Search results for: salt spray
22 Immobilization of Superoxide Dismutase Enzyme on Layered Double Hydroxide Nanoparticles
Authors: Istvan Szilagyi, Marko Pavlovic, Paul Rouster
Abstract:
Antioxidant enzymes are the most efficient defense systems against reactive oxygen species, which cause severe damage in living organisms and industrial products. However, their supplementation is problematic due to their high sensitivity to the environmental conditions. Immobilization on carrier nanoparticles is a promising research direction towards the improvement of their functional and colloidal stability. In that way, their applications in biomedical treatments and manufacturing processes in the food, textile and cosmetic industry can be extended. The main goal of the present research was to prepare and formulate antioxidant bionanocomposites composed of superoxide dismutase (SOD) enzyme, anionic clay (layered double hydroxide, LDH) nanoparticle and heparin (HEP) polyelectrolyte. To characterize the structure and the colloidal stability of the obtained compounds in suspension and solid state, electrophoresis, dynamic light scattering, transmission electron microscopy, spectrophotometry, thermogravimetry, X-ray diffraction, infrared and fluorescence spectroscopy were used as experimental techniques. LDH-SOD composite was synthesized by enzyme immobilization on the clay particles via electrostatic and hydrophobic interactions, which resulted in a strong adsorption of the SOD on the LDH surface, i.e., no enzyme leakage was observed once the material was suspended in aqueous solutions. However, the LDH-SOD showed only limited resistance against salt-induced aggregation and large irregularly shaped clusters formed during short term interval even at lower ionic strengths. Since sufficiently high colloidal stability is a key requirement in most of the applications mentioned above, the nanocomposite was coated with HEP polyelectrolyte to develop highly stable suspensions of primary LDH-SOD-HEP particles. HEP is a natural anticoagulant with one of the highest negative line charge density among the known macromolecules. The experimental results indicated that it strongly adsorbed on the oppositely charged LDH-SOD surface leading to charge inversion and to the formation of negatively charged LDH-SOD-HEP. The obtained hybrid materials formed stable suspension even under extreme conditions, where classical colloid chemistry theories predict rapid aggregation of the particles and unstable suspensions. Such a stabilization effect originated from electrostatic repulsion between the particles of the same sign of charge as well as from steric repulsion due to the osmotic pressure raised during the overlap of the polyelectrolyte chains adsorbed on the surface. In addition, the SOD enzyme kept its structural and functional integrity during the immobilization and coating processes and hence, the LDH-SOD-HEP bionanocomposite possessed excellent activity in decomposition of superoxide radical anions, as revealed in biochemical test reactions. In conclusion, due to the improved colloidal stability and the good efficiency in scavenging superoxide radical ions, the developed enzymatic system is a promising antioxidant candidate for biomedical or other manufacturing processes, wherever the aim is to decompose reactive oxygen species in suspensions.Keywords: clay, enzyme, polyelectrolyte, formulation
Procedia PDF Downloads 26821 Seawater Desalination for Production of Highly Pure Water Using a Hydrophobic PTFE Membrane and Direct Contact Membrane Distillation (DCMD)
Authors: Ahmad Kayvani Fard, Yehia Manawi
Abstract:
Qatar’s primary source of fresh water is through seawater desalination. Amongst the major processes that are commercially available on the market, the most common large scale techniques are Multi-Stage Flash distillation (MSF), Multi Effect distillation (MED), and Reverse Osmosis (RO). Although commonly used, these three processes are highly expensive down to high energy input requirements and high operating costs allied with maintenance and stress induced on the systems in harsh alkaline media. Beside that cost, environmental footprint of these desalination techniques are significant; from damaging marine eco-system, to huge land use, to discharge of tons of GHG and huge carbon footprint. Other less energy consuming techniques based on membrane separation are being sought to reduce both the carbon footprint and operating costs is membrane distillation (MD). Emerged in 1960s, MD is an alternative technology for water desalination attracting more attention since 1980s. MD process involves the evaporation of a hot feed, typically below boiling point of brine at standard conditions, by creating a water vapor pressure difference across the porous, hydrophobic membrane. Main advantages of MD compared to other commercially available technologies (MSF and MED) and specially RO are reduction of membrane and module stress due to absence of trans-membrane pressure, less impact of contaminant fouling on distillate due to transfer of only water vapor, utilization of low grade or waste heat from oil and gas industries to heat up the feed up to required temperature difference across the membrane, superior water quality, and relatively lower capital and operating cost. To achieve the objective of this study, state of the art flat-sheet cross-flow DCMD bench scale unit was designed, commissioned, and tested. The objective of this study is to analyze the characteristics and morphology of the membrane suitable for DCMD through SEM imaging and contact angle measurement and to study the water quality of distillate produced by DCMD bench scale unit. Comparison with available literature data is undertaken where appropriate and laboratory data is used to compare a DCMD distillate quality with that of other desalination techniques and standards. Membrane SEM analysis showed that the PTFE membrane used for the study has contact angle of 127º with highly porous surface supported with less porous and bigger pore size PP membrane. Study on the effect of feed solution (salinity) and temperature on water quality of distillate produced from ICP and IC analysis showed that with any salinity and different feed temperature (up to 70ºC) the electric conductivity of distillate is less than 5 μS/cm with 99.99% salt rejection and proved to be feasible and effective process capable of consistently producing high quality distillate from very high feed salinity solution (i.e. 100000 mg/L TDS) even with substantial quality difference compared to other desalination methods such as RO and MSF.Keywords: membrane distillation, waste heat, seawater desalination, membrane, freshwater, direct contact membrane distillation
Procedia PDF Downloads 22720 Gas Systems of the Amadeus Basin, Australia
Authors: Chris J. Boreham, Dianne S. Edwards, Amber Jarrett, Justin Davies, Robert Poreda, Alex Sessions, John Eiler
Abstract:
The origins of natural gases in the Amadeus Basin have been assessed using molecular and stable isotope (C, H, N, He) systematics. A dominant end-member thermogenic, oil-associated gas is considered for the Ordovician Pacoota−Stairway sandstones of the Mereenie gas and oil field. In addition, an abiogenic end-member is identified in the latest Proterozoic lower Arumbera Sandstone of the Dingo gasfield, being most likely associated with radiolysis of methane with polymerisation to wet gases. The latter source assignment is based on a similar geochemical fingerprint derived from the laboratory gamma irradiation experiments on methane. A mixed gas source is considered for the Palm Valley gasfield in the Ordovician Pacoota Sandstone. Gas wetness (%∑C₂−C₅/∑C₁−C₅) decreases in the order Mereenie (19.1%) > Palm Valley (9.4%) > Dingo (4.1%). Non-produced gases at Magee-1 (23.5%; Late Proterozoic Heavitree Quartzite) and Mount Kitty-1 (18.9%; Paleo-Mesoproterozoic fractured granitoid basement) are very wet. Methane thermometry based on clumped isotopes of methane (¹³CDH₃) is consistent with the abiogenic origin for the Dingo gas field with methane formation temperature of 254ᵒC. However, the low methane formation temperature of 57°C for the Mereenie gas suggests either a mixed thermogenic-biogenic methane source or there is no thermodynamic equilibrium between the methane isotopomers. The shallow reservoir depth and present-day formation temperature below 80ᵒC would support microbial methanogenesis, but there is no accompanying alteration of the C- and H-isotopes of the wet gases and CO₂ that is typically associated with biodegradation. The Amadeus Basin gases show low to extremely high inorganic gas contents. Carbon dioxide is low in abundance (< 1% CO₂) and becomes increasing depleted in ¹³C from the Palm Valley (av. δ¹³C 0‰) to the Mereenie (av. δ¹³C -6.6‰) and Dingo (av. δ¹³C -14.3‰) gas fields. Although the wide range in carbon isotopes for CO₂ is consistent with multiple origins from inorganic to organic inputs, the most likely process is fluid-rock alteration with enrichment in ¹²C in the residual gaseous CO₂ accompanying progressive carbonate precipitation within the reservoir. Nitrogen ranges from low−moderate (1.7−9.9% N₂) abundance (Palm Valley av. 1.8%; Mereenie av. 9.1%; Dingo av. 9.4%) to extremely high abundance in Magee-1 (43.6%) and Mount Kitty-1 (61.0%). The nitrogen isotopes for the production gases have δ¹⁵N = -3.0‰ for Mereenie, -3.0‰ for Palm Valley and -7.1‰ for Dingo, suggest all being mixed inorganic and thermogenic nitrogen sources. Helium (He) abundance varies over a wide range from a low of 0.17% to one of the world’s highest at 9% (Mereenie av. 0.23%; Palm Valley av. 0.48%, Dingo av. 0.18%, Magee-1 6.2%; Mount Kitty-1 9.0%). Complementary helium isotopes (R/Ra = ³He/⁴Hesample / ³He/⁴Heair) range from 0.013 to 0.031 R/Ra, indicating a dominant crustal origin for helium with a sustained input of radiogenic 4He from the decomposition of U- and Th-bearing minerals, effectively diluting any original mantle helium input. The high helium content in the non-produced gases compared to the shallower producing wells most likely reflects their stratigraphic position relative to the Tonian Bitter Springs Group with the former below and the latter above an effective carbonate-salt seal.Keywords: amadeus gas, thermogenic, abiogenic, C, H, N, He isotopes
Procedia PDF Downloads 19519 Structural Molecular Dynamics Modelling of FH2 Domain of Formin DAAM
Authors: Rauan Sakenov, Peter Bukovics, Peter Gaszler, Veronika Tokacs-Kollar, Beata Bugyi
Abstract:
FH2 (formin homology-2) domains of several proteins, collectively known as formins, including DAAM, DAAM1 and mDia1, promote G-actin nucleation and elongation. FH2 domains of these formins exist as oligomers. Chain dimerization by ring structure formation serves as a structural basis for actin polymerization function of FH2 domain. Proper single chain configuration and specific interactions between its various regions are necessary for individual chains to form a dimer functional in G-actin nucleation and elongation. FH1 and WH2 domain-containing formins were shown to behave as intrinsically disordered proteins. Thus, the aim of this research was to study structural dynamics of FH2 domain of DAAM. To investigate structural features of FH2 domain of DAAM, molecular dynamics simulation of chain A of FH2 domain of DAAM solvated in water box in 50 mM NaCl was conducted at temperatures from 293.15 to 353.15K, with VMD 1.9.2, NAMD 2.14 and Amber Tools 21 using 2z6e and 1v9d PDB structures of DAAM was obtained on I-TASSER webserver. Calcium and ATP bound G-actin 3hbt PDB structure was used as a reference protein with well-described structural dynamics of denaturation. Topology and parameter information of CHARMM 2012 additive all-atom force fields for proteins, carbohydrate derivatives, water and ions were used in NAMD 2.14 and ff19SB force field for proteins in Amber Tools 21. The systems were energy minimized for the first 1000 steps, equilibrated and produced in NPT ensemble for 1ns using stochastic Langevin dynamics and the particle mesh Ewald method. Our root-mean square deviation (RMSD) analysis of molecular dynamics of chain A of FH2 domains of DAAM revealed similar insignificant changes of total molecular average RMSD values of FH2 domain of these formins at temperatures from 293.15 to 353.15K. In contrast, total molecular average RMSD values of G-actin showed considerable increase at 328K, which corresponds to the denaturation of G-actin molecule at this temperature and its transition from native, ordered, to denatured, disordered, state which is well-described in the literature. RMSD values of lasso and tail regions of chain A of FH2 domain of DAAM exhibited higher than total molecular average RMSD at temperatures from 293.15 to 353.15K. These regions are functional in intra- and interchain interactions and contain highly conserved tryptophan residues of lasso region, highly conserved GNYMN sequence of post region and amino acids of the shell of hydrophobic pocket of the salt bridge between Arg171 and Asp321, which are important for structural stability and ordered state of FH2 domain of DAAM and its functions in FH2 domain dimerization. In conclusion, higher than total molecular average RMSD values of lasso and post regions of chain A of FH2 domain of DAAM may explain disordered state of FH2 domain of DAAM at temperatures from 293.15 to 353.15K. Finally, absence of marked transition, in terms of significant changes in average molecular RMSD values between native and denatured states of FH2 domain of DAAM at temperatures from 293.15 to 353.15K, can make it possible to attribute these formins to the group of intrinsically disordered proteins rather than to the group of intrinsically ordered proteins such as G-actin.Keywords: FH2 domain, DAAM, formins, molecular modelling, computational biophysics
Procedia PDF Downloads 13618 The Applications of Zero Water Discharge (ZWD) Systems for Environmental Management
Authors: Walter W. Loo
Abstract:
China declared the “zero discharge rules which leave no toxics into our living environment and deliver blue sky, green land and clean water to many generations to come”. The achievement of ZWD will provide conservation of water, soil and energy and provide drastic increase in Gross Domestic Products (GDP). Our society’s engine needs a major tune up; it is sputtering. ZWD is achieved in world’s space stations – no toxic air emission and the water is totally recycled and solid wastes all come back to earth. This is all done with solar power. These are all achieved under extreme temperature, pressure and zero gravity in space. ZWD can be achieved on earth under much less fluctuations in temperature, pressure and normal gravity environment. ZWD systems are not expensive and will have multiple beneficial returns on investment which are both financially and environmentally acceptable. The paper will include successful case histories since the mid-1970s. ZWD discharge can be applied to the following types of projects: nuclear and coal fire power plants with a closed loop system that will eliminate thermal water discharge; residential communities with wastewater treatment sump and recycle the water use as a secondary water supply; waste water treatment Plants with complete water recycling including water distillation to produce distilled water by very economical 24-hours solar power plant. Landfill remediation is based on neutralization of landfilled gas odor and preventing anaerobic leachate formation. It is an aerobic condition which will render landfill gas emission explosion proof. Desert development is the development of recovering soil moisture from soil and completing a closed loop water cycle by solar energy within and underneath an enclosed greenhouse. Salt-alkali land development can be achieved by solar distillation of salty shallow water into distilled water. The distilled water can be used for soil washing and irrigation and complete a closed loop water cycle with energy and water conservation. Heavy metals remediation can be achieved by precipitation of dissolved toxic metals below the plant or vegetation root zone by solar electricity without pumping and treating. Soil and groundwater remediation - abandoned refineries, chemical and pesticide factories can be remediated by in-situ electrobiochemical and bioventing treatment method without pumping or excavation. Toxic organic chemicals are oxidized into carbon dioxide and heavy metals precipitated below plant and vegetation root zone. New water sources: low temperature distilled water can be recycled for repeated use within a greenhouse environment by solar distillation; nano bubble water can be made from the distilled water with nano bubbles of oxygen, nitrogen and carbon dioxide from air (fertilizer water) and also eliminate the use of pesticides because the nano oxygen will break the insect growth chain in the larvae state. Three dimensional high yield greenhouses can be constructed by complete water recycling using the vadose zone soil as a filter with no farming wastewater discharge.Keywords: greenhouses, no discharge, remediation of soil and water, wastewater
Procedia PDF Downloads 34417 Effect of the Incorporation of Modified Starch on the Physicochemical Properties and Consumer Acceptance of Puff Pastry
Authors: Alejandra Castillo-Arias, Santiago Amézquita-Murcia, Golber Carvajal-Lavi, Carlos M. Zuluaga-Domínguez
Abstract:
The intricate relationship between health and nutrition has driven the food industry to seek healthier and more sustainable alternatives. A key strategy currently employed is the reduction of saturated fats and the incorporation of ingredients that align with new consumer trends. Modified starch, a polysaccharide widely used in baking, also serves as a functional ingredient to boost dietary fiber content. However, its use in puff pastry remains challenging due to the technological difficulties in achieving a buttery pastry with the necessary strength to create thin, flaky layers. This study explored the potential of incorporating modified starch into puff pastry formulations. To evaluate the physicochemical properties of wheat flour mixed with modified starch, five different flour samples were prepared: T1, T2, T3, and T4, containing 10g, 20g, 30g, and 40g of modified starch per 100 g mixture, respectively, alongside a control sample (C) with no added starch. The analysis focused on various physicochemical indices, including the Water Absorption Index (WAI), Water Solubility Index (WSI), Swelling Power (SP), and Water Retention Capacity (WRC). The puff pastry was further characterized by color measurement and sensory analysis. For the preparation of the puff pastry dough, the flour, modified starch, and salt were mixed, followed by the addition of water until a homogenous dough was achieved. The margarine was later incorporated into the dough, which was folded and rolled multiple times to create the characteristic layers of puff pastry. The dough was then cut into equal pieces, baked at 170°C, and allowed to cool. The results indicated that the addition of modified starch did not significantly alter the specific volume or texture of the puff pastries, as reflected by the stable WAI and SP values across the samples. However, the WRC increased with higher starch content, highlighting the hydrophilic nature of the modified starch, which necessitated additional water during dough preparation. Color analysis revealed significant variations in the L* (lightness) and a* (red-green) parameters, with no consistent relationship between the modified starch treatments and the control. However, the b* (yellow-blue) parameter showed a strong correlation across most samples, except for treatment T3. Thus, modified starch affected the a* component of the CIELAB color spectrum, influencing the reddish hue of the puff pastries. Variations in baking time due to increased water content in the dough likely contributed to differences in lightness among the samples. Sensory analysis revealed that consumers preferred the sample with a 20% starch substitution (T2), which was rated similarly to the control in terms of texture. However, treatment T3 exhibited unusual behavior in texture analysis, and the color analysis showed that treatment T1 most closely resembled the control, indicating that starch addition is most noticeable to consumers in the visual aspect of the product. In conclusion, while the modified starch successfully maintained the desired texture and internal structure of puff pastry, its impact on water retention and color requires careful consideration in product formulation. This study underscores the importance of balancing product quality with consumer expectations when incorporating modified starches in baked goods.Keywords: consumer preferences, modified starch, physicochemical properties, puff pastry
Procedia PDF Downloads 2616 Role of Functional Divergence in Specific Inhibitor Design: Using γ-Glutamyltranspeptidase (GGT) as a Model Protein
Authors: Ved Vrat Verma, Rani Gupta, Manisha Goel
Abstract:
γ-glutamyltranspeptidase (GGT: EC 2.3.2.2) is an N-terminal nucleophile hydrolase conserved in all three domains of life. GGT plays a key role in glutathione metabolism where it catalyzes the breakage of the γ-glutamyl bonds and transfer of γ-glutamyl group to water (hydrolytic activity) or amino acids or short peptides (transpeptidase activity). GGTs from bacteria, archaea, and eukaryotes (human, rat and mouse) are homologous proteins sharing >50% sequence similarity and conserved four layered αββα sandwich like three dimensional structural fold. These proteins though similar in their structure to each other, are quite diverse in their enzyme activity: some GGTs are better at hydrolysis reactions but poor in transpeptidase activity, whereas many others may show opposite behaviour. GGT is known to be involved in various diseases like asthma, parkinson, arthritis, and gastric cancer. Its inhibition prior to chemotherapy treatments has been shown to sensitize tumours to the treatment. Microbial GGT is known to be a virulence factor too, important for the colonization of bacteria in host. However, all known inhibitors (mimics of its native substrate, glutamate) are highly toxic because they interfere with other enzyme pathways. However, a few successful efforts have been reported previously in designing species specific inhibitors. We aim to leverage the diversity seen in GGT family (pathogen vs. eukaryotes) for designing specific inhibitors. Thus, in the present study, we have used DIVERGE software to identify sites in GGT proteins, which are crucial for the functional and structural divergence of these proteins. Since, type II divergence sites vary in clade specific manner, so type II divergent sites were our focus of interest throughout the study. Type II divergent sites were identified for pathogen vs. eukaryotes clusters and sites were marked on clade specific representative structures HpGGT (2QM6) and HmGGT (4ZCG) of pathogen and eukaryotes clade respectively. The crucial divergent sites within 15 A radii of the binding cavity were highlighted, and in-silico mutations were performed on these sites to delineate the role of these sites on the mechanism of catalysis and protein folding. Further, the amino acid network (AAN) analysis was also performed by Cytoscape to delineate assortative mixing for cavity divergent sites which could strengthen our hypothesis. Additionally, molecular dynamics simulations were performed for wild complexes and mutant complexes close to physiological conditions (pH 7.0, 0.1 M ionic strength and 1 atm pressure) and the role of putative divergence sites and structural integrities of the homologous proteins have been analysed. The dynamics data were scrutinized in terms of RMSD, RMSF, non-native H-bonds and salt bridges. The RMSD, RMSF fluctuations of proteins complexes are compared, and the changes at protein ligand binding sites were highlighted. The outcomes of our study highlighted some crucial divergent sites which could be used for novel inhibitors designing in a species-specific manner. Since, for drug development, it is challenging to design novel drug by targeting similar protein which exists in eukaryotes, so this study could set up an initial platform to overcome this challenge and help to deduce the more effective targets for novel drug discovery.Keywords: γ-glutamyltranspeptidase, divergence, species-specific, drug design
Procedia PDF Downloads 26815 South African Breast Cancer Mutation Spectrum: Pitfalls to Copy Number Variation Detection Using Internationally Designed Multiplex Ligation-Dependent Probe Amplification and Next Generation Sequencing Panels
Authors: Jaco Oosthuizen, Nerina C. Van Der Merwe
Abstract:
The National Health Laboratory Services in Bloemfontien has been the diagnostic testing facility for 1830 patients for familial breast cancer since 1997. From the cohort, 540 were comprehensively screened using High-Resolution Melting Analysis or Next Generation Sequencing for the presence of point mutations and/or indels. Approximately 90% of these patients stil remain undiagnosed as they are BRCA1/2 negative. Multiplex ligation-dependent probe amplification was initially added to screen for copy number variation detection, but with the introduction of next generation sequencing in 2017, was substituted and is currently used as a confirmation assay. The aim was to investigate the viability of utilizing internationally designed copy number variation detection assays based on mostly European/Caucasian genomic data for use within a South African context. The multiplex ligation-dependent probe amplification technique is based on the hybridization and subsequent ligation of multiple probes to a targeted exon. The ligated probes are amplified using conventional polymerase chain reaction, followed by fragment analysis by means of capillary electrophoresis. The experimental design of the assay was performed according to the guidelines of MRC-Holland. For BRCA1 (P002-D1) and BRCA2 (P045-B3), both multiplex assays were validated, and results were confirmed using a secondary probe set for each gene. The next generation sequencing technique is based on target amplification via multiplex polymerase chain reaction, where after the amplicons are sequenced parallel on a semiconductor chip. Amplified read counts are visualized as relative copy numbers to determine the median of the absolute values of all pairwise differences. Various experimental parameters such as DNA quality, quantity, and signal intensity or read depth were verified using positive and negative patients previously tested internationally. DNA quality and quantity proved to be the critical factors during the verification of both assays. The quantity influenced the relative copy number frequency directly whereas the quality of the DNA and its salt concentration influenced denaturation consistency in both assays. Multiplex ligation-dependent probe amplification produced false positives due to ligation failure when ligation was inhibited due to a variant present within the ligation site. Next generation sequencing produced false positives due to read dropout when primer sequences did not meet optimal multiplex binding kinetics due to population variants in the primer binding site. The analytical sensitivity and specificity for the South African population have been proven. Verification resulted in repeatable reactions with regards to the detection of relative copy number differences. Both multiplex ligation-dependent probe amplification and next generation sequencing multiplex panels need to be optimized to accommodate South African polymorphisms present within the genetically diverse ethnic groups to reduce the false copy number variation positive rate and increase performance efficiency.Keywords: familial breast cancer, multiplex ligation-dependent probe amplification, next generation sequencing, South Africa
Procedia PDF Downloads 23114 Impact of Water Interventions under WASH Program in the South-west Coastal Region of Bangladesh
Authors: S. M. Ashikur Elahee, Md. Zahidur Rahman, Md. Shofiqur Rahman
Abstract:
This study evaluated the impact of different water interventions under WASH program on access of household's to safe drinking water. Following survey method, the study was carried out in two Upazila of South-west coastal region of Bangladesh namely Koyra from Khulna and Shymnagar from Satkhira district. Being an explanatory study, a total of 200 household's selected applying random sampling technique were interviewed using a structured interview schedule. The predicted probability suggests that around 62 percent household's are out of year-round access to safe drinking water whereby, only 25 percent household's have access at SPHERE standard (913 Liters/per person/per year). Besides, majority (78 percent) of the household's have not accessed at both indicators simultaneously. The distance from household residence to the water source varies from 0 to 25 kilometer with an average distance of 2.03 kilometers. The study also reveals that the increase in monthly income around BDT 1,000 leads to additional 11 liters (coefficient 0.01 at p < 0.1) consumption of safe drinking water for a person/year. As expected, lining up time has significant negative relationship with dependent variables i.e., for higher lining up time, the probability of getting access for both SPHERE standard and year round access variables becomes lower. According to ordinary least square (OLS) regression results, water consumption decreases at 93 liters for per person/year of a household if one member is added to that household. Regarding water consumption intensity, ordered logistic regression (OLR) model shows that one-minute increase of lining up time for water collection tends to reduce water consumption intensity. On the other hand, as per OLS regression results, for one-minute increase of lining up time, the water consumption decreases by around 8 liters. Considering access to Deep Tube Well (DTW) as a reference dummy, in OLR, the household under Pond Sand Filter (PSF), Shallow Tube Well (STW), Reverse Osmosis (RO) and Rainwater Harvester System (RWHS) are respectively 37 percent, 29 percent, 61 percent and 27 percent less likely to ensure year round access of water consumption. In line of health impact, different type of water born diseases like diarrhea, cholera, and typhoid are common among the coastal community caused by microbial impurities i.e., Bacteria, Protozoa. High turbidity and TDS in pond water caused by reduction of water depth, presence of suspended particle and inorganic salt stimulate the growth of bacteria, protozoa, and algae causes affecting health hazard. Meanwhile, excessive growth of Algae in pond water caused by excessive nitrate in drinking water adversely effects on child health. In lieu of ensuring access at SPHERE standard, we need to increase the number of water interventions at reasonable distance, preferably a half kilometer away from the dwelling place, ensuring community peoples involved with its installation process where collectively owned water intervention is found more effective than privately owned. In addition, a demand-responsive approach to supply of piped water should be adopted to allow consumer demand to guide investment in domestic water supply in future.Keywords: access, impact, safe drinking water, Sphere standard, water interventions
Procedia PDF Downloads 21913 Effect of Velocity-Slip in Nanoscale Electroosmotic Flows: Molecular and Continuum Transport Perspectives
Authors: Alper T. Celebi, Ali Beskok
Abstract:
Electroosmotic (EO) slip flows in nanochannels are investigated using non-equilibrium molecular dynamics (MD) simulations, and the results are compared with analytical solution of Poisson-Boltzmann and Stokes (PB-S) equations with slip contribution. The ultimate objective of this study is to show that well-known continuum flow model can accurately predict the EO velocity profiles in nanochannels using the slip lengths and apparent viscosities obtained from force-driven flow simulations performed at various liquid-wall interaction strengths. EO flow of aqueous NaCl solution in silicon nanochannels are simulated under realistic electrochemical conditions within the validity region of Poisson-Boltzmann theory. A physical surface charge density is determined for nanochannels based on dissociations of silanol functional groups on channel surfaces at known salt concentration, temperature and local pH. First, we present results of density profiles and ion distributions by equilibrium MD simulations, ensuring that the desired thermodynamic state and ionic conditions are satisfied. Next, force-driven nanochannel flow simulations are performed to predict the apparent viscosity of ionic solution between charged surfaces and slip lengths. Parabolic velocity profiles obtained from force-driven flow simulations are fitted to a second-order polynomial equation, where viscosity and slip lengths are quantified by comparing the coefficients of the fitted equation with continuum flow model. Presence of charged surface increases the viscosity of ionic solution while the velocity-slip at wall decreases. Afterwards, EO flow simulations are carried out under uniform electric field for different liquid-wall interaction strengths. Velocity profiles present finite slips near walls, followed with a conventional viscous flow profile in the electrical double layer that reaches a bulk flow region in the center of the channel. The EO flow enhances with increased slip at the walls, which depends on wall-liquid interaction strength and the surface charge. MD velocity profiles are compared with the predictions from analytical solutions of the slip modified PB-S equation, where the slip length and apparent viscosity values are obtained from force-driven flow simulations in charged silicon nano-channels. Our MD results show good agreements with the analytical solutions at various slip conditions, verifying the validity of PB-S equation in nanochannels as small as 3.5 nm. In addition, the continuum model normalizes slip length with the Debye length instead of the channel height, which implies that enhancement in EO flows is independent of the channel height. Further MD simulations performed at different channel heights also shows that the flow enhancement due to slip is independent of the channel height. This is important because slip enhanced EO flow is observable even in micro-channels experiments by using a hydrophobic channel with large slip and high conductivity solutions with small Debye length. The present study provides an advanced understanding of EO flows in nanochannels. Correct characterization of nanoscale EO slip flow is crucial to discover the extent of well-known continuum models, which is required for various applications spanning from ion separation to drug delivery and bio-fluidic analysis.Keywords: electroosmotic flow, molecular dynamics, slip length, velocity-slip
Procedia PDF Downloads 15812 Investigation of Different Electrolyte Salts Effect on ZnO/MWCNT Anode Capacity in LIBs
Authors: Şeyma Dombaycıoğlu, Hilal Köse, Ali Osman Aydın, Hatem Akbulut
Abstract:
Rechargeable lithium ion batteries (LIBs) have been considered as one of the most attractive energy storage choices for laptop computers, electric vehicles and cellular phones owing to their high energy and power density. Compared with conventional carbonaceous materials, transition metal oxides (TMOs) have attracted great interests and stand out among versatile novel anode materials due to their high theoretical specific capacity, wide availability and good safety performance. ZnO, as an anode material for LIBs, has a high theoretical capacity of 978 mAh g-1, much higher than that of the conventional graphite anode (∼370 mAhg-1). However, several major problems such as poor cycleability, resulting from the severe volume expansion and contraction during the alloying-dealloying cycles with Li+ ions and the associated charge transfer process, the pulverization and the agglomeration of individual particles, which drastically reduces the total entrance/exit sites available for Li+ ions still hinder the practical use of ZnO powders as an anode material for LIBs. Therefore, a great deal of effort has been devoted to overcome these problems, and many methods have been developed. In most of these methods, it is claimed that carbon nanotubes (CNTs) will radically improve the performance of batteries, because their unique structure may especially enhance the kinetic properties of the electrodes and result in an extremely high specific charge compared with the theoretical limits of graphitic carbon. Due to outstanding properties of CNTs, MWCNT buckypaper substrate is considered a buffer material to prevent mechanical disintegration of anode material during the battery applications. As the bridge connecting the positive and negative electrodes, the electrolyte plays a critical role affecting the overall electrochemical performance of the cell including rate, capacity, durability and safety. Commercial electrolytes for Li-ion batteries normally consist of certain lithium salts and mixed organic linear and cyclic carbonate solvents. Most commonly, LiPF6 is attributed to its remarkable features including high solubility, good ionic conductivity, high dissociation constant and satisfactory electrochemical stability for commercial fabrication. Besides LiPF6, LiBF4 is well known as a conducting salt for LIBs. LiBF4 shows a better temperature stability in organic carbonate based solutions and less moisture sensitivity compared to LiPF6. In this work, free standing zinc oxide (ZnO) and multiwalled carbon nanotube (MWCNT) nanocomposite materials were prepared by a sol gel technique giving a high capacity anode material for lithium ion batteries. Electrolyte solutions (including 1 m Li+ ion) were prepared with different Li salts in glove box. For this purpose, LiPF6 and LiBF4 salts and also mixed of these salts were solved in EC:DMC solvents (1:1, w/w). CR2016 cells were assembled by using these prepared electrolyte solutions, the ZnO/MWCNT buckypaper nanocomposites as working electrodes, metallic lithium as cathode and polypropylene (PP) as separator. For investigating the effect of different Li salts on the electrochemical performance of ZnO/MWCNT nanocomposite anode material electrochemical tests were performed at room temperature.Keywords: anode, electrolyte, Li-ion battery, ZnO/MWCNT
Procedia PDF Downloads 23111 Raman Spectral Fingerprints of Healthy and Cancerous Human Colorectal Tissues
Authors: Maria Karnachoriti, Ellas Spyratou, Dimitrios Lykidis, Maria Lambropoulou, Yiannis S. Raptis, Ioannis Seimenis, Efstathios P. Efstathopoulos, Athanassios G. Kontos
Abstract:
Colorectal cancer is the third most common cancer diagnosed in Europe, according to the latest incidence data provided by the World Health Organization (WHO), and early diagnosis has proved to be the key in reducing cancer-related mortality. In cases where surgical interventions are required for cancer treatment, the accurate discrimination between healthy and cancerous tissues is critical for the postoperative care of the patient. The current study focuses on the ex vivo handling of surgically excised colorectal specimens and the acquisition of their spectral fingerprints using Raman spectroscopy. Acquired data were analyzed in an effort to discriminate, in microscopic scale, between healthy and malignant margins. Raman spectroscopy is a spectroscopic technique with high detection sensitivity and spatial resolution of few micrometers. The spectral fingerprint which is produced during laser-tissue interaction is unique and characterizes the biostructure and its inflammatory or cancer state. Numerous published studies have demonstrated the potential of the technique as a tool for the discrimination between healthy and malignant tissues/cells either ex vivo or in vivo. However, the handling of the excised human specimens and the Raman measurement conditions remain challenging, unavoidably affecting measurement reliability and repeatability, as well as the technique’s overall accuracy and sensitivity. Therefore, tissue handling has to be optimized and standardized to ensure preservation of cell integrity and hydration level. Various strategies have been implemented in the past, including the use of balanced salt solutions, small humidifiers or pump-reservoir-pipette systems. In the current study, human colorectal specimens of 10X5 mm were collected from 5 patients up to now who underwent open surgery for colorectal cancer. A novel, non-toxic zinc-based fixative (Z7) was used for tissue preservation. Z7 demonstrates excellent protein preservation and protection against tissue autolysis. Micro-Raman spectra were recorded with a Renishaw Invia spectrometer from successive random 2 micrometers spots upon excitation at 785 nm to decrease fluorescent background and secure avoidance of tissue photodegradation. A temperature-controlled approach was adopted to stabilize the tissue at 2 °C, thus minimizing dehydration effects and consequent focus drift during measurement. A broad spectral range, 500-3200 cm-1,was covered with five consecutive full scans that lasted for 20 minutes in total. The average spectra were used for least square fitting analysis of the Raman modes.Subtle Raman differences were observed between normal and cancerous colorectal tissues mainly in the intensities of the 1556 cm-1 and 1628 cm-1 Raman modes which correspond to v(C=C) vibrations in porphyrins, as well as in the range of 2800-3000 cm-1 due to CH2 stretching of lipids and CH3 stretching of proteins. Raman spectra evaluation was supported by histological findings from twin specimens. This study demonstrates that Raman spectroscopy may constitute a promising tool for real-time verification of clear margins in colorectal cancer open surgery.Keywords: colorectal cancer, Raman spectroscopy, malignant margins, spectral fingerprints
Procedia PDF Downloads 9110 Polysaccharide Polyelectrolyte Complexation: An Engineering Strategy for the Development of Commercially Viable Sustainable Materials
Authors: Jeffrey M. Catchmark, Parisa Nazema, Caini Chen, Wei-Shu Lin
Abstract:
Sustainable and environmentally compatible materials are needed for a wide variety of volume commercial applications. Current synthetic materials such as plastics, fluorochemicals (such as PFAS), adhesives and resins in form of sheets, laminates, coatings, foams, fibers, molded parts and composites are used for countless products such as packaging, food handling, textiles, biomedical, construction, automotive and general consumer devices. Synthetic materials offer distinct performance advantages including stability, durability and low cost. These attributes are associated with the physical and chemical properties of these materials that, once formed, can be resistant to water, oils, solvents, harsh chemicals, salt, temperature, impact, wear and microbial degradation. These advantages become disadvantages when considering the end of life of these products which generate significant land and water pollution when disposed of and few are recycled. Agriculturally and biologically derived polymers offer the potential of remediating these environmental and life-cycle difficulties, but face numerous challenges including feedstock supply, scalability, performance and cost. Such polymers include microbial biopolymers like polyhydroxyalkanoates and polyhydroxbutirate; polymers produced using biomonomer chemical synthesis like polylactic acid; proteins like soy, collagen and casein; lipids like waxes; and polysaccharides like cellulose and starch. Although these materials, and combinations thereof, exhibit the potential for meeting some of the performance needs of various commercial applications, only cellulose and starch have both the production feedstock volume and cost to compete with petroleum derived materials. Over 430 million tons of plastic is produced each year and plastics like low density polyethylene cost ~$1500 to $1800 per ton. Over 400 million tons of cellulose and over 100 million tons of starch are produced each year at a volume cost as low as ~$500 to $1000 per ton with the capability of increased production. Cellulose and starches, however, are hydroscopic materials that do not exhibit the needed performance in most applications. Celluloses and starches can be chemically modified to contain positive and negative surface charges and such modified versions of these are used in papermaking, foods and cosmetics. Although these modified polysaccharides exhibit the same performance limitations, recent research has shown that composite materials comprised of cationic and anionic polysaccharides in polyelectrolyte complexation exhibit significantly improved performance including stability in diverse environments. Moreover, starches with added plasticizers can exhibit thermoplasticity, presenting the possibility of improved thermoplastic starches when comprised of starches in polyelectrolyte complexation. In this work, the potential for numerous volume commercial products based on polysaccharide polyelectrolyte complexes (PPCs) will be discussed, including the engineering design strategy used to develop them. Research results will be detailed including the development and demonstration of starch PPC compositions for paper coatings to replace PFAS; adhesives; foams for packaging, insulation and biomedical applications; and thermoplastic starches. In addition, efforts to demonstrate the potential for volume manufacturing with industrial partners will be discussed.Keywords: biomaterials engineering, commercial materials, polysaccharides, sustainable materials
Procedia PDF Downloads 179 Design Aspects for Developing a Microfluidics Diagnostics Device Used for Low-Cost Water Quality Monitoring
Authors: Wenyu Guo, Malachy O’Rourke, Mark Bowkett, Michael Gilchrist
Abstract:
Many devices for real-time monitoring of surface water have been developed in the past few years to provide early warning of pollutions and so to decrease the risk of environmental pollution efficiently. One of the most common methodologies used in the detection system is a colorimetric process, in which a container with fixed volume is filled with target ions and reagents to combine a colorimetric dye. The colorimetric ions can sensitively absorb a specific-wavelength radiation beam, and its absorbance rate is proportional to the concentration of the fully developed product, indicating the concentration of target nutrients in the pre-mixed water samples. In order to achieve precise and rapid detection effect, channels with dimensions in the order of micrometers, i.e., microfluidic systems have been developed and introduced into these diagnostics studies. Microfluidics technology largely reduces the surface to volume ratios and decrease the samples/reagents consumption significantly. However, species transport in such miniaturized channels is limited by the low Reynolds numbers in the regimes. Thus, the flow is extremely laminar state, and diffusion is the dominant mass transport process all over the regimes of the microfluidic channels. The objective of this present work has been to analyse the mixing effect and chemistry kinetics in a stop-flow microfluidic device measuring Nitride concentrations in fresh water samples. In order to improve the temporal resolution of the Nitride microfluidic sensor, we have used computational fluid dynamics to investigate the influence that the effectiveness of the mixing process between the sample and reagent within a microfluidic device exerts on the time to completion of the resulting chemical reaction. This computational approach has been complemented by physical experiments. The kinetics of the Griess reaction involving the conversion of sulphanilic acid to a diazonium salt by reaction with nitrite in acidic solution is set in the Laminar Finite-rate chemical reaction in the model. Initially, a methodology was developed to assess the degree of mixing of the sample and reagent within the device. This enabled different designs of the mixing channel to be compared, such as straight, square wave and serpentine geometries. Thereafter, the time to completion of the Griess reaction within a straight mixing channel device was modeled and the reaction time validated with experimental data. Further simulations have been done to compare the reaction time to effective mixing within straight, square wave and serpentine geometries. Results show that square wave channels can significantly improve the mixing effect and provides a low standard deviations of the concentrations of nitride and reagent, while for straight channel microfluidic patterns the corresponding values are 2-3 orders of magnitude greater, and consequently are less efficiently mixed. This has allowed us to design novel channel patterns of micro-mixers with more effective mixing that can be used to detect and monitor levels of nutrients present in water samples, in particular, Nitride. Future generations of water quality monitoring and diagnostic devices will easily exploit this technology.Keywords: nitride detection, computational fluid dynamics, chemical kinetics, mixing effect
Procedia PDF Downloads 2028 Dietetics Practice in the Scope of Disease Prevention in Community Settings: A School-Based Obesity Prevention Program
Authors: Elham Abbas Aljaaly, Nahlaa Abdulwahab Khalifa
Abstract:
The active method of disease prevention is seen as the most affordable and sustainable action to deal with risks of non-communicable diseases such as obesity. This eight-week project aimed to pilot the feasibility and acceptability of a school-based programme, which is proposed to prevent and modify overweight status and possible related risk factors among student girls 'at the intermediate level' in Jeddah city. The programme was conducted through comprehensible approach targeting physical environment and school policies (nutritional/exercise/behavioural approach). The programme was designed to cultivate the personal and environmental awareness in schools for girls. This was applied by promoting healthy eating and physical activity through policies, physical education, healthier options for school canteens, and the creation of school health teams. The prevention programme was applied on 68 students (who agreed to participate) from grades 7th, 8th and 9th. A pre and post assessment questionnaire was employed on 66 students. The questionnaires were designed to obtain information on students' knowledge about health, nutrition and physical activity. Survey questions included information about nutrients, food consumption patterns, food intake and lifestyle. Physical education included training sessions for new opportunities for physical activities to be performed during school or after school hours. A running competition 'to enhance students’ performance for physical activities' was also conducted during the school visit. A visit to the school canteen was conducted to check, observe, record and assess all available food/beverage items and meals. The assessment method was a subjective method for the type of food/beverages if high in saturated fat, salt and sugar (HFSS) or non-HFSS. The school canteen administrators were encouraged to provide healthy food/beverage items and a sample healthy canteen was provided for implementation. Two healthy options were introduced to the school canteen. A follow up for students’ preferences for the introduced options and the purchasing power were assessed. Thirty-eight percent of young girls (n=26) were not participating in any form of physical activities inside or outside school. Skipping breakfast was stated by 42% (n=28) of students with no daily consumption (19%, n=13) for fruit/vegetables. Significant changes were noticed in students’ (n=66) overall responses to the pre and post questions (P value=.001). All students had participated in the conducted running competition sessions and reported satisfaction and enjoyment about the sessions. No absence was reported by the research team for attending physical education and activity sessions throughout the delivered programme. The purchasing power of the introduced healthy options of 'Salad and oatmeal' was increased to 18% in 8 weeks at the school canteen, and slightly affected the purchase for other less healthy options. The piloted programme indorsed better health and nutrition knowledge, healthy eating and lifestyle attitude, which could help young girls to obtain sustainable changes. It is expected that the outcomes of the programme will be a cornerstone for the futuristic national study that will assist policy makers and participants to build a knowledgeable health promotion scenario and make sure that school students have access to healthy foods, physical exercise and healthy lifestyle.Keywords: adolescents, diet, exercise, behaviours, overweight/obesity, prevention-intervention programme, Saudi Arabia, schoolgirls
Procedia PDF Downloads 1297 Psoriasis Diagnostic Test Development: Exploratory Study
Authors: Salam N. Abdo, Orien L. Tulp, George P. Einstein
Abstract:
The purpose of this exploratory study was to gather the insights into psoriasis etiology, treatment, and patient experience, for developing psoriasis and psoriatic arthritis diagnostic test. Data collection methods consisted of a comprehensive meta-analysis of relevant studies and psoriasis patient survey. Established meta-analysis guidelines were used for the selection and qualitative comparative analysis of psoriasis and psoriatic arthritis research studies. Only studies that clearly discussed psoriasis etiology, treatment, and patient experience were reviewed and analyzed, to establish a qualitative data base for the study. Using the insights gained from meta-analysis, an existing psoriasis patient survey was modified and administered to collect additional data as well as triangulate the results. The hypothesis is that specific types of psoriatic disease have specific etiology and pathophysiologic pattern. The following etiology categories were identified: bacterial, environmental/microbial, genetic, immune, infectious, trauma/stress, and viral. Additional results, obtained from meta-analysis and confirmed by patient survey, were the common age of onset (early to mid-20s) and type of psoriasis (plaque; mild; symmetrical; scalp, chest, and extremities, specifically elbows and knees). Almost 70% of patients reported no prescription drug use due to severe side effects and prohibitive cost. These results will guide the development of psoriasis and psoriatic arthritis diagnostic test. The significant number of medical publications classified psoriatic arthritis disease as inflammatory of an unknown etiology. Thus numerous meta-analyses struggle to report any meaningful conclusions since no definitive results have been reported to date. Therefore, return to the basics is an essential step to any future meaningful results. To date, medical literature supports the fact that psoriatic disease in its current classification could be misidentifying subcategories, which in turn hinders the success of studies conducted to date. Moreover, there has been an enormous commercial support to pursue various immune-modulation therapies, thus following a narrow hypothesis/mechanism of action that is yet to yield resolution of disease state. Recurrence and complications may be considered unacceptable in a significant number of these studies. The aim of the ongoing study is to focus on a narrow subgroup of patient population, as identified by this exploratory study via meta-analysis and patient survey, and conduct an exhaustive work up, aiming at mechanism of action and causality before proposing a cure or therapeutic modality. Remission in psoriasis has been achieved and documented in medical literature, such as immune-modulation, phototherapy, various over-the-counter agents, including salts and tar. However, there is no psoriasis and psoriatic arthritis diagnostic test to date, to guide the diagnosis and treatment of this debilitating and, thus far, incurable disease. Because psoriasis affects approximately 2% of population, the results of this study may affect the treatment and improve the quality of life of a significant number of psoriasis patients, potentially millions of patients in the United States alone and many more millions worldwide.Keywords: biologics, early diagnosis, etiology, immune disease, immune modulation therapy, inflammation skin disorder, phototherapy, plaque psoriasis, psoriasis, psoriasis classification, psoriasis disease marker, psoriasis diagnostic test, psoriasis marker, psoriasis mechanism of action, psoriasis treatment, psoriatic arthritis, psoriatic disease, psoriatic disease marker, psoriatic patient experience, psoriatic patient quality of life, remission, salt therapy, targeted immune therapy
Procedia PDF Downloads 1186 Biosynthesis of Silver Nanoparticles Using Zataria multiflora Extract, and Study of Their Antibacterial Effects on Negative Bacillus Bacteria Causing Urinary Tract Infection
Authors: F. Madani, M. Doudi, L. Rahimzadeh Torabi
Abstract:
The irregular consumption of current antibiotics contributes to an escalation in antibiotic resistance among urinary pathogens on a global scale. The objective of this research was to investigate the process of biologically synthesized silver nanoparticles through the utilization of Zataria multiflora extract. Additionally, the study aimed to evaluate the efficacy of these synthesized nanoparticles in inhibiting the growth of multi-drug resistant negative bacillus bacteria, which commonly contribute to urinary tract infections. The botanical specimen utilized in the current research investigation was Z. multiflora, and its extract was produced employing the Soxhlet extraction technique. The study examined the green synthesis conditions of silver nanoparticles by considering three key parameters: the quantity of extract used, the concentration of silver nitrate salt, and the temperature. The particle dimensions were ascertained using the Zetasizer technique. In order to identify synthesized Silver nanoparticles TEM, XRD, and FTIR methods were used. For evaluating the antibacterial effects of nanoparticles synthesized through a biological method, different concentrations of silver nanoparticles were studied on 140 cases of Multiple drug resistance (MDR) bacteria strains Escherichia coli, Klebsiella pneumoniae, Enterobacter aerogenes, Proteus vulgaris,Citrobacter freundii, Acinetobacter bumanii and Pseudomonas aeruginosa, (each genus of bacteria, 20 samples), which all were MDR and cause urinary tract infections, for identification of bacteria were used of PCR test and laboratory methods (Agar well diffusion and Microdilution methods) to assess their sensitivity to Nanoparticles. The data were subjected to analysis using the statistical software SPSS, specifically employing nonparametric Kruskal-Wallis and Mann-Whitney tests. This study yielded noteworthy findings regarding the impacts of varying concentrations of silver nitrate, different quantities of Z. multiflora extract, and levels of temperature on nanoparticles. Specifically, it was observed that an increase in the concentration of silver nitrate, extract amount, and temperature resulted in a reduction in the size of the nanoparticles synthesized. However, the impact of the aforementioned factors on the index of particle diffusion was found to be statistically non-significant. According to the transmission electron microscopy (TEM) findings, the particles exhibited predominantly spherical morphology, with a diameter spanning from 25 to 50 nanometers. Nanoparticles in the examined sample. Nanocrystals of silver. FTIR method illustrated that the spectrums of Z. multiflora and synthesized nanoparticles had clear peaks in the ranges of 1500-2000, and 3500 - 4000. The obtained results of antibacterial effects of different concentrations of silver nanoparticles on according to agar well diffusion and microdilution method, biologically synthesized nanoparticles showed 1000 mg /ml highest and lowest mean inhibition zone diameter in E. coli, A. bumanii 23 and 15mm, respectively. MIC was observed for all of bacteria 125 mg/ml and for A. bumanii 250 mg/ml. Comparing the growth inhibitory effect of chemically synthesized the results obtained from the experiment indicated that both nanoparticles and biologically synthesized nanoparticles exhibit a notable growth inhibition effect. Specifically, the chemical method of synthesizing nanoparticles demonstrated the highest level of growth inhibition at a concentration of 62.5 mg/mL The present study demonstrated an inhibitory effect on bacterial growth, facilitating the causative factors of urine infection and multidrug resistance (MDR).Keywords: multiple drug resistance, negative bacillus bacteria, urine infection, Zataria multiflora
Procedia PDF Downloads 1045 Circular Nitrogen Removal, Recovery and Reuse Technologies
Authors: Lina Wu
Abstract:
The excessive discharge of nitrogen in sewage greatly intensifies the eutrophication of water bodies and threatens water quality. Nitrogen pollution control has become a global concern. The concentration of nitrogen in water is reduced by converting ammonia nitrogen, nitrate nitrogen and nitrite nitrogen into nitrogen-containing gas through biological treatment, physicochemical treatment and oxidation technology. However, some wastewater containing high ammonia nitrogen including landfill leachate, is difficult to be treated by traditional nitrification and denitrification because of its high COD content. The core process of denitrification is that denitrifying bacteria convert nitrous acid produced by nitrification into nitrite under anaerobic conditions. Still, its low-carbon nitrogen does not meet the conditions for denitrification. Many studies have shown that the natural autotrophic anammox bacteria can combine nitrous and ammonia nitrogen without a carbon source through functional genes to achieve total nitrogen removal, which is very suitable for removing nitrogen from leachate. In addition, the process also saves a lot of aeration energy consumption than the traditional nitrogen removal process. Therefore, anammox plays an important role in nitrogen conversion and energy saving. The short-range nitrification and denitrification coupled with anaerobic ammoX ensures total nitrogen removal. It improves the removal efficiency, meeting the needs of society for an ecologically friendly and cost-effective nutrient removal treatment technology. In recent years, research has found that the symbiotic system has more water treatment advantages because this process not only helps to improve the efficiency of wastewater treatment but also allows carbon dioxide reduction and resource recovery. Microalgae use carbon dioxide dissolved in water or released through bacterial respiration to produce oxygen for bacteria through photosynthesis under light, and bacteria, in turn, provide metabolites and inorganic carbon sources for the growth of microalgae, which may lead the algal bacteria symbiotic system save most or all of the aeration energy consumption. It has become a trend to make microalgae and light-avoiding anammox bacteria play synergistic roles by adjusting the light-to-dark ratio. Microalgae in the outer layer of light particles block most of the light and provide cofactors and amino acids to promote nitrogen removal. In particular, myxoccota MYX1 can degrade extracellular proteins produced by microalgae, providing amino acids for the entire bacterial community, which helps anammox bacteria save metabolic energy and adapt to light. As a result, initiating and maintaining the process of combining dominant algae and anaerobic denitrifying bacterial communities has great potential in treating landfill leachate. Chlorella has a brilliant removal effect and can withstand extreme environments in terms of high ammonia nitrogen, high salt and low temperature. It is urgent to study whether the algal mud mixture rich in denitrifying bacteria and chlorella can greatly improve the efficiency of landfill leachate treatment under an anaerobic environment where photosynthesis is stopped. The optimal dilution concentration of simulated landfill leachate can be found by determining the treatment effect of the same batch of bacteria and algae mixtures under different initial ammonia nitrogen concentrations and making a comparison. High-throughput sequencing technology was used to analyze the changes in microbial diversity, related functional genera and functional genes under optimal conditions, providing a theoretical and practical basis for the engineering application of novel bacteria-algae symbiosis system in biogas slurry treatment and resource utilization.Keywords: nutrient removal and recovery, leachate, anammox, Partial nitrification, Algae-bacteria interaction
Procedia PDF Downloads 404 Clinically-Based Improvement Project Focused on Reducing Risks Associated with Diabetes Insipidus, Syndrome of Inappropriate ADH, and Cerebral Salt Wasting in Paediatric Post-Neurosurgical and Traumatic Brain Injury Patients
Authors: Shreya Saxena, Felix Miller-Molloy, Phillipa Bowen, Greg Fellows, Elizabeth Bowen
Abstract:
Background: Complex fluid balance abnormalities are well-established post-neurosurgery and traumatic brain injury (TBI). The triple-phase response requires fluid management strategies reactive to urine output and sodium homeostasis as patients shift between Diabetes Insipidus (DI) and Syndrome of Inappropriate ADH (SIADH). It was observed, at a tertiary paediatric center, a relatively high prevalence of the above complications within a cohort of paediatric post-neurosurgical and TBI patients. An audit of the clinical practice against set institutional guidelines was undertaken and analyzed to understand why this was occurring. Based on those results, new guidelines were developed with structured educational packages for the specialist teams involved. This was then reaudited, and the findings were compared. Methods: Two independent audits were conducted across two time periods, pre and post guideline change. Primary data was collected retrospectively, including both qualitative and quantitative data sets from the CQUIN neurosurgical database and electronic medical records. All paediatric patients post posterior fossa (PFT) or supratentorial surgery or with a TBI were included. A literature review of evidence-based practice, initial audit data, and stakeholder feedback was used to develop new clinical guidelines and nursing standard operation procedures. Compliance against these newly developed guidelines was re-assessed and a thematic, trend-based analysis of the two sets of results was conducted. Results: Audit-1 January2017-June2018, n=80; Audit-2 January2020-June2021, n=30 (reduced operative capacity due to COVID-19 pandemic). Overall, improvements in the monitoring of both fluid balance and electrolyte trends were demonstrated; 51% vs. 77% and 78% vs. 94%, respectively. The number of clear fluid management plans documented postoperatively also increased (odds ratio of 4), leading to earlier recognition and management of evolving fluid-balance abnormalities. The local paediatric endocrine team was involved in the care of all complex cases and notified sooner for those considered to be developing DI or SIADH (14% to 35%). However, significant Na fluctuations (>12mmol in 24 hours) remained similar – 5 vs six patients – found to be due to complex pituitary hypothalamic pathology – and the recommended adaptive fluid management strategy was still not always used. Qualitative data regarding useability and understanding of fluid-balance abnormalities and the revised guidelines were obtained from health professionals via surveys and discussion in the specialist teams providing care. The feedback highlighted the new guidelines provided a more consistent approach to the post-operative care of these patients and was a better platform for communication amongst the different specialist teams involved. The potential limitation to our study would be the small sample size on which to conduct formal analyses; however, this reflects the population that we were investigating, which we cannot control. Conclusion: The revised clinical guidelines, based on audited data, evidence-based literature review and stakeholder consultations, have demonstrated an improvement in understanding of the neuro-endocrine complications that are possible, as well as increased compliance to post-operative monitoring of fluid balance and electrolytes in this cohort of patients. Emphasis has been placed on preventative rather than treatment of DI and SIADH. Consequently, this has positively impacted patient safety for the center and highlighted the importance of educational awareness and multi-disciplinary team working.Keywords: post-operative, fluid-balance management, neuro-endocrine complications, paediatric
Procedia PDF Downloads 923 Full Characterization of Heterogeneous Antibody Samples under Denaturing and Native Conditions on a Hybrid Quadrupole-Orbitrap Mass Spectrometer
Authors: Rowan Moore, Kai Scheffler, Eugen Damoc, Jennifer Sutton, Aaron Bailey, Stephane Houel, Simon Cubbon, Jonathan Josephs
Abstract:
Purpose: MS analysis of monoclonal antibodies (mAbs) at the protein and peptide levels is critical during development and production of biopharmaceuticals. The compositions of current generation therapeutic proteins are often complex due to various modifications which may affect efficacy. Intact proteins analyzed by MS are detected in higher charge states that also provide more complexity in mass spectra. Protein analysis in native or native-like conditions with zero or minimal organic solvent and neutral or weakly acidic pH decreases charge state value resulting in mAb detection at higher m/z ranges with more spatial resolution. Methods: Three commercially available mAbs were used for all experiments. Intact proteins were desalted online using size exclusion chromatography (SEC) or reversed phase chromatography coupled on-line with a mass spectrometer. For streamlined use of the LC- MS platform we used a single SEC column and alternately selected specific mobile phases to perform separations in either denaturing or native-like conditions: buffer A (20 % ACN, 0.1 % FA) with Buffer B (100 mM ammonium acetate). For peptide analysis mAbs were proteolytically digested with and without prior reduction and alkylation. The mass spectrometer used for all experiments was a commercially available Thermo Scientific™ hybrid Quadrupole-Orbitrap™ mass spectrometer, equipped with the new BioPharma option which includes a new High Mass Range (HMR) mode that allows for improved high mass transmission and mass detection up to 8000 m/z. Results: We have analyzed the profiles of three mAbs under reducing and native conditions by direct infusion with offline desalting and with on-line desalting via size exclusion and reversed phase type columns. The presence of high salt under denaturing conditions was found to influence the observed charge state envelope and impact mass accuracy after spectral deconvolution. The significantly lower charge states observed under native conditions improves the spatial resolution of protein signals and has significant benefits for the analysis of antibody mixtures, e.g. lysine variants, degradants or sequence variants. This type of analysis requires the detection of masses beyond the standard mass range ranging up to 6000 m/z requiring the extended capabilities available in the new HMR mode. We have compared each antibody sample that was analyzed individually with mixtures in various relative concentrations. For this type of analysis, we observed that apparent native structures persist and ESI is benefited by the addition of low amounts of acetonitrile and formic acid in combination with the ammonium acetate-buffered mobile phase. For analyses on the peptide level we analyzed reduced/alkylated, and non-reduced proteolytic digests of the individual antibodies separated via reversed phase chromatography aiming to retrieve as much information as possible regarding sequence coverage, disulfide bridges, post-translational modifications such as various glycans, sequence variants, and their relative quantification. All data acquired were submitted to a single software package for analysis aiming to obtain a complete picture of the molecules analyzed. Here we demonstrate the capabilities of the mass spectrometer to fully characterize homogeneous and heterogeneous therapeutic proteins on one single platform. Conclusion: Full characterization of heterogeneous intact protein mixtures by improved mass separation on a quadrupole-Orbitrap™ mass spectrometer with extended capabilities has been demonstrated.Keywords: disulfide bond analysis, intact analysis, native analysis, mass spectrometry, monoclonal antibodies, peptide mapping, post-translational modifications, sequence variants, size exclusion chromatography, therapeutic protein analysis, UHPLC
Procedia PDF Downloads 3612 Effect of Inoculation with Consortia of Plant-Growth Promoting Bacteria on Biomass Production of the Halophyte Salicornia ramosissima
Authors: Maria João Ferreira, Natalia Sierra-Garcia, Javier Cremades, Carla António, Ana M. Rodrigues, Helena Silva, Ângela Cunha
Abstract:
Salicornia ramosissima, a halophyte that grows naturally in coastal areas of the northern hemisphere, is often considered the most promising halophyte candidate for extensive crop cultivation and saline agriculture practices. The expanding interest in this plant surpasses its use as gourmet food and includes their potential application as a source of bioactive compounds for the pharmaceutical industry. Despite growing well in saline soils, sustainable and ecologically friendly techniques to enhance crop production and the nutritional value of this plant are still needed. The root microbiome of S. ramosissima proved to be a source of taxonomically diverse plant growth-promoting bacteria (PGPB). Halotolerant strains of Bacillus, Salinicola, Pseudomonas, and Brevibacterium, among other genera, exhibit a broad spectrum of plant-growth promotion traits [e.g., 3-indole acetic acid (IAA), 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase, siderophores, phosphate solubilization, Nitrogen fixation] and express a wide range of extracellular enzyme activities. In this work, three plant growth-promoting bacteria strains (Brevibacterium casei EB3, Pseudomonas oryzihabitans RL18, and Bacillus aryabhattai SP20) isolated from the rhizosphere and the endosphere of S. ramosissima roots from different saltmarshes along the Portuguese coast were inoculated in S. ramosissima seeds. Plants germinated from inoculated seeds were grown for three months in pots filled with a mixture of perlite and estuarine sediment (1:1) in greenhouse conditions and later transferred to a growth chamber, where they were maintained two months with controlled photoperiod, temperature, and humidity. Pots were placed on trays containing the irrigation solution (Hoagland’s solution 20% added with 10‰ marine salt). Before reaching the flowering stage, plants were collected, and the fresh and dry weight of aerial parts was determined. Non-inoculated seeds were used as a negative control. Selected dried stems from the most promising treatments were later analyzed by GC-TOF-MS for primary metabolite composition. The efficiency of inoculation and persistence of the inoculum was assessed by Next Generation Sequencing. Inoculations with single strain EB3 and co-inoculations with EB3+RL18 and EB3+RL18+SP20 (All treatment) resulted in significantly higher biomass production (fresh and dry weight) compared to non-inoculated plants. Considering fresh weight alone, inoculation with isolates SP20 and RL18 also caused a significant positive effect. Combined inoculation with the consortia SP20+EB3 or SP20+RL18 did not significantly improve biomass production. The analysis of the profile of primary metabolites will provide clues on the mechanisms by which the growth-enhancement effect of the inoculants operates in the plants. These results sustain promising prospects for the use of rhizospheric and endophytic PGPB as biofertilizers, reducing environmental impacts and operational costs of agrochemicals and contributing to the sustainability and cost-effectiveness of saline agriculture. Acknowledgments: This work was supported by project Rhizomis PTDC/BIA-MIC/29736/2017 financed by Fundação para a Ciência e Tecnologia (FCT) through the Regional Operational Program of the Center (02/SAICT/2017) with FEDER funds (European Regional Development Fund, FNR, and OE) and by FCT through CESAM (UIDP/50017/2020 + UIDB/50017/2020), LAQV-REQUIMTE (UIDB/50006/2020). We also acknowledge FCT/FSE for the financial support to Maria João Ferreira through a PhD grant (PD/BD/150363/2019). We are grateful to Horta dos Peixinhos for their help and support during sampling and seed collection. We also thank Glória Pinto for her collaboration providing us the use of the growth chambers during the final months of the experiment and Enrique Mateos-Naranjo and Jennifer Mesa-Marín of the Departamento de Biología Vegetal y Ecología, the University of Sevilla for their advice regarding the growth of salicornia plants in greenhouse conditions.Keywords: halophytes, PGPB, rhizosphere engineering, biofertilizers, primary metabolite profiling, plant inoculation, Salicornia ramosissima
Procedia PDF Downloads 1601 Sustainable Agricultural and Soil Water Management Practices in Relation to Climate Change and Disaster: A Himalayan Country Experience
Authors: Krishna Raj Regmi
Abstract:
A “Climate change adaptation and disaster risk management for sustainable agriculture” project was implemented in Nepal, a Himalayan country during 2008 to 2013 sponsored jointly by Food and Agriculture Organization (FAO) and United Nations Development Programme (UNDP), Nepal. The paper is based on the results and findings of this joint pilot project. The climate change events such as increased intensity of erratic rains in short spells, trend of prolonged drought, gradual rise in temperature in the higher elevations and occurrence of cold and hot waves in Terai (lower plains) has led to flash floods, massive erosion in the hills particularly in Churia range and drying of water sources. These recurring natural and climate-induced disasters are causing heavy damages through sedimentation and inundation of agricultural lands, crops, livestock, infrastructures and rural settlements in the downstream plains and thus reducing agriculture productivity and food security in the country. About 65% of the cultivated land in Nepal is rainfed with drought-prone characteristics and stabilization of agricultural production and productivity in these tracts will be possible through adoption of rainfed and drought-tolerant technologies as well as efficient soil-water management by the local communities. The adaptation and mitigation technologies and options identified by the project for soil erosion, flash floods and landslide control are on-farm watershed management, sloping land agriculture technologies (SALT), agro-forestry practices, agri-silvi-pastoral management, hedge-row contour planting, bio-engineering along slopes and river banks, plantation of multi-purpose trees and management of degraded waste land including sandy river-bed flood plains. The stress tolerant technologies with respect to drought, floods and temperature stress for efficient utilization of nutrient, soil, water and other resources for increased productivity are adoption of stress tolerant crop varieties and breeds of animals, indigenous proven technologies, mixed and inter-cropping systems, system of rice/wheat intensification (SRI), direct rice seeding, double transplanting of rice, off-season vegetable production and regular management of nurseries, orchards and animal sheds. The alternate energy use options and resource conservation practices for use by local communities are installation of bio-gas plants and clean stoves (Chulla range) for mitigation of green house gas (GHG) emissions, use of organic manures and bio-pesticides, jatropha cultivation, green manuring in rice fields and minimum/zero tillage practices for marshy lands. The efficient water management practices for increasing productivity of crops and livestock are use of micro-irrigation practices, construction of water conservation and water harvesting ponds, use of overhead water tanks and Thai jars for rain water harvesting and rehabilitation of on-farm irrigation systems. Initiation of some works on community-based early warning system, strengthening of met stations and disaster database management has made genuine efforts in providing disaster-tailored early warning, meteorological and insurance services to the local communities. Contingent planning is recommended to develop coping strategies and capacities of local communities to adopt necessary changes in the cropping patterns and practices in relation to adverse climatic and disaster risk conditions. At the end, adoption of awareness raising and capacity development activities (technical and institutional) and networking on climate-induced disaster and risks through training, visits and knowledge sharing workshops, dissemination of technical know-how and technologies, conduct of farmers' field schools, development of extension materials and their displays are being promoted. However, there is still need of strong coordination and linkage between agriculture, environment, forestry, meteorology, irrigation, climate-induced pro-active disaster preparedness and research at the ministry, department and district level for up-scaling, implementation and institutionalization of climate change and disaster risk management activities and adaptation mitigation options in agriculture for sustainable livelihoods of the communities.Keywords: climate change adaptation, disaster risk management, soil-water management practices, sustainable agriculture
Procedia PDF Downloads 510