Search results for: deep supervision
1363 Reservoir-Triggered Seismicity of Water Level Variation in the Lake Aswan
Authors: Abdel-Monem Sayed Mohamed
Abstract:
Lake Aswan is one of the largest man-made reservoirs in the world. The reservoir began to fill in 1964 and the level rose gradually, with annual irrigation cycles, until it reached a maximum water level of 181.5 m in November 1999, with a capacity of 160 km3. The filling of such large reservoir changes the stress system either through increasing vertical compressional stress by loading and/or increased pore pressure through the decrease of the effective normal stress. The resulted effect on fault zones changes stability depending strongly on the orientation of pre-existing stress and geometry of the reservoir/fault system. The main earthquake occurred on November 14, 1981, with magnitude 5.5. This event occurred after 17 years of the reservoir began to fill, along the active part of the Kalabsha fault and located not far from the High Dam. Numerous of small earthquakes follow this earthquake and continue till now. For this reason, 13 seismograph stations (radio-telemetry network short-period seismometers) were installed around the northern part of Lake Aswan. The main purpose of the network is to monitor the earthquake activity continuously within Aswan region. The data described here are obtained from the continuous record of earthquake activity and lake-water level variation through the period from 1982 to 2015. The seismicity is concentrated in the Kalabsha area, where there is an intersection of the easterly trending Kalabsha fault with the northerly trending faults. The earthquake foci are distributed in two seismic zones, shallow and deep in the crust. Shallow events have focal depths of less than 12 km while deep events extend from 12 to 28 km. Correlation between the seismicity and the water level variation in the lake provides great suggestion to distinguish the micro-earthquakes, particularly, those in shallow seismic zone in the reservoir–triggered seismicity category. The water loading is one factor from several factors, as an activating medium in triggering earthquakes. The common factors for all cases of induced seismicity seem to be the presence of specific geological conditions, the tectonic setting and water loading. The role of the water loading is as a supplementary source of earthquake events. So, the earthquake activity in the area originated tectonically (ML ≥ 4) and the water factor works as an activating medium in triggering small earthquakes (ML ≤ 3). Study of the inducing seismicity from the water level variation in Aswan Lake is of great importance and play great roles necessity for the safety of the High Dam body and its economic resources.Keywords: Aswan lake, Aswan seismic network, seismicity, water level variation
Procedia PDF Downloads 3701362 Artificial Intelligence Based Meme Generation Technology for Engaging Audience in Social Media
Authors: Andrew Kurochkin, Kostiantyn Bokhan
Abstract:
In this study, a new meme dataset of ~650K meme instances was created, a technology of meme generation based on the state of the art deep learning technique - GPT-2 model was researched, a comparative analysis of machine-generated memes and human-created was conducted. We justified that Amazon Mechanical Turk workers can be used for the approximate estimating of users' behavior in a social network, more precisely to measure engagement. It was shown that generated memes cause the same engagement as human memes that produced low engagement in the social network (historically). Thus, generated memes are less engaging than random memes created by humans.Keywords: content generation, computational social science, memes generation, Reddit, social networks, social media interaction
Procedia PDF Downloads 1381361 The Incubation of University Spin-Offs: An Exploratory Study of a Deep Tech Venture
Authors: Jerome D. Donovan
Abstract:
The pandemic has resulted in a dramatic re-consideration of the reliance on international student fees to support university models in Australia. A key resulting initiative for the Australian Federal Government has been shifting the way universities consider their research model, emphasising the importance of commercialising research. This study specifically examines this shift from the perspective of a university spin-off, examining how university support structures and incubation models have assisted in the translation of fundamental research into a high-growth university spin-off. A focused case study approach is adopted in this study, using an auto-ethnographic research method to document the experiences and insights drawn from being a co-founder in a university spin-off in a time where research commercialisation has emerged as a central focus in Australian universities.Keywords: research commercialisation, spin-offs, university incubation, entrepreneurship
Procedia PDF Downloads 811360 Balancing Resources and Demands in Activation Work with Young Adults: Exploring Potentials of the Job Demands-Resources Theory
Authors: Gurli Olsen, Ida Bruheim Jensen
Abstract:
Internationally, many young adults not in education, employment, or training (NEET) remain in temporary solutions such as labour market measures or other forms of welfare arrangements. These trends have been associated with ineffective labour market measures, an underfunded theoretical foundation for activation work, limited competence among social workers and labour market employees in using ordinary workplaces as job inclusion measures, and an overemphasis on young adults’ personal limitations such as health challenges and lack of motivation. Two competing models have been prominent in activation work: Place‐Then‐Train and Train‐Then‐Place. A traditional strategy for labour market measures has been to first motivate NEETs to sheltered work and training and then to the regular labour market (train then place). Measures such as Supported Employment (SE) and Individual Placement and Support (IPS) advocate for rapid entry into paid work at the regular labour market with close supervision and training from social workers, employees, and others (place then train). None of these models demonstrate unquestionable results. In this web of working life measures, young adults (NEETs) experience a lack of confidence in their own capabilities and coping strategies vis-á-vis labour market- and educational demands. Drawing on young adults’ own experiences, we argue that the Job Demands-Resources (JD-R) Theory can contribute to the theoretical and practical dimensions of activation work. This presentation will focus on what the JD-R theory entails and how it can be fruitful in activation work with NEETs (what and how). The overarching rationale of the JD-R theory is that an enduring balance between demands (e.g., deadlines, working hours) and resources (e.g., social support, enjoyable work tasks) is important for job performance for people in any job and potentially in other meaningful activities. Extensive research has demonstrated that a balance between demands and resources increases motivation and decreases stress. Nevertheless, we have not identified literature on the JD-R theory in activation work with young adults.Keywords: activation work, job demands-resources theory, social work, theory development
Procedia PDF Downloads 791359 Computer Aided Assembly Attributes Retrieval Methods for Automated Assembly Sequence Generation
Authors: M. V. A. Raju Bahubalendruni, Bibhuti Bhusan Biswal, B. B. V. L. Deepak
Abstract:
Achieving an appropriate assembly sequence needs deep verification for its physical feasibility. For this purpose, industrial engineers use several assembly predicates; namely, liaison, geometric feasibility, stability and mechanical feasibility. However, testing an assembly sequence for these predicates requires huge assembly information. Extracting such assembly information from an assembled product is a time consuming and highly skillful task with complex reasoning methods. In this paper, computer aided methods are proposed to extract all the necessary assembly information from computer aided design (CAD) environment in order to perform the assembly sequence planning efficiently. These methods use preliminary capabilities of three-dimensional solid modelling and assembly modelling methods used in CAD software considering equilibrium laws of physical bodies.Keywords: assembly automation, assembly attributes, assembly, CAD
Procedia PDF Downloads 3051358 Feedback of an Automated Hospital about the Performance of an Automated Drug Dispensing System’s Implementation
Authors: Bouami Hind, Millot Patrick
Abstract:
The implementation of automated devices in life-critical systems such as hospitals can bring a new set of challenges related to automation malfunctions. While automation has been identified as great leverage for the medication dispensing system’s security and efficiency, it also increases the complexity of the organization. In particular, the installation and operation stage of automated devices can be complex when malfunctions related to automated systems occur. This paper aims to document operators’ situation awareness about the malfunctions of automated drug delivery systems (ADCs) during their implementation through Saint Brieuc hospital’s feedback. Our evaluation approach has been deployed in Saint Brieuc hospital center’s pharmacy, which has been equipped with automated nominative drug dispensing systems since January of 2021. The analysis of Saint Brieuc hospital center pharmacy’s automation revealed numerous malfunctions related to the implementation of Automated Delivery Cabinets. It appears that the targeted performance is not reached in the first year of implementation in this case study. Also, errors have been collected in patients' automated treatments’ production such as lack of drugs in pill boxes or nominative carnets, excess of drugs, wrong location of the drug, drug blister damaged, non-compliant sachet, or ticket errors. Saint Brieuc hospital center’s pharmacy is doing a tremendous job of setting up and monitoring performance indicators from the beginning of automation and throughout ADC’s operation to control ADC’s malfunctions and meet the performance targeted by the hospital. Health professionals, including pharmacists, biomedical engineers and directors of work, technical services and safety, are heavily involved in an automation project. This study highlights the importance of the evaluation of ADCs’ performance throughout the implementation process and the hospital’s team involvement in automation supervision and management.Keywords: life-critical systems, situation awareness, automated delivery cabinets, implementation, risks and malfunctions
Procedia PDF Downloads 991357 Emotion-Convolutional Neural Network for Perceiving Stress from Audio Signals: A Brain Chemistry Approach
Authors: Anup Anand Deshmukh, Catherine Soladie, Renaud Seguier
Abstract:
Emotion plays a key role in many applications like healthcare, to gather patients’ emotional behavior. Unlike typical ASR (Automated Speech Recognition) problems which focus on 'what was said', it is equally important to understand 'how it was said.' There are certain emotions which are given more importance due to their effectiveness in understanding human feelings. In this paper, we propose an approach that models human stress from audio signals. The research challenge in speech emotion detection is finding the appropriate set of acoustic features corresponding to an emotion. Another difficulty lies in defining the very meaning of emotion and being able to categorize it in a precise manner. Supervised Machine Learning models, including state of the art Deep Learning classification methods, rely on the availability of clean and labelled data. One of the problems in affective computation is the limited amount of annotated data. The existing labelled emotions datasets are highly subjective to the perception of the annotator. We address the first issue of feature selection by exploiting the use of traditional MFCC (Mel-Frequency Cepstral Coefficients) features in Convolutional Neural Network. Our proposed Emo-CNN (Emotion-CNN) architecture treats speech representations in a manner similar to how CNN’s treat images in a vision problem. Our experiments show that Emo-CNN consistently and significantly outperforms the popular existing methods over multiple datasets. It achieves 90.2% categorical accuracy on the Emo-DB dataset. We claim that Emo-CNN is robust to speaker variations and environmental distortions. The proposed approach achieves 85.5% speaker-dependant categorical accuracy for SAVEE (Surrey Audio-Visual Expressed Emotion) dataset, beating the existing CNN based approach by 10.2%. To tackle the second problem of subjectivity in stress labels, we use Lovheim’s cube, which is a 3-dimensional projection of emotions. Monoamine neurotransmitters are a type of chemical messengers in the brain that transmits signals on perceiving emotions. The cube aims at explaining the relationship between these neurotransmitters and the positions of emotions in 3D space. The learnt emotion representations from the Emo-CNN are mapped to the cube using three component PCA (Principal Component Analysis) which is then used to model human stress. This proposed approach not only circumvents the need for labelled stress data but also complies with the psychological theory of emotions given by Lovheim’s cube. We believe that this work is the first step towards creating a connection between Artificial Intelligence and the chemistry of human emotions.Keywords: deep learning, brain chemistry, emotion perception, Lovheim's cube
Procedia PDF Downloads 1541356 Ontological Equality and New Political Community: 'Anyone with Anyone!!!'
Authors: Chidella Upendra
Abstract:
Today, democracies too have become the grounds of "potentialities of violence" corrupting the culture of collective life. If all the violence 'to be referred to here as normalized conditions of exception' is caused by our inability to 'equality', then, it may not be possible to get rid of the 'murkiness of everyday life'. It is not the end of the road for political imagination. The uncertainty is about grounding it in the human condition. Combining both the ideas of political equality [Dissensus] and inoperative community [here, a new political community - (being-in-common)], we can think of a deep political contingency yet stick to the conviction of political equality, irrespective of its social possibility. Here, potentiality is retained amid reluctance for the same. The paper sticks to this claim but also sees the supposition of a collective life of 'anyone with anyone' leading to an eternal fix - to what can be stated as the obsession of identities. Our belief is resolving this fix is only a theoretical speculation but not a practical possibility. Real diversity is really terrifying to embrace and live with, as terrifying as the singularity itself.Keywords: pranav saxenapolitical community, violence, exception, normality, everyday
Procedia PDF Downloads 31355 Developing an AI-Driven Application for Real-Time Emotion Recognition from Human Vocal Patterns
Authors: Sayor Ajfar Aaron, Mushfiqur Rahman, Sajjat Hossain Abir, Ashif Newaz
Abstract:
This study delves into the development of an artificial intelligence application designed for real-time emotion recognition from human vocal patterns. Utilizing advanced machine learning algorithms, including deep learning and neural networks, the paper highlights both the technical challenges and potential opportunities in accurately interpreting emotional cues from speech. Key findings demonstrate the critical role of diverse training datasets and the impact of ambient noise on recognition accuracy, offering insights into future directions for improving robustness and applicability in real-world scenarios.Keywords: artificial intelligence, convolutional neural network, emotion recognition, vocal patterns
Procedia PDF Downloads 531354 Juxtaposing South Africa’s Private Sector and Its Public Service Regarding Innovation Diffusion, to Explore the Obstacles to E-Governance
Authors: Petronella Jonck, Freda van der Walt
Abstract:
Despite the benefits of innovation diffusion in the South African public service, implementation thereof seems to be problematic, particularly with regard to e-governance which would enhance the quality of service delivery, especially accessibility, choice, and mode of operation. This paper reports on differences between the public service and the private sector in terms of innovation diffusion. Innovation diffusion will be investigated to explore identified obstacles that are hindering successful implementation of e-governance. The research inquiry is underpinned by the diffusion of innovation theory, which is premised on the assumption that innovation has a distinct channel, time, and mode of adoption within the organisation. A comparative thematic document analysis was conducted to investigate organisational differences with regard to innovation diffusion. A similar approach has been followed in other countries, where the same conceptual framework has been used to guide document analysis in studies in both the private and the public sectors. As per the recommended conceptual framework, three organisational characteristics were emphasised, namely the external characteristics of the organisation, the organisational structure, and the inherent characteristics of the leadership. The results indicated that the main difference in the external characteristics lies in the focus and the clientele of the private sector. With regard to organisational structure, private organisations have veto power, which is not the case in the public service. Regarding leadership, similarities were observed in social and environmental responsibility and employees’ attitudes towards immediate supervision. Differences identified included risk taking, the adequacy of leadership development, organisational approaches to motivation and involvement in decision making, and leadership style. Due to the organisational differences observed, it is recommended that differentiated strategies be employed to ensure effective innovation diffusion, and ultimately e-governance. It is recommended that the results of this research be used to stimulate discussion on ways to improve collaboration between the mentioned sectors, to capitalise on the benefits of each sector.Keywords: E-governance, ICT, innovation diffusion, comparative analysis
Procedia PDF Downloads 3541353 Job Satisfaction and Associated factors of Urban Health Extension Professionals in Addis Ababa City, Ethiopia
Authors: Metkel Gebremedhin, Biruk Kebede, Guash Abay
Abstract:
Job satisfaction largely determines the productivity and efficiency of human resources for health. There is scanty evidence on factors influencing the job satisfaction of health extension professionals (HEPs) in Addis Ababa. The objective of this study was to determine the level of and factors influencing job satisfaction among extension health workers in Addis Ababa city. This was a cross-sectional study conducted in Addis Ababa, Ethiopia. Among all public health centers found in the Addis Ababa city administration health bureau that would be included in the study, a multistage sampling technique was employed. Then we selected the study health centers randomly and urban health extension professionals from the selected health centers. In-depth interview data collection methods were carried out for a comprehensive understanding of factors affecting job satisfaction among Health extension professionals (HEPs) in Addis Ababa. HEPs working in Addis Ababa areas are the primary study population. Multivariate logistic regression with 95% CI at P ≤ 0.05 was used to assess associated factors to job satisfaction. The overall satisfaction rate was 10.7% only, while 89.3%% were dissatisfied with their jobs. The findings revealed that variables such as marital status, staff relations, community support, supervision, and rewards have a significant influence on the level of job satisfaction. For those who were not satisfied, the working environment, job description, low salary, poor leadership and training opportunities were the major causes. Other factors influencing the level of satisfaction were lack of medical equipment, lack of transport facilities, lack of training opportunities, and poor support from woreda experts. Our study documented a very low level of overall satisfaction among health extension professionals in Addis Ababa city public health centers. Considering the factors responsible for this state of affairs, urgent and concrete strategies must be developed to address the concerns of extension health professionals as they represent a sensitive domain of the health system of Addis Ababa city. Improving the overall work environment, review of job descriptions and better salaries might bring about a positive change.Keywords: job satisfaction, extension health professionals, Addis Ababa
Procedia PDF Downloads 771352 Monitoring Soil Moisture Dynamic in Root Zone System of Argania spinosa Using Electrical Resistivity Imaging
Authors: F. Ainlhout, S. Boutaleb, M. C. Diaz-Barradas, M. Zunzunegui
Abstract:
Argania spinosa is an endemic tree of the southwest of Morocco, occupying 828,000 Ha, distributed mainly between Mediterranean vegetation and the desert. This tree can grow in extremely arid regions in Morocco, where annual rainfall ranges between 100-300 mm where no other tree species can live. It has been designated as a UNESCO Biosphere reserve since 1998. Argania tree is of great importance in human and animal feeding of rural population as well as for oil production, it is considered as a multi-usage tree. Admine forest located in the suburbs of Agadir city, 5 km inland, was selected to conduct this work. The aim of the study was to investigate the temporal variation in root-zone moisture dynamic in response to variation in climatic conditions and vegetation water uptake, using a geophysical technique called Electrical resistivity imaging (ERI). This technique discriminates resistive woody roots, dry and moisture soil. Time-dependent measurements (from April till July) of resistivity sections were performed along the surface transect (94 m Length) at 2 m fixed electrode spacing. Transect included eight Argan trees. The interactions between the tree and soil moisture were estimated by following the tree water status variations accompanying the soil moisture deficit. For that purpose we measured midday leaf water potential and relative water content during each sampling day, and for the eight trees. The first results showed that ERI can be used to accurately quantify the spatiotemporal distribution of root-zone moisture content and woody root. The section obtained shows three different layers: middle conductive one (moistured); a moderately resistive layer corresponding to relatively dry soil (calcareous formation with intercalation of marly strata) on top, this layer is interspersed by very resistant layer corresponding to woody roots. Below the conductive layer, we find the moderately resistive layer. We note that throughout the experiment, there was a continuous decrease in soil moisture at the different layers. With the ERI, we can clearly estimate the depth of the woody roots, which does not exceed 4 meters. In previous work on the same species, analyzing the δ18O in water of xylem and in the range of possible water sources, we argued that rain is the main water source in winter and spring, but not in summer, trees are not exploiting deep water from the aquifer as the popular assessment, instead of this they are using soil water at few meter depth. The results of the present work confirm the idea that the roots of Argania spinosa are not growing very deep.Keywords: Argania spinosa, electrical resistivity imaging, root system, soil moisture
Procedia PDF Downloads 3281351 Static and Dynamic Hand Gesture Recognition Using Convolutional Neural Network Models
Authors: Keyi Wang
Abstract:
Similar to the touchscreen, hand gesture based human-computer interaction (HCI) is a technology that could allow people to perform a variety of tasks faster and more conveniently. This paper proposes a training method of an image-based hand gesture image and video clip recognition system using a CNN (Convolutional Neural Network) with a dataset. A dataset containing 6 hand gesture images is used to train a 2D CNN model. ~98% accuracy is achieved. Furthermore, a 3D CNN model is trained on a dataset containing 4 hand gesture video clips resulting in ~83% accuracy. It is demonstrated that a Cozmo robot loaded with pre-trained models is able to recognize static and dynamic hand gestures.Keywords: deep learning, hand gesture recognition, computer vision, image processing
Procedia PDF Downloads 1391350 Correction of Skeletal Deformity by Surgical Approach – A Case Report
Authors: Davender Kumar, Virender Singh, Rekha Sharma
Abstract:
Correction of skeletal deformities in adult patients with orthodontics is limited. In adult severe cases, the combined approach, orthodontic and orthognathic surgery, is always the treatment of choice, and the results obtained usually ensure a better esthetic, functional, and stable results Orthognathic surgery is the best option for cases when camouflage treatment is questionable and growth modulation is not possible. This case report illustrates the benefit of the team approach in correcting mandible retrusion along with class II skeletal deformity with 100% deep bite. Correction was achieved by anterior repositioning of mandible osteotomy along with orthodontic treatment. The patient's facial appearance was markedly improved along with functional and stable occlusion.Keywords: camouflage, skeletal, orthognathic, dental
Procedia PDF Downloads 4271349 Valorization of Mining Waste (Sand of Djemi Djema) from the Djbel Onk Mine (Eastern Algeria)
Authors: Rachida Malaoui, Leila Arabet , Asma Benbouza
Abstract:
The use of mining waste rock as a material for construction is one of the biggest concerns grabbing the attention of many mining countries. As these materials are abandoned, more effective solutions have been made to offset some of the building materials, and to avoid environmental pollution. The sands of the Djemi Djema deposit mines of the Djebel Onk mines are sedimentary materials of several varieties of layers with varying thicknesses and are worth far more than 300m deep. The sands from the Djemi Djema business area are medium to coarse and are discharged and accumulated, generating a huge estimated quantity of more than 77424250 tonnes. This state of "resource" is of great importance so as to be oriented towards the fields of public works and civil engineering after having reached the acceptable properties of this resourceKeywords: reuse, sands, shear tests, waste rock
Procedia PDF Downloads 1471348 Numerical Modelling of the Influence of Meteorological Forcing on Water-Level in the Head Bay of Bengal
Authors: Linta Rose, Prasad K. Bhaskaran
Abstract:
Water-level information along the coast is very important for disaster management, navigation, planning shoreline management, coastal engineering and protection works, port and harbour activities, and for a better understanding of near-shore ocean dynamics. The water-level variation along a coast attributes from various factors like astronomical tides, meteorological and hydrological forcing. The study area is the Head Bay of Bengal which is highly vulnerable to flooding events caused by monsoons, cyclones and sea-level rise. The study aims to explore the extent to which wind and surface pressure can influence water-level elevation, in view of the low-lying topography of the coastal zones in the region. The ADCIRC hydrodynamic model has been customized for the Head Bay of Bengal, discretized using flexible finite elements and validated against tide gauge observations. Monthly mean climatological wind and mean sea level pressure fields of ERA Interim reanalysis data was used as input forcing to simulate water-level variation in the Head Bay of Bengal, in addition to tidal forcing. The output water-level was compared against that produced using tidal forcing alone, so as to quantify the contribution of meteorological forcing to water-level. The average contribution of meteorological fields to water-level in January is 5.5% at a deep-water location and 13.3% at a coastal location. During the month of July, when the monsoon winds are strongest in this region, this increases to 10.7% and 43.1% respectively at the deep-water and coastal locations. The model output was tested by varying the input conditions of the meteorological fields in an attempt to quantify the relative significance of wind speed and wind direction on water-level. Under uniform wind conditions, the results showed a higher contribution of meteorological fields for south-west winds than north-east winds, when the wind speed was higher. A comparison of the spectral characteristics of output water-level with that generated due to tidal forcing alone showed additional modes with seasonal and annual signatures. Moreover, non-linear monthly mode was found to be weaker than during tidal simulation, all of which point out that meteorological fields do not cause much effect on the water-level at periods less than a day and that it induces non-linear interactions between existing modes of oscillations. The study signifies the role of meteorological forcing under fair weather conditions and points out that a combination of multiple forcing fields including tides, wind, atmospheric pressure, waves, precipitation and river discharge is essential for efficient and effective forecast modelling, especially during extreme weather events.Keywords: ADCIRC, head Bay of Bengal, mean sea level pressure, meteorological forcing, water-level, wind
Procedia PDF Downloads 2211347 Performance Management in Higher Education: Lessons from Germany's New Public Management System
Authors: Patrick Oehler, Nicholas Folger
Abstract:
Following a new public management approach, Germany has widely reformed its higher education system around the turn of the millennium. Aimed at preparing the country’s publicly funded universities and applied science colleges for a century of glory, the reforms led to the introduction of rigid performance measurement and management practices, which disrupted the inert system on all levels. Yet, many of the new policies met significant resistance, and some of them had to be reversed over time. Ever since Germany has struggled to find a balance between its pre- and its post-millennial approach to performance measurement and management. This contribution combines insights of a joint research project, which was created and funded by the German Federal Ministry of Education and Research with the aim to better understand the effects of its performance measurement and management policies, including those the ministry had implemented over the previous decades. The research project combines researchers from 17 German research institutions who employed a wide range of theories from various disciplines and very diverse research methods to explain performance measurement and management and their consequences on the behavior of various stakeholders in higher education systems. In these projects, performance measurement and management have been researched from three angles—education, research, and third mission. The collaborative project differentiated functional and dysfunctional elements of common performance measurement and management practices, and identified key problems with these practices, such as (1) oversimplification of performance indicators, (2) ‘overmeasurement’ of performance in general, (3) excessive use of quantitative indicators, and (4), a myopic focus on research-focused indicators and a negligence of measures targeting education and third mission. To address these issues, the collaborative project developed alternative approaches to performance measurement and management, including suggestions for qualitative performance measures, improved supervision, review, and evaluations methods, and recommendations how to better balance education, research, and third mission. The authors would like to share the rich findings of the joint research project with an international audience and discuss their implications for alternative higher education systems.Keywords: performance measurement, performance management, new public management, performance evaluation
Procedia PDF Downloads 2701346 Strategy Research for the Development of Thematic Commercial Streets - Based On the Survey of Eight Typical Thematic Commercial Streets in Harbin
Authors: Wang Zhenzhen, Wang Xu, Hong Liangping
Abstract:
The construction of thematic commercial streets has been on the hotspot with the rapid development of cities. In order to improve the image and competitiveness of cities, many cities are building or rebuilding thematic commercial streets. However, many contradictions and problems have emerged during this process. Therefore, it is significant, for both the practice and the research, to analyse the development of thematic commercial streets and provide some useful suggestions. Through the deep research and comparative study of the eight typical thematic commercial streets in Harbin, this paper summarize the current situations, laws and influencing factors of the development of these streets, and then put forward some suggestions about the plan, constructions and developments of the thematic commercial streets.Keywords: thematic commercial streets, laws of the development, influence factors, the constructions and developments, degrees of aggregation
Procedia PDF Downloads 3761345 Application of an Artificial Neural Network to Determine the Risk of Malignant Tumors from the Images Resulting from the Asymmetry of Internal and External Thermograms of the Mammary Glands
Authors: Amdy Moustapha Drame, Ilya V. Germashev, E. A. Markushevskaya
Abstract:
Among the main problems of medicine is breast cancer, from which a significant number of women around the world are constantly dying. Therefore, the detection of malignant breast tumors is an urgent task. For many years, various technologies for detecting these tumors have been used, in particular, in thermal imaging in order to determine different levels of breast cancer development. These periodic screening methods are a diagnostic tool for women and may have become an alternative to older methods such as mammography. This article proposes a model for the identification of malignant neoplasms of the mammary glands by the asymmetry of internal and external thermal imaging fields.Keywords: asymmetry, breast cancer, tumors, deep learning, thermogram, convolutional transformation, classification
Procedia PDF Downloads 601344 Investigating the Viability of Ultra-Low Parameter Count Networks for Real-Time Football Detection
Authors: Tim Farrelly
Abstract:
In recent years, AI-powered object detection systems have opened the doors for innovative new applications and products, especially those operating in the real world or ‘on edge’ – namely, in sport. This paper investigates the viability of an ultra-low parameter convolutional neural network specially designed for the detection of footballs on ‘on the edge’ devices. The main contribution of this paper is the exploration of integrating new design features (depth-wise separable convolutional blocks and squeezed and excitation modules) into an ultra-low parameter network and demonstrating subsequent improvements in performance. The results show that tracking the ball from Full HD images with negligibly high accu-racy is possible in real-time.Keywords: deep learning, object detection, machine vision applications, sport, network design
Procedia PDF Downloads 1461343 Estimating Cyclone Intensity Using INSAT-3D IR Images Based on Convolution Neural Network Model
Authors: Divvela Vishnu Sai Kumar, Deepak Arora, Sheenu Rizvi
Abstract:
Forecasting a cyclone through satellite images consists of the estimation of the intensity of the cyclone and predicting it before a cyclone comes. This research work can help people to take safety measures before the cyclone comes. The prediction of the intensity of a cyclone is very important to save lives and minimize the damage caused by cyclones. These cyclones are very costliest natural disasters that cause a lot of damage globally due to a lot of hazards. Authors have proposed five different CNN (Convolutional Neural Network) models that estimate the intensity of cyclones through INSAT-3D IR images. There are a lot of techniques that are used to estimate the intensity; the best model proposed by authors estimates intensity with a root mean squared error (RMSE) of 10.02 kts.Keywords: estimating cyclone intensity, deep learning, convolution neural network, prediction models
Procedia PDF Downloads 1281342 Research of Applicable Ground Reinforcement Method in Double-Deck Tunnel Junction
Authors: SKhan Park, Seok Jin Lee, Jong Sun Kim, Jun Ho Lee, Bong Chan Kim
Abstract:
Because of the large economic losses caused by traffic congestion in metropolitan areas, various studies on the underground network design and construction techniques has been performed various studies in the developed countries. In Korea, it has performed a study to develop a versatile double-deck of deep tunnel model. This paper is an introduction to develop a ground reinforcement method to enable the safe tunnel construction in the weakened pillar section like as junction of tunnel. Applicable ground reinforcement method in the weakened section is proposed and it is expected to verify the method by the field application tests.Keywords: double-deck tunnel, ground reinforcement, tunnel construction, weakened pillar section
Procedia PDF Downloads 4091341 Determination of Air Quality Index Using Respirable Dust Sampler
Authors: Sapan Bhatnagar, Danish Akhtar, Salman Ahmed, Asif Ekbal, Gufran Beig
Abstract:
Particulates are the solid and liquid droplets present in the atmosphere, they have serious negative effects on human health and environment. PM10 and PM2.5 are so small that they can penetrate deep into our lungs through the respiratory system. Determination of the amount of particulates present in the atmosphere per cubic meter is necessary to monitor, regulate and model atmospheric particulate levels. Air Quality Index is an index tells us how clean or polluted our air is, and what associated health effects might be a concern for us. The AQI focuses on health affects you may experience within a few hours or days after breathing polluted air. The quality rating for each pollutant was calculated. The geometric mean of these quality ratings gives the Air Quality Index. The existing concentrations of pollutants were compared with ambient air quality standards.Keywords: air quality index, particulate, respirable dust sampler, dust sampler
Procedia PDF Downloads 5761340 Heterogeneous Artifacts Construction for Software Evolution Control
Authors: Mounir Zekkaoui, Abdelhadi Fennan
Abstract:
The software evolution control requires a deep understanding of the changes and their impact on different system heterogeneous artifacts. And an understanding of descriptive knowledge of the developed software artifacts is a prerequisite condition for the success of the evolutionary process. The implementation of an evolutionary process is to make changes more or less important to many heterogeneous software artifacts such as source code, analysis and design models, unit testing, XML deployment descriptors, user guides, and others. These changes can be a source of degradation in functional, qualitative or behavioral terms of modified software. Hence the need for a unified approach for extraction and representation of different heterogeneous artifacts in order to ensure a unified and detailed description of heterogeneous software artifacts, exploitable by several software tools and allowing to responsible for the evolution of carry out the reasoning change concerned.Keywords: heterogeneous software artifacts, software evolution control, unified approach, meta model, software architecture
Procedia PDF Downloads 4461339 An Artificially Intelligent Teaching-Agent to Enhance Learning Interactions in Virtual Settings
Authors: Abdulwakeel B. Raji
Abstract:
This paper introduces a concept of an intelligent virtual learning environment that involves communication between learners and an artificially intelligent teaching agent in an attempt to replicate classroom learning interactions. The benefits of this technology over current e-learning practices is that it creates a virtual classroom where real time adaptive learning interactions are made possible. This is a move away from the static learning practices currently being adopted by e-learning systems. Over the years, artificial intelligence has been applied to various fields, including and not limited to medicine, military applications, psychology, marketing etc. The purpose of e-learning applications is to ensure users are able to learn outside of the classroom, but a major limitation has been the inability to fully replicate classroom interactions between teacher and students. This study used comparative surveys to gain information and understanding of the current learning practices in Nigerian universities and how they compare to these practices compare to the use of a developed e-learning system. The study was conducted by attending several lectures and noting the interactions between lecturers and tutors and as an aftermath, a software has been developed that deploys the use of an artificial intelligent teaching-agent alongside an e-learning system to enhance user learning experience and attempt to create the similar learning interactions to those found in classroom and lecture hall settings. Dialogflow has been used to implement a teaching-agent, which has been developed using JSON, which serves as a virtual teacher. Course content has been created using HTML, CSS, PHP and JAVASCRIPT as a web-based application. This technology can run on handheld devices and Google based home technologies to give learners an access to the teaching agent at any time. This technology also implements the use of definite clause grammars and natural language processing to match user inputs and requests with defined rules to replicate learning interactions. This technology developed covers familiar classroom scenarios such as answering users’ questions, asking ‘do you understand’ at regular intervals and answering subsequent requests, taking advanced user queries to give feedbacks at other periods. This software technology uses deep learning techniques to learn user interactions and patterns to subsequently enhance user learning experience. A system testing has been undergone by undergraduate students in the UK and Nigeria on the course ‘Introduction to Database Development’. Test results and feedback from users shows that this study and developed software is a significant improvement on existing e-learning systems. Further experiments are to be run using the software with different students and more course contents.Keywords: virtual learning, natural language processing, definite clause grammars, deep learning, artificial intelligence
Procedia PDF Downloads 1351338 Automatic Method for Classification of Informative and Noninformative Images in Colonoscopy Video
Authors: Nidhal K. Azawi, John M. Gauch
Abstract:
Colorectal cancer is one of the leading causes of cancer death in the US and the world, which is why millions of colonoscopy examinations are performed annually. Unfortunately, noise, specular highlights, and motion artifacts corrupt many images in a typical colonoscopy exam. The goal of our research is to produce automated techniques to detect and correct or remove these noninformative images from colonoscopy videos, so physicians can focus their attention on informative images. In this research, we first automatically extract features from images. Then we use machine learning and deep neural network to classify colonoscopy images as either informative or noninformative. Our results show that we achieve image classification accuracy between 92-98%. We also show how the removal of noninformative images together with image alignment can aid in the creation of image panoramas and other visualizations of colonoscopy images.Keywords: colonoscopy classification, feature extraction, image alignment, machine learning
Procedia PDF Downloads 2531337 The Promoting of Early Childhood Development in Local Government Child Center
Authors: Vorapoj Promasatayaprot, Sumattana Glangkarn
Abstract:
Background: Early childhood, the first five years of life, is a time of rapid cognitive, linguistic, social, emotional and motor development. This study was descriptive research which the main purpose of this research was to study early childhood development in Child Center of Local Government in order to emphasize the public citizen and communities participate in the Child Development Center. Method: The study designed was Action Research and divided into four steps consisted of (1) Planning (2) Acting (3) Observing and (4) Reflecting. This study was employed the areas and the subjects consisted of 10 committees of the Child Center in Thakhonyang municipality, Kantharawichai District, Maha Sarakham Province, Thailand and 50 representative parents by using the purposive sampling technique. The instrument used in this study were questionnaires. The data were analyzed using descriptive statistic; percentage, mean, standard deviation, maximum value, minimum, median. Qualitative data was collected using the observation and interview and was analysed by content analysis. Results: The results of this research were as follows: The promoting of early childhood development in child center at Thakhonyang Municipality, Kantharawichai District, Maha Sarakham Province, Thailand were 6 procedures ; (1) workshop participation (2) workshop in action plan (3) performing in action plan (4) following supervision (5) self – assessment (6) knowledge sharing seminar. The service model of the Local Fund Health Security in Thailand was passed the qualifications of local fund health security by 6 procedures to be the high potential local fund health security. Conclusion: The key success is that the commission will have to respond the performance at all process of plan to address the issue in the future. Factor of success is to community participate with transparent procedure. Coordination committee should manipulate the child center benefits among stake holders.Keywords: child center, develop, early childhood development, local government, promote
Procedia PDF Downloads 1931336 Plant Disease Detection Using Image Processing and Machine Learning
Authors: Sanskar, Abhinav Pal, Aryush Gupta, Sushil Kumar Mishra
Abstract:
One of the critical and tedious assignments in agricultural practices is the detection of diseases on vegetation. Agricultural production is very important in today’s economy because plant diseases are common, and early detection of plant diseases is important in agriculture. Automatic detection of such early diseases is useful because it reduces control efforts in large productive farms. Using digital image processing and machine learning algorithms, this paper presents a method for plant disease detection. Detection of the disease occurs on different leaves of the plant. The proposed system for plant disease detection is simple and computationally efficient, requiring less time than learning-based approaches. The accuracy of various plant and foliar diseases is calculated and presented in this paper.Keywords: plant diseases, machine learning, image processing, deep learning
Procedia PDF Downloads 101335 Effect of Hydrocolloid Coatings and Bene Kernel Oil Acrylamide Formation during Potato Deep Frying
Authors: Razieh Niazmand, Dina Sadat Mousavian, Parvin Sharayei
Abstract:
This study investigated the effect of carboxymethyl cellulose (CMC), tragacanth, and saalab hydrocolloids in two concentrations (0.3%, 0.7%) and different frying media, refined canola oil (RCO), RCO + 1% bene kernel oil (BKO), and RCO + 1 mg/l unsaponifiable matter (USM) of BKO on acrylamide formation in fried potato slices. The hydrocolloid coatings significantly reduced acrylamide formation in potatoes fried in all oils. Increasing the hydrocolloid concentration from 0.3% to 0.7% produced no effective inhibition of acrylamide. The 0.7 % CMC solution was identified as the most promising inhibitor of acrylamide formation in RCO oil, with a 62.9% reduction in acrylamide content. The addition of BKO or USM to RCO led to a noticeable reduction in the acrylamide level in fried potato slices. The findings suggest that a 0.7% CMC solution and RCO+USM are promising inhibitors of acrylamide formation in fried potato products.Keywords: CMC, frying, potato, saalab, tracaganth
Procedia PDF Downloads 2881334 Using AI to Advance Factory Planning: A Case Study to Identify Success Factors of Implementing an AI-Based Demand Planning Solution
Authors: Ulrike Dowie, Ralph Grothmann
Abstract:
Rational planning decisions are based upon forecasts. Precise forecasting has, therefore, a central role in business. The prediction of customer demand is a prime example. This paper introduces recurrent neural networks to model customer demand and combines the forecast with uncertainty measures to derive decision support of the demand planning department. It identifies and describes the keys to the successful implementation of an AI-based solution: bringing together data with business knowledge, AI methods, and user experience, and applying agile software development practices.Keywords: agile software development, AI project success factors, deep learning, demand forecasting, forecast uncertainty, neural networks, supply chain management
Procedia PDF Downloads 191