beam with more concentrated energy, and its resolution and sidelobe level performance are improved. However, the covariance matrix of the signal in the traditional adaptive beamforming algorithm is estimated by the finite-time snapshot data. When the number of snapshots is limited, the algorithm has an underestimation problem, which leads to the estimation error of the covariance matrix to cause beam distortion, so that the output pattern cannot form a dot-shape beam. And it also has main lobe deviation and high sidelobe level problems in the case of limited snapshot. Aiming at these problems, an adaptive beamforming technique based on exponential correction for multi-carrier FDA is proposed to improve beamforming robustness. The steps are as follows: first, the beamforming of the multi-carrier FDA is formed under linear constrained minimum variance (LCMV) criteria. Then the eigenvalue decomposition of the covariance matrix is ​​performed to obtain the diagonal matrix composed of the interference subspace, the noise subspace and the corresponding eigenvalues. Finally, the correction index is introduced to exponentially correct the small eigenvalues ​​of the noise subspace, improve the divergence of small eigenvalues ​​in the noise subspace, and improve the performance of beamforming. The theoretical analysis and simulation results show that the proposed algorithm can make the multi-carrier FDA form a dot-shape beam at limited snapshots, reduce the sidelobe level, improve the robustness of beamforming, and have better performance.

Keywords: adaptive beamforming, correction index, limited snapshot, multi-carrier frequency diverse array, robust

Procedia PDF Downloads 121
32140 Willingness of Spanish Wineries to Implement Renewable Energies in Their Vineyards and Wineries, as Well as the Limitations They Perceive for Their Implementation

Authors: Javier Carroquino, Nieves García-Casarejos, Pilar Gargallo

Abstract:

Climate change, depletion of non-renewable resources in the current energies, pollution from them, the greater ecological awareness of the population, are factors that suggest the change of energy sources in business. The agri-food industry is a growth sector, concerned about product innovation, process and with a clear awareness of what climate change may mean for it. This sector is supposed to have a high receptivity to the implementation of clean energy, as this favors not only the environment but also the essence of its business. This work, through surveys, aims to know the willingness of Spanish wineries to implement renewable energies in their vineyards, as well as the limitations they perceive for their implementation. This questionnaire allows the characterization of the sector in terms of its geographical typologies, their activity levels, their perception of environmental issues, the degree of implementation of measures to mitigate climate change and improve energy efficiency, and its uses and energy consumption. The analysis of data proves that the penetration of renewable energies is still at low levels, being the most used energies, solar thermal, photovoltaic and biomass. The initial investment seems to be at the origin of the lack of implantation of this type of energy in the wineries, and not so much the costs of operations and maintenance. The environmental management of the wineries is still at an embryonic stage within the company's organization chart, because these services are either outsourced or, if technicians are available, they are not exclusively dedicated to these tasks. However, there is a strong environmental awareness, as evidenced by the number of climate change mitigation and energy efficiency measures already adopted. The gap between high awareness and low achievement is probably due to the lack of knowledge about how to do it or the perception of a high cost.

Keywords: survey, renewable energy, winery, Spanish case

Procedia PDF Downloads 246