Search results for: accounting profession
11 A Proposed Framework for Better Managing Small Group Projects on an Undergraduate Foundation Programme at an International University Campus
Authors: Sweta Rout-Hoolash
Abstract:
Each year, selected students from around 20 countries begin their degrees at Middlesex University with the International Foundation Program (IFP), developing the skills required for academic study at a UK university. The IFP runs for 30 learning/teaching weeks at Middlesex University Mauritius Branch Campus, which is an international campus of UK’s Middlesex University. Successful IFP students join their degree courses already settled into life at their chosen campus (London, Dubai, Mauritius or Malta) and confident that they understand what is required for degree study. Although part of the School of Science and Technology, in Mauritius it prepares students for undergraduate level across all Schools represented on campus – including disciplines such as Accounting, Business, Computing, Law, Media and Psychology. The researcher has critically reviewed the framework and resources in the curriculum for a particular six week period of IFP study (dedicated group work phase). Despite working together closely for 24 weeks, IFP students approach the final 6 week small group work project phase with mainly inhibitive feelings. It was observed that students did not engage effectively in the group work exercise. Additionally, groups who seemed to be working well did not necessarily produce results reflecting effective collaboration, nor individual members’ results which were better than prior efforts. The researcher identified scope for change and innovation in the IFP curriculum and how group work is introduced and facilitated. The study explores the challenges of groupwork in the context of the Mauritius campus, though it is clear that the implications of the project are not restricted to one campus only. The presentation offers a reflective review on the previous structure put in place for the management of small group assessed projects on the programme from both the student and tutor perspective. The focus of the research perspective is the student voice, by taking into consideration past and present IFP students’ experiences as written in their learning journals. Further, it proposes the introduction of a revised framework to help students take greater ownership of the group work process in order to engage more effectively with the learning outcomes of this crucial phase of the programme. The study has critically reviewed recent and seminal literature on how to achieve greater student ownership during this phase especially under an environment of assessed multicultural group work. The presentation proposes several new approaches for encouraging students to take more control of the collaboration process. Detailed consideration is given to how the proposed changes impact on the work of other stakeholders, or partners to student learning. Clear proposals are laid out for evaluation of the different approaches intended to be implemented during the upcoming academic year (student voice through their own submitted reflections, focus group interviews and through the assessment results). The proposals presented are all realistic and have the potential to transform students’ learning. Furthermore, the study has engaged with the UK Professional Standards Framework for teaching and supporting learning in higher education, and demonstrates practice at the level of ‘fellow’ of the Higher Education Academy (HEA).Keywords: collaborative peer learning, enhancing learning experiences, group work assessment, learning communities, multicultural diverse classrooms, studying abroad
Procedia PDF Downloads 32610 Exploring Behavioural Biases among Indian Investors: A Qualitative Inquiry
Authors: Satish Kumar, Nisha Goyal
Abstract:
In the stock market, individual investors exhibit different kinds of behaviour. Traditional finance is built on the notion of 'homo economics', which states that humans always make perfectly rational choices to maximize their wealth and minimize risk. That is, traditional finance has concern for how investors should behave rather than how actual investors are behaving. Behavioural finance provides the explanation for this phenomenon. Although finance has been studied for thousands of years, behavioural finance is an emerging field that combines the behavioural or psychological aspects with conventional economic and financial theories to provide explanations on how emotions and cognitive factors influence investors’ behaviours. These emotions and cognitive factors are known as behavioural biases. Because of these biases, investors make irrational investment decisions. Besides, the emotional and cognitive factors, the social influence of media as well as friends, relatives and colleagues also affect investment decisions. Psychological factors influence individual investors’ investment decision making, but few studies have used qualitative methods to understand these factors. The aim of this study is to explore the behavioural factors or biases that affect individuals’ investment decision making. For the purpose of this exploratory study, an in-depth interview method was used because it provides much more exhaustive information and a relaxed atmosphere in which people feel more comfortable to provide information. Twenty investment advisors having a minimum 5 years’ experience in securities firms were interviewed. In this study, thematic content analysis was used to analyse interview transcripts. Thematic content analysis process involves analysis of transcripts, coding and identification of themes from data. Based on the analysis we categorized the statements of advisors into various themes. Past market returns and volatility; preference for safe returns; tendency to believe they are better than others; tendency to divide their money into different accounts/assets; tendency to hold on to loss-making assets; preference to invest in familiar securities; tendency to believe that past events were predictable; tendency to rely on the reference point; tendency to rely on other sources of information; tendency to have regret for making past decisions; tendency to have more sensitivity towards losses than gains; tendency to rely on own skills; tendency to buy rising stocks with the expectation that this rise will continue etc. are some of the major concerns showed by experts about investors. The findings of the study revealed 13 biases such as overconfidence bias, disposition effect, familiarity bias, framing effect, anchoring bias, availability bias, self-attribution bias, representativeness, mental accounting, hindsight bias, regret aversion, loss aversion and herding bias/media biases present in Indian investors. These biases have a negative connotation because they produce a distortion in the calculation of an outcome. These biases are classified under three categories such as cognitive errors, emotional biases and social interaction. The findings of this study may assist both financial service providers and researchers to understand the various psychological biases of individual investors in investment decision making. Additionally, individual investors will also be aware of the behavioural biases that will aid them to make sensible and efficient investment decisions.Keywords: financial advisors, individual investors, investment decisions, psychological biases, qualitative thematic content analysis
Procedia PDF Downloads 1679 Use of Machine Learning Algorithms to Pediatric MR Images for Tumor Classification
Authors: I. Stathopoulos, V. Syrgiamiotis, E. Karavasilis, A. Ploussi, I. Nikas, C. Hatzigiorgi, K. Platoni, E. P. Efstathopoulos
Abstract:
Introduction: Brain and central nervous system (CNS) tumors form the second most common group of cancer in children, accounting for 30% of all childhood cancers. MRI is the key imaging technique used for the visualization and management of pediatric brain tumors. Initial characterization of tumors from MRI scans is usually performed via a radiologist’s visual assessment. However, different brain tumor types do not always demonstrate clear differences in visual appearance. Using only conventional MRI to provide a definite diagnosis could potentially lead to inaccurate results, and so histopathological examination of biopsy samples is currently considered to be the gold standard for obtaining definite diagnoses. Machine learning is defined as the study of computational algorithms that can use, complex or not, mathematical relationships and patterns from empirical and scientific data to make reliable decisions. Concerning the above, machine learning techniques could provide effective and accurate ways to automate and speed up the analysis and diagnosis for medical images. Machine learning applications in radiology are or could potentially be useful in practice for medical image segmentation and registration, computer-aided detection and diagnosis systems for CT, MR or radiography images and functional MR (fMRI) images for brain activity analysis and neurological disease diagnosis. Purpose: The objective of this study is to provide an automated tool, which may assist in the imaging evaluation and classification of brain neoplasms in pediatric patients by determining the glioma type, grade and differentiating between different brain tissue types. Moreover, a future purpose is to present an alternative way of quick and accurate diagnosis in order to save time and resources in the daily medical workflow. Materials and Methods: A cohort, of 80 pediatric patients with a diagnosis of posterior fossa tumor, was used: 20 ependymomas, 20 astrocytomas, 20 medulloblastomas and 20 healthy children. The MR sequences used, for every single patient, were the following: axial T1-weighted (T1), axial T2-weighted (T2), FluidAttenuated Inversion Recovery (FLAIR), axial diffusion weighted images (DWI), axial contrast-enhanced T1-weighted (T1ce). From every sequence only a principal slice was used that manually traced by two expert radiologists. Image acquisition was carried out on a GE HDxt 1.5-T scanner. The images were preprocessed following a number of steps including noise reduction, bias-field correction, thresholding, coregistration of all sequences (T1, T2, T1ce, FLAIR, DWI), skull stripping, and histogram matching. A large number of features for investigation were chosen, which included age, tumor shape characteristics, image intensity characteristics and texture features. After selecting the features for achieving the highest accuracy using the least number of variables, four machine learning classification algorithms were used: k-Nearest Neighbour, Support-Vector Machines, C4.5 Decision Tree and Convolutional Neural Network. The machine learning schemes and the image analysis are implemented in the WEKA platform and MatLab platform respectively. Results-Conclusions: The results and the accuracy of images classification for each type of glioma by the four different algorithms are still on process.Keywords: image classification, machine learning algorithms, pediatric MRI, pediatric oncology
Procedia PDF Downloads 1478 Utilization of Informatics to Transform Clinical Data into a Simplified Reporting System to Examine the Analgesic Prescribing Practices of a Single Urban Hospital’s Emergency Department
Authors: Rubaiat S. Ahmed, Jemer Garrido, Sergey M. Motov
Abstract:
Clinical informatics (CI) enables the transformation of data into a systematic organization that improves the quality of care and the generation of positive health outcomes.Innovative technology through informatics that compiles accurate data on analgesic utilization in the emergency department can enhance pain management in this important clinical setting. We aim to establish a simplified reporting system through CI to examine and assess the analgesic prescribing practices in the EDthrough executing a U.S. federal grant project on opioid reduction initiatives. Queried data points of interest from a level-one trauma ED’s electronic medical records were used to create data sets and develop informational/visual reporting dashboards (on Microsoft Excel and Google Sheets) concerning analgesic usage across several pre-defined parameters and performance metrics using CI. The data was then qualitatively analyzed to evaluate ED analgesic prescribing trends by departmental clinicians and leadership. During a 12-month reporting period (Dec. 1, 2020 – Nov. 30, 2021) for the ongoing project, about 41% of all ED patient visits (N = 91,747) were for pain conditions, of which 81.6% received analgesics in the ED and at discharge (D/C). Of those treated with analgesics, 24.3% received opioids compared to 75.7% receiving opioid alternatives in the ED and at D/C, including non-pharmacological modalities. Demographics showed among patients receiving analgesics, 56.7% were aged between 18-64, 51.8% were male, 51.7% were white, and 66.2% had government funded health insurance. Ninety-one percent of all opioids prescribed were in the ED, with intravenous (IV) morphine, IV fentanyl, and morphine sulfate immediate release (MSIR) tablets accounting for 88.0% of ED dispensed opioids. With 9.3% of all opioids prescribed at D/C, MSIR was dispensed 72.1% of the time. Hydrocodone, oxycodone, and tramadol usage to only 10-15% of the time, and hydromorphone at 0%. Of opioid alternatives, non-steroidal anti-inflammatory drugs were utilized 60.3% of the time, 23.5% with local anesthetics and ultrasound-guided nerve blocks, and 7.9% with acetaminophen as the primary non-opioid drug categories prescribed by ED providers. Non-pharmacological analgesia included virtual reality and other modalities. An average of 18.5 ED opioid orders and 1.9 opioid D/C prescriptions per 102.4 daily ED patient visits was observed for the period. Compared to other specialties within our institution, 2.0% of opioid D/C prescriptions are given by ED providers, compared to the national average of 4.8%. Opioid alternatives accounted for 69.7% and 30.3% usage, versus 90.7% and 9.3% for opioids in the ED and D/C, respectively.There is a pressing need for concise, relevant, and reliable clinical data on analgesic utilization for ED providers and leadership to evaluate prescribing practices and make data-driven decisions. Basic computer software can be used to create effective visual reporting dashboards with indicators that convey relevant and timely information in an easy-to-digest manner. We accurately examined our ED's analgesic prescribing practices using CI through dashboard reporting. Such reporting tools can quickly identify key performance indicators and prioritize data to enhance pain management and promote safe prescribing practices in the emergency setting.Keywords: clinical informatics, dashboards, emergency department, health informatics, healthcare informatics, medical informatics, opioids, pain management, technology
Procedia PDF Downloads 1447 Benzenepropanamine Analogues as Non-detergent Microbicidal Spermicide for Effective Pre-exposure Prophylaxis
Authors: Veenu Bala, Yashpal S. Chhonker, Bhavana Kushwaha, Rabi S. Bhatta, Gopal Gupta, Vishnu L. Sharma
Abstract:
According to UNAIDS 2013 estimate nearly 52% of all individuals living with HIV are now women of reproductive age (15–44 years). Seventy-five percent cases of HIV acquisition are through heterosexual contacts and sexually transmitted infections (STIs), attributable to unsafe sexual behaviour. Each year, an estimated 500 million people acquire atleast one of four STIs: chlamydia, gonorrhoea, syphilis and trichomoniasis. Trichomonas vaginalis (TV) is exclusively sexually transmitted in adults, accounting for 30% of STI cases and associated with pelvic inflammatory disease (PID), vaginitis and pregnancy complications in women. TV infection resulted in impaired vaginal milieu, eventually favoring HIV transmission. In the absence of an effective prophylactic HIV vaccine, prevention of new infections has become a priority. It was thought worthwhile to integrate HIV prevention and reproductive health services including unintended pregnancy protection for women as both are related with unprotected sex. Initially, nonoxynol-9 (N-9) had been proposed as a spermicidal agent with microbicidal activity but on the contrary it increased HIV susceptibility due to surfactant action. Thus, to accomplish an urgent need of novel woman controlled non-detergent microbicidal spermicides benzenepropanamine analogues have been synthesized. At first, five benzenepropanamine-dithiocarbamate hybrids have been synthesized and evaluated for their spermicidal, anti-Trichomonas and anti-fungal activities along with safety profiling to cervicovaginal cells. In order to further enhance the scope of above study benzenepropanamine was hybridized with thiourea as to introduce anti-HIV potential. The synthesized hybrid molecules were evaluated for their reverse transcriptase (RT) inhibition, spermicidal, anti-Trichomonas and antimicrobial activities as well as their safety against vaginal flora and cervical cells. simulated vaginal fluid (SVF) stability and pharmacokinetics of most potent compound versus N-9 was examined in female Newzealand (NZ) rabbits to observe its absorption into systemic circulation and subsequent exposure in blood plasma through vaginal wall. The study resulted in the most promising compound N-butyl-4-(3-oxo-3-phenylpropyl) piperazin-1-carbothioamide (29) exhibiting better activity profile than N-9 as it showed RT inhibition (72.30 %), anti-Trichomonas (MIC, 46.72 µM against MTZ susceptible and MIC, 187.68 µM against resistant strain), spermicidal (MEC, 0.01%) and antifungal activity (MIC, 3.12–50 µg/mL) against four fungal strains. The high safety against vaginal epithelium (HeLa cells) and compatibility with vaginal flora (lactobacillus), SVF stability and least vaginal absorption supported its suitability for topical vaginal application. Docking study was performed to gain an insight into the binding mode and interactions of the most promising compound, N-butyl-4-(3-oxo-3-phenylpropyl) piperazin-1-carbothioamide (29) with HIV-1 Reverse Transcriptase. The docking study has revealed that compound (29) interacted with HIV-1 RT similar to standard drug Nevirapine. It may be concluded that hybridization of benzenepropanamine and thiourea moiety resulted into novel lead with multiple activities including RT inhibition. A further lead optimization may result into effective vaginal microbicides having spermicidal, anti-Trichomonas, antifungal and anti-HIV potential altogether with enhanced safety to cervico-vaginal cells in comparison to Nonoxynol-9.Keywords: microbicidal, nonoxynol-9, reverse transcriptase, spermicide
Procedia PDF Downloads 3436 Global Evidence on the Seasonality of Enteric Infections, Malnutrition, and Livestock Ownership
Authors: Aishwarya Venkat, Anastasia Marshak, Ryan B. Simpson, Elena N. Naumova
Abstract:
Livestock ownership is simultaneously linked to improved nutritional status through increased availability of animal-source protein, and increased risk of enteric infections through higher exposure to contaminated water sources. Agrarian and agro-pastoral households, especially those with cattle, goats, and sheep, are highly dependent on seasonally various environmental conditions, which directly impact nutrition and health. This study explores global spatiotemporally explicit evidence regarding the relationship between livestock ownership, enteric infections, and malnutrition. Seasonal and cyclical fluctuations, as well as mediating effects, are further examined to elucidate health and nutrition outcomes of individual and communal livestock ownership. The US Agency for International Development’s Demographic and Health Surveys (DHS) and the United Nations International Children's Emergency Fund’s Multi-Indicator Cluster Surveys (MICS) provide valuable sources of household-level information on anthropometry, asset ownership, and disease outcomes. These data are especially important in data-sparse regions, where surveys may only be conducted in the aftermath of emergencies. Child-level disease history, anthropometry, and household-level asset ownership information have been collected since DHS-V (2003-present) and MICS-III (2005-present). This analysis combines over 15 years of survey data from DHS and MICS to study 2,466,257 children under age five from 82 countries. Subnational (administrative level 1) measures of diarrhea prevalence, mean livestock ownership by type, mean and median anthropometric measures (height for age, weight for age, and weight for height) were investigated. Effects of several environmental, market, community, and household-level determinants were studied. Such covariates included precipitation, temperature, vegetation, the market price of staple cereals and animal source proteins, conflict events, livelihood zones, wealth indices and access to water, sanitation, hygiene, and public health services. Children aged 0 – 6 months, 6 months – 2 years, and 2 – 5 years of age were compared separately. All observations were standardized to interview day of year, and administrative units were harmonized for consistent comparisons over time. Geographically weighted regressions were constructed for each outcome and subnational unit. Preliminary results demonstrate the importance of accounting for seasonality in concurrent assessments of malnutrition and enteric infections. Household assets, including livestock, often determine the intensity of these outcomes. In many regions, livestock ownership affects seasonal fluxes in malnutrition and enteric infections, which are also directly affected by environmental and local factors. Regression analysis demonstrates the spatiotemporal variability in nutrition outcomes due to a variety of causal factors. This analysis presents a synthesis of evidence from global survey data on the interrelationship between enteric infections, malnutrition, and livestock. These results provide a starting point for locally appropriate interventions designed to address this nexus in a timely manner and simultaneously improve health, nutrition, and livelihoods.Keywords: diarrhea, enteric infections, households, livestock, malnutrition, seasonality
Procedia PDF Downloads 1265 Enabling Wire Arc Additive Manufacturing in Aircraft Landing Gear Production and Its Benefits
Authors: Jun Wang, Chenglei Diao, Emanuele Pagone, Jialuo Ding, Stewart Williams
Abstract:
As a crucial component in aircraft, landing gear systems are responsible for supporting the plane during parking, taxiing, takeoff, and landing. Given the need for high load-bearing capacity over extended periods, 300M ultra-high strength steel (UHSS) is often the material of choice for crafting these systems due to its exceptional strength, toughness, and fatigue resistance. In the quest for cost-effective and sustainable manufacturing solutions, Wire Arc Additive Manufacturing (WAAM) emerges as a promising alternative for fabricating 300M UHSS landing gears. This is due to its advantages in near-net-shape forming of large components, cost-efficiency, and reduced lead times. Cranfield University has conducted an extensive preliminary study on WAAM 300M UHSS, covering feature deposition, interface analysis, and post-heat treatment. Both Gas Metal Arc (GMA) and Plasma Transferred Arc (PTA)-based WAAM methods were explored, revealing their feasibility for defect-free manufacturing. However, as-deposited 300M features showed lower strength but higher ductility compared to their forged counterparts. Subsequent post-heat treatments were effective in normalising the microstructure and mechanical properties, meeting qualification standards. A 300M UHSS landing gear demonstrator was successfully created using PTA-based WAAM, showcasing the method's precision and cost-effectiveness. The demonstrator, measuring Ф200mm x 700mm, was completed in 16 hours, using 7 kg of material at a deposition rate of 1.3kg/hr. This resulted in a significant reduction in the Buy-to-Fly (BTF) ratio compared to traditional manufacturing methods, further validating WAAM's potential for this application. A "cradle-to-gate" environmental impact assessment, which considers the cumulative effects from raw material extraction to customer shipment, has revealed promising outcomes. Utilising Wire Arc Additive Manufacturing (WAAM) for landing gear components significantly reduces the need for raw material extraction and refinement compared to traditional subtractive methods. This, in turn, lessens the burden on subsequent manufacturing processes, including heat treatment, machining, and transportation. Our estimates indicate that the carbon footprint of the component could be halved when switching from traditional machining to WAAM. Similar reductions are observed in embodied energy consumption and other environmental impact indicators, such as emissions to air, water, and land. Additionally, WAAM offers the unique advantage of part repair by redepositing only the necessary material, a capability not available through conventional methods. Our research shows that WAAM-based repairs can drastically reduce environmental impact, even when accounting for additional transportation for repairs. Consequently, WAAM emerges as a pivotal technology for reducing environmental impact in manufacturing, aiding the industry in its crucial and ambitious journey towards Net Zero. This study paves the way for transformative benefits across the aerospace industry, as we integrate manufacturing into a hybrid solution that offers substantial savings and access to more sustainable technologies for critical component production.Keywords: WAAM, aircraft landing gear, microstructure, mechanical performance, life cycle assessment
Procedia PDF Downloads 1574 A Quantitative Case Study Analysis of Store Format Contributors to U.S. County Obesity Prevalence in Virginia
Authors: Bailey Houghtaling, Sarah Misyak
Abstract:
Food access; the availability, affordability, convenience, and desirability of food and beverage products within communities, is influential on consumers’ purchasing and consumption decisions. These variables may contribute to lower dietary quality scores and a higher obesity prevalence documented among rural and disadvantaged populations in the United States (U.S.). Current research assessing linkages between food access and obesity outcomes has primarily focused on distance to a traditional grocery/supermarket store as a measure of optimality. However, low-income consumers especially, including U.S. Department of Agriculture’s Supplemental Nutrition Assistance Program (SNAP) participants, seem to utilize non-traditional food store formats with greater frequency for household dietary needs. Non-traditional formats have been associated with less nutritious food and beverage options and consumer purchases that are high in saturated fats, added sugars, and sodium. Authors’ formative research indicated differences by U.S. region and rurality in the distribution of traditional and non-traditional SNAP-authorized food store formats. Therefore, using Virginia as a case study, the purpose of this research was to determine if a relationship between store format, rurality, and obesity exists. This research applied SNAP-authorized food store data (food access points for SNAP as well as non-SNAP consumers) and obesity prevalence data by Virginia county using publicly available databases: (1) SNAP Retailer Locator, and; (2) U.S. County Health Rankings. The alpha level was set a priori at 0.05. All Virginia SNAP-authorized stores (n=6,461) were coded by format – grocery, drug, mass merchandiser, club, convenience, dollar, supercenter, specialty, farmers market, independent grocer, and non-food store. Simple linear regression was applied primarily to assess the relationship between store format and obesity. Thereafter, multiple variables were added to the regression to account for potential moderating relationships (e.g., county income, rurality). Convenience, dollar, non-food or restaurant, mass merchandiser, farmers market, and independent grocer formats were significantly, positively related to obesity prevalence. Upon controlling for urban-rural status and income, results indicated the following formats to be significantly related to county obesity prevalence with a small, positive effect: convenience (p=0.010), accounting for 0.3% of the variance in obesity prevalence; dollar (p=0.005; 0.5% of the variance), and; non-food (p=0.030; 1.3% of the variance) formats. These results align with current literature on consumer behavior at non-traditional formats. For example, consumers’ food and beverage purchases at convenience and dollar stores are documented to be high in saturated fats, added sugars, and sodium. Further, non-food stores (i.e., quick-serve restaurants) often contribute to a large portion of U.S. consumers’ dietary intake and thus poor dietary quality scores. Current food access research investigates grocery/supermarket access and obesity outcomes. These results suggest more research is needed that focuses on non-traditional food store formats. Nutrition interventions within convenience, dollar, and non-food stores, for example, that aim to enhance not only healthy food access but the affordability, convenience, and desirability of nutritious food and beverage options may impact obesity rates in Virginia. More research is warranted utilizing the presented investigative framework in other U.S. and global regions to explore the role and the potential of non-traditional food store formats to prevent and reduce obesity.Keywords: food access, food store format, non-traditional food stores, obesity prevalence
Procedia PDF Downloads 1403 Classification Using Worldview-2 Imagery of Giant Panda Habitat in Wolong, Sichuan Province, China
Authors: Yunwei Tang, Linhai Jing, Hui Li, Qingjie Liu, Xiuxia Li, Qi Yan, Haifeng Ding
Abstract:
The giant panda (Ailuropoda melanoleuca) is an endangered species, mainly live in central China, where bamboos act as the main food source of wild giant pandas. Knowledge of spatial distribution of bamboos therefore becomes important for identifying the habitat of giant pandas. There have been ongoing studies for mapping bamboos and other tree species using remote sensing. WorldView-2 (WV-2) is the first high resolution commercial satellite with eight Multi-Spectral (MS) bands. Recent studies demonstrated that WV-2 imagery has a high potential in classification of tree species. The advanced classification techniques are important for utilising high spatial resolution imagery. It is generally agreed that object-based image analysis is a more desirable method than pixel-based analysis in processing high spatial resolution remotely sensed data. Classifiers that use spatial information combined with spectral information are known as contextual classifiers. It is suggested that contextual classifiers can achieve greater accuracy than non-contextual classifiers. Thus, spatial correlation can be incorporated into classifiers to improve classification results. The study area is located at Wuyipeng area in Wolong, Sichuan Province. The complex environment makes it difficult for information extraction since bamboos are sparsely distributed, mixed with brushes, and covered by other trees. Extensive fieldworks in Wuyingpeng were carried out twice. The first one was on 11th June, 2014, aiming at sampling feature locations for geometric correction and collecting training samples for classification. The second fieldwork was on 11th September, 2014, for the purposes of testing the classification results. In this study, spectral separability analysis was first performed to select appropriate MS bands for classification. Also, the reflectance analysis provided information for expanding sample points under the circumstance of knowing only a few. Then, a spatially weighted object-based k-nearest neighbour (k-NN) classifier was applied to the selected MS bands to identify seven land cover types (bamboo, conifer, broadleaf, mixed forest, brush, bare land, and shadow), accounting for spatial correlation within classes using geostatistical modelling. The spatially weighted k-NN method was compared with three alternatives: the traditional k-NN classifier, the Support Vector Machine (SVM) method and the Classification and Regression Tree (CART). Through field validation, it was proved that the classification result obtained using the spatially weighted k-NN method has the highest overall classification accuracy (77.61%) and Kappa coefficient (0.729); the producer’s accuracy and user’s accuracy achieve 81.25% and 95.12% for the bamboo class, respectively, also higher than the other methods. Photos of tree crowns were taken at sample locations using a fisheye camera, so the canopy density could be estimated. It is found that it is difficult to identify bamboo in the areas with a large canopy density (over 0.70); it is possible to extract bamboos in the areas with a median canopy density (from 0.2 to 0.7) and in a sparse forest (canopy density is less than 0.2). In summary, this study explores the ability of WV-2 imagery for bamboo extraction in a mountainous region in Sichuan. The study successfully identified the bamboo distribution, providing supporting knowledge for assessing the habitats of giant pandas.Keywords: bamboo mapping, classification, geostatistics, k-NN, worldview-2
Procedia PDF Downloads 3112 Evaluating Forecasting Strategies for Day-Ahead Electricity Prices: Insights From the Russia-Ukraine Crisis
Authors: Alexandra Papagianni, George Filis, Panagiotis Papadopoulos
Abstract:
The liberalization of the energy market and the increasing penetration of fluctuating renewables (e.g., wind and solar power) have heightened the importance of the spot market for ensuring efficient electricity supply. This is further emphasized by the EU’s goal of achieving net-zero emissions by 2050. The day-ahead market (DAM) plays a key role in European energy trading, accounting for 80-90% of spot transactions and providing critical insights for next-day pricing. Therefore, short-term electricity price forecasting (EPF) within the DAM is crucial for market participants to make informed decisions and improve their market positioning. Existing literature highlights out-of-sample performance as a key factor in assessing EPF accuracy, with influencing factors such as predictors, forecast horizon, model selection, and strategy. Several studies indicate that electricity demand is a primary price determinant, while renewable energy sources (RES) like wind and solar significantly impact price dynamics, often lowering prices. Additionally, incorporating data from neighboring countries, due to market coupling, further improves forecast accuracy. Most studies predict up to 24 steps ahead using hourly data, while some extend forecasts using higher-frequency data (e.g., half-hourly or quarter-hourly). Short-term EPF methods fall into two main categories: statistical and computational intelligence (CI) methods, with hybrid models combining both. While many studies use advanced statistical methods, particularly through different versions of traditional AR-type models, others apply computational techniques such as artificial neural networks (ANNs) and support vector machines (SVMs). Recent research combines multiple methods to enhance forecasting performance. Despite extensive research on EPF accuracy, a gap remains in understanding how forecasting strategy affects prediction outcomes. While iterated strategies are commonly used, they are often chosen without justification. This paper contributes by examining whether the choice of forecasting strategy impacts the quality of day-ahead price predictions, especially for multi-step forecasts. We evaluate both iterated and direct methods, exploring alternative ways of conducting iterated forecasts on benchmark and state-of-the-art forecasting frameworks. The goal is to assess whether these factors should be considered by end-users to improve forecast quality. We focus on the Greek DAM using data from July 1, 2021, to March 31, 2022. This period is chosen due to significant price volatility in Greece, driven by its dependence on natural gas and limited interconnection capacity with larger European grids. The analysis covers two phases: pre-conflict (January 1, 2022, to February 23, 2022) and post-conflict (February 24, 2022, to March 31, 2022), following the Russian-Ukraine conflict that initiated an energy crisis. We use the mean absolute percentage error (MAPE) and symmetric mean absolute percentage error (sMAPE) for evaluation, as well as the Direction of Change (DoC) measure to assess the accuracy of price movement predictions. Our findings suggest that forecasters need to apply all strategies across different horizons and models. Different strategies may be required for different horizons to optimize both accuracy and directional predictions, ensuring more reliable forecasts.Keywords: short-term electricity price forecast, forecast strategies, forecast horizons, recursive strategy, direct strategy
Procedia PDF Downloads 41 The Impact of Neighborhood Effects on the Economic Mobility of the Inhabitants of Three Segregated Communities in Salvador (Brazil)
Authors: Stephan Treuke
Abstract:
The paper analyses the neighbourhood effects on the economic mobility of the inhabitants of three segregated communities of Salvador (Brazil), in other words, the socio-economic advantages and disadvantages affecting the lives of poor people due to their embeddedness in specific socio-residential contexts. Recent studies performed in Brazilian metropolis have concentrated on the structural dimensions of negative externalities in order to explain neighbourhood-level variations in a field of different phenomena (delinquency, violence, access to the labour market and education) in spatial isolated and socially homogeneous slum areas (favelas). However, major disagreement remains whether the contiguity between residents of poor neighbourhoods and higher-class condominio-dwellers provides structures of opportunities or whether it fosters socio-spatial stigmatization. Based on a set of interviews, investigating the variability of interpersonal networks and their activation in the struggle for economic inclusion, the study confirms that the proximity of Nordeste de Amaralina to middle-/upper-class communities affects positively the access to labour opportunities. Nevertheless, residential stigmatization, as well as structures of social segmentation, annihilate these potentials. The lack of exposition to individuals and groups extrapolating from the favela’s social, educational and cultural context restricts the structures of opportunities to local level. Therefore, residents´ interpersonal networks reveal a high degree of redundancy and localism, based on bonding ties connecting family and neighbourhood members. The resilience of segregational structures in Plataforma contributes to the naturalization of social distance patters. It’s embeddedness in a socially homogeneous residential area (Subúrbio Ferroviário), growing informally and beyond official urban politics, encourages the construction of isotopic patterns of sociability, sharing the same values, social preferences, perspectives and behaviour models. Whereas it’s spatial isolation correlates with the scarcity of economic opportunities, the social heterogeneity of Fazenda Grande II interviewees and the socialising effects of public institutions mitigate the negative repercussions of segregation. The networks’ composition admits a higher degree of heterophilia and a greater proportion of bridging ties accounting for the access to broader information actives and facilitating economic mobility. The variability observed within the three different scenarios urges to reflect about the responsability of urban politics when it comes to the prevention or consolidation of the social segregation process in Salvador. Instead of promoting the local development of the favela Plataforma, public housing programs priorize technocratic habitational solutions without providing the residents’ socio-economic integration. The impact of negative externalities related to the homogeneously poor neighbourhood is potencialized in peripheral areas, turning its’ inhabitants socially invisible, thus being isolated from other social groups. The example of Nordeste de Amaralina portrays the failing interest of urban politics to bridge the social distances structuring the brazilian society’s rigid stratification model, founded on mecanisms of segmentation (unequal access to labour market and education system, public transport, social security and law protection) and generating permanent conflicts between the two socioeconomically distant groups living in geographic contiguity. Finally, in the case of Fazenda Grande II, the public investments in both housing projects and complementary infrastructure (e.g. schools, hospitals, community center, police stations, recreation areas) contributes to the residents’ socio-economic inclusion.Keywords: economic mobility, neighborhood effects, Salvador, segregation
Procedia PDF Downloads 278