Search results for: proportional odds model
16381 Effect of Sand Particle Distribution in Oil and Gas Pipeline Erosion
Authors: Christopher Deekia Nwimae, Nigel Simms, Liyun Lao
Abstract:
Erosion in pipe bends caused by particles is a major obstacle in the oil and gas fields and might cause the breakdown of production equipment. This work studied the effects imposed by flow velocity and impact of solid particles diameter in an elbow; erosion rate was verified with experimental data using the computational fluid dynamics (CFD) approach. Two-way coupled Euler-Lagrange and discrete phase model was employed to calculate the air/solid particle flow in an elbow. One erosion model and three-particle rebound models were used to predict the erosion rate on the 90° elbows. The generic erosion model was used in the CFD-based erosion model, and after comparing it with experimental data, results showed agreement with the CFD-based predictions as observed.Keywords: erosion, prediction, elbow, computational fluid dynamics
Procedia PDF Downloads 15716380 6D Posture Estimation of Road Vehicles from Color Images
Authors: Yoshimoto Kurihara, Tad Gonsalves
Abstract:
Currently, in the field of object posture estimation, there is research on estimating the position and angle of an object by storing a 3D model of the object to be estimated in advance in a computer and matching it with the model. However, in this research, we have succeeded in creating a module that is much simpler, smaller in scale, and faster in operation. Our 6D pose estimation model consists of two different networks – a classification network and a regression network. From a single RGB image, the trained model estimates the class of the object in the image, the coordinates of the object, and its rotation angle in 3D space. In addition, we compared the estimation accuracy of each camera position, i.e., the angle from which the object was captured. The highest accuracy was recorded when the camera position was 75°, the accuracy of the classification was about 87.3%, and that of regression was about 98.9%.Keywords: 6D posture estimation, image recognition, deep learning, AlexNet
Procedia PDF Downloads 15516379 A Robust Optimization Model for Multi-Objective Closed-Loop Supply Chain
Authors: Mohammad Y. Badiee, Saeed Golestani, Mir Saman Pishvaee
Abstract:
In recent years consumers and governments have been pushing companies to design their activities in such a way as to reduce negative environmental impacts by producing renewable product or threat free disposal policy more and more. It is therefore important to focus more accurate to the optimization of various aspect of total supply chain. Modeling a supply chain can be a challenging process due to the fact that there are a large number of factors that need to be considered in the model. The use of multi-objective optimization can lead to overcome those problems since more information is used when designing the model. Uncertainty is inevitable in real world. Considering uncertainty on parameters in addition to use multi-objectives are ways to give more flexibility to the decision making process since the process can take into account much more constraints and requirements. In this paper we demonstrate a stochastic scenario based robust model to cope with uncertainty in a closed-loop multi-objective supply chain. By applying the proposed model in a real world case, the power of proposed model in handling data uncertainty is shown.Keywords: supply chain management, closed-loop supply chain, multi-objective optimization, goal programming, uncertainty, robust optimization
Procedia PDF Downloads 41616378 Generalized Additive Model Approach for the Chilean Hake Population in a Bio-Economic Context
Authors: Selin Guney, Andres Riquelme
Abstract:
The traditional bio-economic method for fisheries modeling uses some estimate of the growth parameters and the system carrying capacity from a biological model for the population dynamics (usually a logistic population growth model) which is then analyzed as a traditional production function. The stock dynamic is transformed into a revenue function and then compared with the extraction costs to estimate the maximum economic yield. In this paper, the logistic population growth model for the population is combined with a forecast of the abundance and location of the stock by using a generalized additive model approach. The paper focuses on the Chilean hake population. This method allows for the incorporation of climatic variables and the interaction with other marine species, which in turn will increase the reliability of the estimates and generate better extraction paths for different conservation objectives, such as the maximum biological yield or the maximum economic yield.Keywords: bio-economic, fisheries, GAM, production
Procedia PDF Downloads 25216377 Higher Freshwater Fish and Sea Fish Intake Is Inversely Associated with Liver Cancer in Patients with Hepatitis B
Authors: Maomao Cao
Abstract:
Background and aims While the association between higher consumption of fish and lower liver cancer risk has been confirmed, however, the association between specific fish intake and liver cancer risk remains unknown. We aimed to identify the association between specific fish consumption and the risk of liver cancer. Methods: Based on a community-based seropositive hepatitis B cohort involving 18404 individuals, face to face interview was conducted by a standardized questionnaire to acquire baseline information. Three common fish types in this study were analyzed, including freshwater fish, sea fish, and small fish (shrimp, crab, conch, and shell). All participants received liver cancer screening, and possible cases were identified by CT or MRI. Multivariable logistic models were applied to estimate the odds ratio (OR) and 95% confidence intervals (CI). Multivariate multiple imputations were utilized to impute observations with missing values. Results: 179 liver cancer cases were identified. Consumption of freshwater fish and sea fish at least once a week had a strong inverse association with liver cancer risk compared with the lowest intake level, with an adjusted OR of 0.53 (95% CI, 0.38-0.75) and 0.38 (95% CI, 0.19-0.73), respectively. This inverse association was also observed after the imputation. There was no statistically significant association between intake of small fish and liver cancer risk (OR=0.58, 95%, CI 0.32-1.08). Conclusions: Our findings suggest that consumption of freshwater fish and sea fish at least once a week could reduce liver cancer risk.Keywords: cross-sectional study, fish intake, liver cancer, risk factor
Procedia PDF Downloads 27316376 A Model-Reference Sliding Mode for Dual-Stage Actuator Servo Control in HDD
Authors: S. Sonkham, U. Pinsopon, W. Chatlatanagulchai
Abstract:
This paper presents a method of sliding mode control (SMC) designing and developing for the servo system in a dual-stage actuator (DSA) hard disk drive. Mathematical modelling of hard disk drive actuators is obtained, extracted from measuring frequency response of the voice-coil motor (VCM) and PZT micro-actuator separately. Matlab software tools are used for mathematical model estimation and also for controller design and simulation. A model-reference approach for tracking requirement is selected as a proposed technique. The simulation results show that performance of a model-reference SMC controller design in DSA servo control can be satisfied in the tracking error, as well as keeping the positioning of the head within the boundary of +/-5% of track width under the presence of internal and external disturbance. The overall results of model-reference SMC design in DSA are met per requirement specifications and significant reduction in %off track is found when compared to the single-state actuator (SSA).Keywords: hard disk drive, dual-stage actuator, track following, hdd servo control, sliding mode control, model-reference, tracking control
Procedia PDF Downloads 36516375 The Relationship between Body Positioning and Badminton Smash Quality
Authors: Gongbing Shan, Shiming Li, Zhao Zhang, Bingjun Wan
Abstract:
Badminton originated in ancient civilizations in Europe and Asia more than 2000 years ago. Presently, it is played almost everywhere with estimated 220 million people playing badminton regularly, ranging from professionals to recreational players; and it is the second most played sport in the world after soccer. In Asia, the popularity of badminton and involvement of people surpass soccer. Unfortunately, scientific researches on badminton skills are hardly proportional to badminton’s popularity. A search of literature has shown that the literature body of biomechanical investigations is relatively small. One of the dominant skills in badminton is the forehand overhead smash, which consists of 1/5 attacks during games. Empirical evidences show that one has to adjust the body position in relation to the coming shuttlecock to produce a powerful and accurate smash. Therefore, positioning is a fundamental aspect influencing smash quality. A search of literature has shown that there is a dearth/lack of study on this fundamental aspect. The goals of this study were to determine the influence of positioning and training experience on smash quality in order to discover information that could help learn/acquire the skill. Using a 10-camera, 3D motion capture system (VICON MX, 200 frames/s) and 15-segment, full-body biomechanical model, 14 skilled and 15 novice players were measured and analyzed. Results have revealed that the body positioning has direct influence on the quality of a smash, especially on shuttlecock release angle and clearance height (passing over the net) of offensive players. The results also suggest that, for training a proper positioning, one could conduct a self-selected comfort position towards a statically hanged shuttlecock and then step one foot back – a practical reference marker for learning. This perceptional marker could be applied in guiding the learning and training of beginners. As one gains experience through repetitive training, improved limbs’ coordination would increase smash quality further. The researchers hope that the findings will benefit practitioners for developing effective training programs for beginners.Keywords: 3D motion analysis, biomechanical modeling, shuttlecock release speed, shuttlecock release angle, clearance height
Procedia PDF Downloads 49816374 Stabilization Control of the Nonlinear AIDS Model Based on the Theory of Polynomial Fuzzy Control Systems
Authors: Shahrokh Barati
Abstract:
In this paper, we introduced AIDS disease at first, then proposed dynamic model illustrate its progress, after expression of a short history of nonlinear modeling by polynomial phasing systems, we considered the stability conditions of the systems, which contained a huge amount of researches in order to modeling and control of AIDS in dynamic nonlinear form, in this approach using a frame work of control any polynomial phasing modeling system which have been generalized by part of phasing model of T-S, in order to control the system in better way, the stability conditions were achieved based on polynomial functions, then we focused to design the appropriate controller, firstly we considered the equilibrium points of system and their conditions and in order to examine changes in the parameters, we presented polynomial phase model that was the generalized approach rather than previous Takagi Sugeno models, then with using case we evaluated the equations in both open loop and close loop and with helping the controlling feedback, the close loop equations of system were calculated, to simulate nonlinear model of AIDS disease, we used polynomial phasing controller output that was capable to make the parameters of a nonlinear system to follow a sustainable reference model properly.Keywords: polynomial fuzzy, AIDS, nonlinear AIDS model, fuzzy control systems
Procedia PDF Downloads 46816373 Vibration-Based Data-Driven Model for Road Health Monitoring
Authors: Guru Prakash, Revanth Dugalam
Abstract:
A road’s condition often deteriorates due to harsh loading such as overload due to trucks, and severe environmental conditions such as heavy rain, snow load, and cyclic loading. In absence of proper maintenance planning, this results in potholes, wide cracks, bumps, and increased roughness of roads. In this paper, a data-driven model will be developed to detect these damages using vibration and image signals. The key idea of the proposed methodology is that the road anomaly manifests in these signals, which can be detected by training a machine learning algorithm. The use of various machine learning techniques such as the support vector machine and Radom Forest method will be investigated. The proposed model will first be trained and tested with artificially simulated data, and the model architecture will be finalized by comparing the accuracies of various models. Once a model is fixed, the field study will be performed, and data will be collected. The field data will be used to validate the proposed model and to predict the future road’s health condition. The proposed will help to automate the road condition monitoring process, repair cost estimation, and maintenance planning process.Keywords: SVM, data-driven, road health monitoring, pot-hole
Procedia PDF Downloads 8616372 An Integreated Intuitionistic Fuzzy ELECTRE Model for Multi-Criteria Decision-Making
Authors: Babek Erdebilli
Abstract:
The aim of this study is to develop and describe a new methodology for the Multi-Criteria Decision-Making (MCDM) problem using IFE (Elimination Et Choix Traduisant La Realite (ELECTRE) model. The proposed models enable Decision-Makers (DMs) on the assessment and use Intuitionistic Fuzzy Numbers (IFN). A numerical example is provided to demonstrate and clarify the proposed analysis procedure. Also, an empirical experiment is conducted to validation the effectiveness.Keywords: multi-criteria decision-making, IFE, DM’s, fuzzy electre model
Procedia PDF Downloads 65116371 Computationally Efficient Electrochemical-Thermal Li-Ion Cell Model for Battery Management System
Authors: Sangwoo Han, Saeed Khaleghi Rahimian, Ying Liu
Abstract:
Vehicle electrification is gaining momentum, and many car manufacturers promise to deliver more electric vehicle (EV) models to consumers in the coming years. In controlling the battery pack, the battery management system (BMS) must maintain optimal battery performance while ensuring the safety of a battery pack. Tasks related to battery performance include determining state-of-charge (SOC), state-of-power (SOP), state-of-health (SOH), cell balancing, and battery charging. Safety related functions include making sure cells operate within specified, static and dynamic voltage window and temperature range, derating power, detecting faulty cells, and warning the user if necessary. The BMS often utilizes an RC circuit model to model a Li-ion cell because of its robustness and low computation cost among other benefits. Because an equivalent circuit model such as the RC model is not a physics-based model, it can never be a prognostic model to predict battery state-of-health and avoid any safety risk even before it occurs. A physics-based Li-ion cell model, on the other hand, is more capable at the expense of computation cost. To avoid the high computation cost associated with a full-order model, many researchers have demonstrated the use of a single particle model (SPM) for BMS applications. One drawback associated with the single particle modeling approach is that it forces to use the average current density in the calculation. The SPM would be appropriate for simulating drive cycles where there is insufficient time to develop a significant current distribution within an electrode. However, under a continuous or high-pulse electrical load, the model may fail to predict cell voltage or Li⁺ plating potential. To overcome this issue, a multi-particle reduced-order model is proposed here. The use of multiple particles combined with either linear or nonlinear charge-transfer reaction kinetics enables to capture current density distribution within an electrode under any type of electrical load. To maintain computational complexity like that of an SPM, governing equations are solved sequentially to minimize iterative solving processes. Furthermore, the model is validated against a full-order model implemented in COMSOL Multiphysics.Keywords: battery management system, physics-based li-ion cell model, reduced-order model, single-particle and multi-particle model
Procedia PDF Downloads 11116370 Forecasting Model to Predict Dengue Incidence in Malaysia
Authors: W. H. Wan Zakiyatussariroh, A. A. Nasuhar, W. Y. Wan Fairos, Z. A. Nazatul Shahreen
Abstract:
Forecasting dengue incidence in a population can provide useful information to facilitate the planning of the public health intervention. Many studies on dengue cases in Malaysia were conducted but are limited in modeling the outbreak and forecasting incidence. This article attempts to propose the most appropriate time series model to explain the behavior of dengue incidence in Malaysia for the purpose of forecasting future dengue outbreaks. Several seasonal auto-regressive integrated moving average (SARIMA) models were developed to model Malaysia’s number of dengue incidence on weekly data collected from January 2001 to December 2011. SARIMA (2,1,1)(1,1,1)52 model was found to be the most suitable model for Malaysia’s dengue incidence with the least value of Akaike information criteria (AIC) and Bayesian information criteria (BIC) for in-sample fitting. The models further evaluate out-sample forecast accuracy using four different accuracy measures. The results indicate that SARIMA (2,1,1)(1,1,1)52 performed well for both in-sample fitting and out-sample evaluation.Keywords: time series modeling, Box-Jenkins, SARIMA, forecasting
Procedia PDF Downloads 48616369 Optimization Model for Support Decision for Maximizing Production of Mixed Fresh Fruit Farms
Authors: Andrés I. Ávila, Patricia Aros, César San Martín, Elizabeth Kehr, Yovana Leal
Abstract:
Planning models for fresh products is a very useful tool for improving the net profits. To get an efficient supply chain model, several functions should be considered to get a complete simulation of several operational units. We consider a linear programming model to help farmers to decide if it is convenient to choose what area should be planted for three kinds of export fruits considering their future investment. We consider area, investment, water, productivity minimal unit, and harvest restrictions to develop a monthly based model to compute the average income in five years. Also, conditions on the field as area, water availability, and initial investment are required. Using the Chilean costs and dollar-peso exchange rate, we can simulate several scenarios to understand the possible risks associated to this market. Also, this tool help to support decisions for government and individual farmers.Keywords: mixed integer problem, fresh fruit production, support decision model, agricultural and biosystems engineering
Procedia PDF Downloads 43816368 Analysis of the Impact of NVivo and EndNote on Academic Research Productivity
Authors: Sujit K. Basak
Abstract:
The aim of this paper is to analyze the impact of literature review software on researchers. The aim of this study was achieved by analyzing models in terms of perceived usefulness, perceived ease of use, and acceptance level. Collected data was analyzed using WarpPLS 4.0 software. This study used two theoretical frameworks namely Technology Acceptance Model and the Training Needs Assessment Model. The study was experimental and was conducted at a public university in South Africa. The results of the study showed that acceptance level has a high impact on research workload and productivity followed by perceived usefulness and perceived ease of use.Keywords: technology acceptance model, training needs assessment model, literature review software, research productivity
Procedia PDF Downloads 50316367 A Spatial Approach to Model Mortality Rates
Authors: Yin-Yee Leong, Jack C. Yue, Hsin-Chung Wang
Abstract:
Human longevity has been experiencing its largest increase since the end of World War II, and modeling the mortality rates is therefore often the focus of many studies. Among all mortality models, the Lee–Carter model is the most popular approach since it is fairly easy to use and has good accuracy in predicting mortality rates (e.g., for Japan and the USA). However, empirical studies from several countries have shown that the age parameters of the Lee–Carter model are not constant in time. Many modifications of the Lee–Carter model have been proposed to deal with this problem, including adding an extra cohort effect and adding another period effect. In this study, we propose a spatial modification and use clusters to explain why the age parameters of the Lee–Carter model are not constant. In spatial analysis, clusters are areas with unusually high or low mortality rates than their neighbors, where the “location” of mortality rates is measured by age and time, that is, a 2-dimensional coordinate. We use a popular cluster detection method—Spatial scan statistics, a local statistical test based on the likelihood ratio test to evaluate where there are locations with mortality rates that cannot be described well by the Lee–Carter model. We first use computer simulation to demonstrate that the cluster effect is a possible source causing the problem of the age parameters not being constant. Next, we show that adding the cluster effect can solve the non-constant problem. We also apply the proposed approach to mortality data from Japan, France, the USA, and Taiwan. The empirical results show that our approach has better-fitting results and smaller mean absolute percentage errors than the Lee–Carter model.Keywords: mortality improvement, Lee–Carter model, spatial statistics, cluster detection
Procedia PDF Downloads 17116366 Impact of VARK Learning Model at Tertiary Level Education
Authors: Munazza A. Mirza, Khawar Khurshid
Abstract:
Individuals are generally associated with different learning styles, which have been explored extensively in recent past. The learning styles refer to the potential of an individual by which s/he can easily comprehend and retain information. Among various learning style models, VARK is the most accepted model which categorizes the learners with respect to their sensory characteristics. Based on the number of preferred learning modes, the learners can be categorized as uni-modal, bi-modal, tri-modal, or quad/multi-modal. Although there is a prevalent belief in the learning styles, however, the model is not being frequently and effectively utilized in the higher education. This research describes the identification model to validate teacher’s didactic practice and student’s performance linkage with the learning styles. The identification model is recommended to check the effective application and evaluation of the various learning styles. The proposed model is a guideline to effectively implement learning styles inventory in order to ensure that it will validate performance linkage with learning styles. If performance is linked with learning styles, this may help eradicate the distrust on learning style theory. For this purpose, a comprehensive study was conducted to compare and understand how VARK inventory model is being used to identify learning preferences and their correlation with learner’s performance. A comparative analysis of the findings of these studies is presented to understand the learning styles of tertiary students in various disciplines. It is concluded with confidence that the learning styles of students cannot be associated with any specific discipline. Furthermore, there is not enough empirical proof to link performance with learning styles.Keywords: learning style, VARK, sensory preferences, identification model, didactic practices
Procedia PDF Downloads 27816365 Power Quality Improvement Using Interval Type-2 Fuzzy Logic Controller for Five-Level Shunt Active Power Filter
Authors: Yousfi Abdelkader, Chaker Abdelkader, Bot Youcef
Abstract:
This article proposes a five-level shunt active power filter for power quality improvement using a interval type-2 fuzzy logic controller (IT2 FLC). The reference compensating current is extracted using the P-Q theory. The majority of works previously reported are based on two-level inverters with a conventional Proportional integral (PI) controller, which requires rigorous mathematical modeling of the system. In this paper, a IT2 FLC controlled five-level active power filter is proposed to overcome the problem associated with PI controller. The IT2 FLC algorithm is applied for controlling the DC-side capacitor voltage as well as the harmonic currents of the five-level active power filter. The active power filter with a IT2 FLC is simulated in MATLAB Simulink environment. The simulated response shows that the proposed shunt active power filter controller has produced a sinusoidal supply current with low harmonic distortion and in phase with the source voltage.Keywords: power quality, shunt active power filter, interval type-2 fuzzy logic controller (T2FL), multilevel inverter
Procedia PDF Downloads 17816364 Applying the Extreme-Based Teaching Model in Post-Secondary Online Classroom Setting: A Field Experiment
Authors: Leon Pan
Abstract:
The first programming course within post-secondary education has long been recognized as a challenging endeavor for both educators and students alike. Historically, these courses have exhibited high failure rates and a notable number of dropouts. Instructors often lament students' lack of effort in their coursework, and students often express frustration that the teaching methods employed are not effective. Drawing inspiration from the successful principles of Extreme Programming, this study introduces an approach—the Extremes-based teaching model — aimed at enhancing the teaching of introductory programming courses. To empirically determine the effectiveness of the model, a comparison was made between a section taught using the extreme-based model and another utilizing traditional teaching methods. Notably, the extreme-based teaching class required students to work collaboratively on projects while also demanding continuous assessment and performance enhancement within groups. This paper details the application of the extreme-based model within the post-secondary online classroom context and presents the compelling results that emphasize its effectiveness in advancing the teaching and learning experiences. The extreme-based model led to a significant increase of 13.46 points in the weighted total average and a commendable 10% reduction in the failure rate.Keywords: extreme-based teaching model, innovative pedagogical methods, project-based learning, team-based learning
Procedia PDF Downloads 5916363 Incidence and Predictors of Mortality Among HIV Positive Children on Art in Public Hospitals of Harer Town, Enrolled From 2011 to 2021
Authors: Getahun Nigusie
Abstract:
Background; antiretroviral treatment reduce HIV-related morbidity, and prolonged survival of patients however, there is lack of up-to-date information concerning the treatment long term effect on the survival of HIV positive children especially in the study area. Objective: To assess incidence and predictors of mortality among HIV positive children on ART in public hospitals of Harer town who were enrolled from 2011 to 2021. Methodology: Institution based retrospective cohort study was conducted among 429 HIV positive children enrolled in ART clinic from January 1st 2011 to December30th 2021. Data were collected from medical cards by using a data extraction form, Descriptive analyses were used to Summarized the results, and life table was used to estimate survival probability at specific point of time after introduction of ART. Kaplan Meier survival curve together with log rank test was used to compare survival between different categories of covariates, and Multivariate Cox-proportional hazard regression model was used to estimate adjusted Hazard rate. Variables with p-values ≤0.25 in bivariable analysis were candidates to the multivariable analysis. Finally, variables with p-values < 0.05 were considered as significant variables. Results: The study participants had followed for a total of 2549.6 child-years (30596 child months) with an overall mortality rate of 1.5 (95% CI: 1.1, 2.04) per 100 child-years. Their median survival time was 112 months (95% CI: 101–117). There were 38 children with unknown outcome, 39 deaths, and 55 children transfer out to different facility. The overall survival at 6, 12, 24, 48 months were 98%, 96%, 95%, 94% respectively. being in WHO clinical Stage four (AHR=4.55, 95% CI:1.36, 15.24), having anemia(AHR=2.56, 95% CI:1.11, 5.93), baseline low absolute CD4 count (AHR=2.95, 95% CI: 1.22, 7.12), stunting (AHR=4.1, 95% CI: 1.11, 15.42), wasting (AHR=4.93, 95% CI: 1.31, 18.76), poor adherence to treatment (AHR=3.37, 95% CI: 1.25, 9.11), having TB infection at enrollment (AHR=3.26, 95% CI: 1.25, 8.49),and no history of change their regimen(AHR=7.1, 95% CI: 2.74, 18.24), were independent predictors of death. Conclusion: more than half of death occurs within 2 years. Prevalent tuberculosis, anemia, wasting, and stunting nutritional status, socioeconomic factors, and baseline opportunistic infection were independent predictors of death. Increasing early screening and managing those predictors are required.Keywords: human immunodeficiency virus-positive children, anti-retroviral therapy, survival, Ethiopia
Procedia PDF Downloads 2216362 Functional Decomposition Based Effort Estimation Model for Software-Intensive Systems
Authors: Nermin Sökmen
Abstract:
An effort estimation model is needed for software-intensive projects that consist of hardware, embedded software or some combination of the two, as well as high level software solutions. This paper first focuses on functional decomposition techniques to measure functional complexity of a computer system and investigates its impact on system development effort. Later, it examines effects of technical difficulty and design team capability factors in order to construct the best effort estimation model. With using traditional regression analysis technique, the study develops a system development effort estimation model which takes functional complexity, technical difficulty and design team capability factors as input parameters. Finally, the assumptions of the model are tested.Keywords: functional complexity, functional decomposition, development effort, technical difficulty, design team capability, regression analysis
Procedia PDF Downloads 29316361 Application of an Analytical Model to Obtain Daily Flow Duration Curves for Different Hydrological Regimes in Switzerland
Authors: Ana Clara Santos, Maria Manuela Portela, Bettina Schaefli
Abstract:
This work assesses the performance of an analytical model framework to generate daily flow duration curves, FDCs, based on climatic characteristics of the catchments and on their streamflow recession coefficients. According to the analytical model framework, precipitation is considered to be a stochastic process, modeled as a marked Poisson process, and recession is considered to be deterministic, with parameters that can be computed based on different models. The analytical model framework was tested for three case studies with different hydrological regimes located in Switzerland: pluvial, snow-dominated and glacier. For that purpose, five time intervals were analyzed (the four meteorological seasons and the civil year) and two developments of the model were tested: one considering a linear recession model and the other adopting a nonlinear recession model. Those developments were combined with recession coefficients obtained from two different approaches: forward and inverse estimation. The performance of the analytical framework when considering forward parameter estimation is poor in comparison with the inverse estimation for both, linear and nonlinear models. For the pluvial catchment, the inverse estimation shows exceptional good results, especially for the nonlinear model, clearing suggesting that the model has the ability to describe FDCs. For the snow-dominated and glacier catchments the seasonal results are better than the annual ones suggesting that the model can describe streamflows in those conditions and that future efforts should focus on improving and combining seasonal curves instead of considering single annual ones.Keywords: analytical streamflow distribution, stochastic process, linear and non-linear recession, hydrological modelling, daily discharges
Procedia PDF Downloads 16216360 Robustified Asymmetric Logistic Regression Model for Global Fish Stock Assessment
Authors: Osamu Komori, Shinto Eguchi, Hiroshi Okamura, Momoko Ichinokawa
Abstract:
The long time-series data on population assessments are essential for global ecosystem assessment because the temporal change of biomass in such a database reflects the status of global ecosystem properly. However, the available assessment data usually have limited sample sizes and the ratio of populations with low abundance of biomass (collapsed) to those with high abundance (non-collapsed) is highly imbalanced. To allow for the imbalance and uncertainty involved in the ecological data, we propose a binary regression model with mixed effects for inferring ecosystem status through an asymmetric logistic model. In the estimation equation, we observe that the weights for the non-collapsed populations are relatively reduced, which in turn puts more importance on the small number of observations of collapsed populations. Moreover, we extend the asymmetric logistic regression model using propensity score to allow for the sample biases observed in the labeled and unlabeled datasets. It robustified the estimation procedure and improved the model fitting.Keywords: double robust estimation, ecological binary data, mixed effect logistic regression model, propensity score
Procedia PDF Downloads 26616359 Investigating the Challenges Faced by English Language Teachers in Implementing Outcome Based Education the Outcome Based Education model in Engineering Universities of Sindh
Authors: Habibullah Pathan
Abstract:
The present study aims to explore problems faced by English Language Teachers (ELT) while implementing the Outcome Based Education (OBE) model in engineering universities of Sindh. OBE is an emerging model initiative of the International Engineering Alliance. Traditional educational systems are teacher-centered or curriculum-centered, in which learners are not able to achieve desired outcomes, but the OBE model enables learners to know the outcomes before the start of the program. OBE is a circular process that begins from the needs and demands of society to stakeholders who ask the experts to produce the alumnus who can fulfill the needs and ends up getting new enrollment in the respective programs who can work according to the demands. In all engineering institutions, engineering courses besides English language courses are taught on the OBE model. English language teachers were interviewed to learn the in-depth of the problems faced by them. The study found that teachers were facing problems including pedagogical, OBE training, assessment, evaluation and administrative support. This study will be a guide for public and private English language teachers to cope with these challenges while teaching the English language on the OBE model. OBE is an emerging model by which the institutions can produce such a product that can meet the demands.Keywords: problems of ELT teachers, outcome based education (OBE), implementing, assessment
Procedia PDF Downloads 9816358 On the Application and Comparison of Two Geostatistics Methods in the Parameterisation Step to Calibrate Groundwater Model: Grid-Based Pilot Point and Head-Zonation Based Pilot Point Methods
Authors: Dua K. S. Y. Klaas, Monzur A. Imteaz, Ika Sudiayem, Elkan M. E. Klaas, Eldav C. M. Klaas
Abstract:
Properly selecting the most suitable and effective geostatistics method in the parameterization step of groundwater modeling is critical to attain a satisfactory model. In this paper, two geostatistics methods, i.e., Grid-Based Pilot Point (GB-PP) and Head-Zonation Based Pilot Point (HZB-PP) methods, were applied in an eogenetic karst catchment and compared using as model performances and computation time the criteria. Overall, the results show that appropriate selection of method is substantial in the parameterization of physically-based groundwater models, as it influences both the accuracy and simulation times. It was found that GB-PP method performed comparably superior to HZB-PP method. However, reflecting its model performances, HZB-PP method is promising for further application in groundwater modeling.Keywords: groundwater model, geostatistics, pilot point, parameterization step
Procedia PDF Downloads 16616357 The Development of Nursing Model for Pregnant Women to Prevention of Early Postpartum Hemorrhage
Authors: Wadsana Sarakarn, Pimonpan Charoensri, Baliya Chaiyara
Abstract:
Objectives: To study the outcomes of the developed nursing model to prevent early postpartum hemorrhage (PPH). Materials and Methods: The analytical study was conducted in Sunpasitthiprasong Hospital during October 1st, 2015, until May 31st, 2017. After review the prevalence, risk factors, and outcomes of postpartum hemorrhage of the parturient who gave birth in Sunpasitthiprasong Hospital, the nursing model was developed under research regulation of Kemmis&McTaggart using 4 steps of operating procedures: 1) analyzing problem situation and gathering 2) creating the plan 3) noticing and performing 4) reflecting the result of the operation. The nursing model consisted of the screening tools for risk factors associated with PPH, the clinical nursing practice guideline (CNPG), and the collecting bag for measuring postpartum blood loss. Primary outcome was early postpartum hemorrhage. Secondary outcomes were postpartum hysterectomy, maternal mortality, personnel’s practice, knowledge, and satisfaction of the nursing model. The data were analyzed by using content analysis for qualitative data and descriptive statistics for quantitative data. Results: Before using the nursing model, the prevalence of early postpartum hemorrhage was under estimated (2.97%). There were 5 cases of postpartum hysterectomy and 2 cases of maternal death due to postpartum hemorrhage. During the study period, there was 22.7% prevalence of postpartum hemorrhage among 220 pregnant women who were vaginally delivered at Sunpasitthiprasong Hospital. No maternal death or postpartum hysterectomy was reported after using the nursing model. Among 16 registered nurses at the delivery room who evaluated using of the nursing model, they reported the high level of practice, knowledge, and satisfaction Conclusion: The nursing model for the prevention of early PPH is effective to decrease early PPH and other serious complications.Keywords: the development of a nursing model, prevention of postpartum hemorrhage, pregnant women, postpartum hemorrhage
Procedia PDF Downloads 9916356 Nonlinear Porous Diffusion Modeling of Ionic Agrochemicals in Astomatous Plant Cuticle Aqueous Pores: A Mechanistic Approach
Authors: Eloise C. Tredenick, Troy W. Farrell, W. Alison Forster, Steven T. P. Psaltis
Abstract:
The agriculture industry requires improved efficacy of sprays being applied to crops. More efficacious sprays provide many environmental and financial benefits. The plant leaf cuticle is known to be the main barrier to diffusion of agrochemicals within the leaf. The importance of a mathematical model to simulate uptake of agrochemicals in plant cuticles has been noted, as the results of each uptake experiments are specific to each formulation of active ingredient and plant species. In this work we develop a mathematical model and numerical simulation for the uptake of ionic agrochemicals through aqueous pores in plant cuticles. We propose a nonlinear porous diffusion model of ionic agrochemicals in isolated cuticles, which provides additions to a simple diffusion model through the incorporation of parameters capable of simulating plant species' variations, evaporation of surface droplet solutions and swelling of the aqueous pores with water. The model could feasibly be adapted to other ionic active ingredients diffusing through other plant species' cuticles. We validate our theoretical results against appropriate experimental data, discuss the key sensitivities in the model and relate theoretical predictions to appropriate physical mechanisms.Keywords: aqueous pores, ionic active ingredient, mathematical model, plant cuticle, porous diffusion
Procedia PDF Downloads 26216355 Intimate Partner Violence and Risk of Obesity among Women
Authors: Fatemeh Abdollahi, Munn-Sann Lye, Jamshid Yazdani Charati, Mehran Zarghami
Abstract:
Both obesity and intimate partner violence (IPV) are growing health threats. This study aimed to assess the prevalence and risk factors of both IPV and obesity and their association. In this cross-sectional study, 530 women aged 16-65 years attending Mazandaran primary health centers were recruited through the stratified random sampling method (2019-2020). Data were collected using the modified World Health Organization Domestic Violence questionnaire, Perceived Stress Scale, and socio-demographic, obstetric, and anthropometric questionnaires. The data were analyzed using descriptive statistics, the chi-square test, and multiple logistic regression. The prevalence of overweight, obesity and psychological, physical, and sexual IPV were 47.6%, 26.7%, 70.4%, 17.9%, and 6.4%, respectively. Increasing women’s educational level and exposure to violence during their lifespan increased the odds of any type of IPV while living in a nuclear family reduced it. In groups of women who were subjected to any type of IPV and only psychological IPV, experiencing violence during the lifespan was significant in predicting obesity. The alarming prevalence of IPV and obesity-overweight in this study points to the need for collaborative socio-political and health intervention. The link between experiencing violence during lifespan and obesity in some subgroups of women highlights the detrimental consequences of chronic violence and the urgent need for effective preventive programs.Keywords: intimate partner violence, body mass index, obesity, risk factor, women
Procedia PDF Downloads 10216354 Simulation of Government Management Model to Increase Financial Productivity System Using Govpilot
Authors: Arezou Javadi
Abstract:
The use of algorithmic models dependent on software calculations and simulation of new government management assays with the help of specialized software had increased the productivity and efficiency of the government management system recently. This has caused the management approach to change from the old bitch & fix model, which has low efficiency and less usefulness, to the capable management model with higher efficiency called the partnership with resident model. By using Govpilot TM software, the relationship between people in a system and the government was examined. The method of two tailed interaction was the outsourcing of a goal in a system, which is formed in the order of goals, qualified executive people, optimal executive model, and finally, summarizing additional activities at the different statistical levels. The results showed that the participation of people in a financial implementation system with a statistical potential of P≥5% caused a significant increase in investment and initial capital in the government system with maximum implement project in a smart government.Keywords: machine learning, financial income, statistical potential, govpilot
Procedia PDF Downloads 8816353 Simulation of Government Management Model to Increase Financial Productivity System Using Govpilot
Authors: Arezou Javadi
Abstract:
The use of algorithmic models dependent on software calculations and simulation of new government management assays with the help of specialized software had increased the productivity and efficiency of the government management system recently. This has caused the management approach to change from the old bitch & fix model, which has low efficiency and less usefulness, to the capable management model with higher efficiency called the partnership with resident model. By using Govpilot TM software, the relationship between people in a system and the government was examined. The method of two tailed interaction was the outsourcing of a goal in a system, which is formed in the order of goals, qualified executive people, optimal executive model, and finally, summarizing additional activities at the different statistical levels. The results showed that the participation of people in a financial implementation system with a statistical potential of P≥5% caused a significant increase in investment and initial capital in the government system with maximum implement project in a smart government.Keywords: machine learning, financial income, statistical potential, govpilot
Procedia PDF Downloads 7016352 Time/Temperature-Dependent Finite Element Model of Laminated Glass Beams
Authors: Alena Zemanová, Jan Zeman, Michal Šejnoha
Abstract:
The polymer foil used for manufacturing of laminated glass members behaves in a viscoelastic manner with temperature dependence. This contribution aims at incorporating the time/temperature-dependent behavior of interlayer to our earlier elastic finite element model for laminated glass beams. The model is based on a refined beam theory: each layer behaves according to the finite-strain shear deformable formulation by Reissner and the adjacent layers are connected via the Lagrange multipliers ensuring the inter-layer compatibility of a laminated unit. The time/temperature-dependent behavior of the interlayer is accounted for by the generalized Maxwell model and by the time-temperature superposition principle due to the Williams, Landel, and Ferry. The resulting system is solved by the Newton method with consistent linearization and the viscoelastic response is determined incrementally by the exponential algorithm. By comparing the model predictions against available experimental data, we demonstrate that the proposed formulation is reliable and accurately reproduces the behavior of the laminated glass units.Keywords: finite element method, finite-strain Reissner model, Lagrange multipliers, generalized Maxwell model, laminated glass, Newton method, Williams-Landel-Ferry equation
Procedia PDF Downloads 431