Search results for: marketing performance input factors
23150 Concept to Enhance the Project Success and Promote the Implementation of Success Factors in Infrastructure Projects
Abstract:
Infrastructure projects are often subjected to delays and cost overruns and mistakenly described as unsuccessful projects. These projects have many peculiarities such as public attention, impact on the environment, subjected to special regulations, etc. They also deal with several stakeholders with different motivations and face unique risks. With this in mind we need to reconsider our approach to manage them, define their success factors and implement these success factors. Infrastructure projects are not only lacking a unified meaning of project success or a definition of success factors, but also a clear method to implement these factors. This paper investigates this gap and introduces a concept to implement success factors in an efficient way, taking into consideration the specific characteristics of infrastructure projects. This concept consists of six enablers such as project organization, project team, project management workflow, contract management, communication and knowledge transfer and project documentations. These enablers allow other success factors to be efficiently implemented in projects. In conclusion, this paper provides project managers as well as company managers with a tool to define and implement success factors efficiently in their projects, along with upgrading their assets for the coming projects. This tool consists of processes and validated checklists to ensure the best use of company resources and knowledge. Due to the special features of infrastructure projects this tool will be tested in the German infrastructure market. However, it is meant to be adaptable to other markets and industries.Keywords: infrastructure projects, operative success factors, project success, success factors, transportation projects
Procedia PDF Downloads 12823149 Behavior of SPEC CPU2006 Based on Optimization Levels
Authors: Faisel Elramalli, Ibrahim Althomali Amjad Sabbagh, Dhananjay Tambe
Abstract:
SPEC CPU benchmarks are used to evaluate the performance of CPUs on computer systems. In our project we are going to use SPEC CPU suite that contains several benchmarks running on two different compilers gcc and icc in different optimizations levels to evaluate the performance of a CPU. The motivation of this project is to find out which compiler and in which optimization level makes the CPU reaches the best performance. The results of that evaluation will help users of these compilers to choose the best compiler and optimization level that perform efficiently for their work. In other words, it will give users the best performance of the CPU while doing their works. This project is interesting since it will provide the method used to measure the performance of CPU and how different optimization levels of compilers can help achieve a higher performance. Moreover, it will give a good understanding of how benchmarks are used to evaluate a CPU performance. For the reader, in reality SPEC CPU benchmarks are used to measure the performance of new released CPUs to be compared to other CPUs.Keywords: SPEC, CPU, GCC, ICC, copilers
Procedia PDF Downloads 48523148 An Engineered Epidemic: Big Pharma's Role in the Opioid Crisis
Authors: Donna L. Roberts
Abstract:
2019 marked 23 years since Purdue Pharma launched its flagship drug, OxyContin, that unleashed an unprecedented epidemic touching both celebrities and common citizens, metropolitan, suburbia and rural areas and all levels of socioeconomic status. From rural Appalachia to East LA individuals, families and communities have been devastated by a trajectory of addiction that often began with the legitimate prescription of a pain killer for anything from a tooth extraction to a sports injury to recovery from surgery or chronic arthritis. Far from being a serendipitous progression of events, the proliferation of this new breed of 'miracle drug' was instead a carefully crafted marketing program aimed at both the medical community and common citizens. This research represents and in-depth investigation of the evolution of the marketing, distribution and promotion of prescription opioids by pharmaceutical companies and its relationship to the propagation of the opioid crisis. Specifically, key components of Purdue Pharma’s aggressive marketing campaign, including its bonus system and sales incentives, were analyzed in the context of the sociopolitical environment that essential created the proverbial 'perfect storm' for the changing manner in which pain is treated in the U.S. The analyses of these series of events clearly indicate their role in first, the increase in prescription of opioids for non-terminal pain relief and subsequently, the incidence of related addiction, overdose, and death. Through this examination of the conditions that facilitated and maintained this drug crisis, perhaps we can begin to chart a course toward its resolution.Keywords: addiction, opioid, opioid crisis, Purdue Pharma
Procedia PDF Downloads 12123147 The “Bright Side” of COVID-19: Effects of Livestream Affordances on Consumer Purchase Willingness: Explicit IT Affordances Perspective
Authors: Isaac Owusu Asante, Yushi Jiang, Hailin Tao
Abstract:
Live streaming marketing, the new electronic commerce element, became an optional marketing channel following the COVID-19 pandemic. Many sellers have leveraged the features presented by live streaming to increase sales. Studies on live streaming have focused on gaming and consumers’ loyalty to brands through live streaming, using interview questionnaires. This study, however, was conducted to measure real-time observable interactions between consumers and sellers. Based on the affordance theory, this study conceptualized constructs representing the interactive features and examined how they drive consumers’ purchase willingness during live streaming sessions using 1238 datasets from Amazon Live, following the manual observation of transaction records. Using structural equation modeling, the ordinary least square regression suggests that live viewers, new followers, live chats, and likes positively affect purchase willingness. The Sobel and Monte Carlo tests show that new followers, live chats, and likes significantly mediate the relationship between live viewers and purchase willingness. The study introduces a new way of measuring interactions in live streaming commerce and proposes a way to manually gather data on consumer behaviors in live streaming platforms when the application programming interface (API) of such platforms does not support data mining algorithms.Keywords: livestreaming marketing, live chats, live viewers, likes, new followers, purchase willingness
Procedia PDF Downloads 8123146 Evaluation of Drilling Performance through Bit-Rock Interaction Using Passive Vibration Assisted Rotation Drilling (PVARD) Tool
Authors: Md. Shaheen Shah, Abdelsalam Abugharara, Dipesh Maharjan, Syed Imtiaz, Stephen Butt
Abstract:
Drilling performance is an essential goal in petroleum and mining industry. Drilling rate of penetration (ROP), which is inversely proportional to the mechanical specific energy (MSE) is influenced by numerous factors among which are the applied parameter: torque (T), weight on bit (WOB), fluid flow rate, revolution per minute (rpm), rock related parameters: rock type, rock homogeneousness, rock anisotropy orientation, and mechanical parameters: bit type, configuration of the bottom hole assembly (BHA). This paper is focused on studying the drilling performance by implementing a passive vibration assisted rotary drilling tool (pVARD) as part of the BHA through using different bit types: coring bit, roller cone bit, and PDC bit and various rock types: rock-like material, granite, sandstone, etc. The results of this study aim to produce a pVARD index for optimal drilling performance considering the recommendations of the pVARD’s spring compression tests and stress-strain analysis of rock samples conducted prior to drilling experiments, analyzing the cutting size distribution, and evaluating the applied drilling parameters as a function of WOB. These results are compared with those obtained from drilling without pVARD, which represents the typical rigid BHA of the conventional drilling.Keywords: BHA, drilling performance, MSE, pVARD, rate of penetration, ROP, tensile and shear fractures, unconfined compressive strength
Procedia PDF Downloads 14623145 Analysis Customer Loyalty Characteristic and Segmentation Analysis in Mobile Phone Category in Indonesia
Authors: A. B. Robert, Adam Pramadia, Calvin Andika
Abstract:
The main purpose of this study is to explore consumer loyalty characteristic of mobile phone category in Indonesia. Second, this research attempts to identify consumer segment and to explore their profile in each segment as the basis of marketing strategy formulation. This study used some tools of multivariate analysis such as discriminant analysis and cluster analysis. Discriminate analysis used to discriminate consumer loyal and not loyal by using particular variables. Cluster analysis used to reveal various segment in mobile phone category. In addition to having better customer understanding in each segment, this study used descriptive analysis and cross tab analysis in each segment defined by cluster analysis. This study expected several findings. First, consumer can be divided into two large group of loyal versus not loyal by set of variables. Second, this study identifies customer segment in mobile phone category. Third, exploring customer profile in each segment that has been identified. This study answer a call for additional empirical research into different product categories. Therefore, a replication research is advisable. By knowing the customer loyalty characteristic, and deep analysis of their consumption behavior and profile for each segment, this study is very advisable for high impact marketing strategy development. This study contributes body of knowledge by adding empirical study of consumer loyalty, segmentation analysis in mobile phone category by multiple brand analysis.Keywords: customer loyalty, segmentation, marketing strategy, discriminant analysis, cluster analysis, mobile phone
Procedia PDF Downloads 59623144 Wireless Sensor Network Energy Efficient and QoS-Aware MAC Protocols: A Survey
Authors: Bashir Abdu Muzakkari, Mohamad Afendee Mohamad, Mohd Fadzil Abdul Kadir
Abstract:
Wireless Sensor Networks (WSNs) is an aggregation of several tiny, low-cost sensor nodes, spatially distributed to monitor physical or environmental status. WSN is constantly changing because of the rapid technological advancements in sensor elements such as radio, battery and operating systems. The Medium Access Control (MAC) protocols remain very vital in the WSN because of its role in coordinating communication amongst the sensors. Other than battery consumption, packet collision, network lifetime and latency are factors that largely depend on WSN MAC protocol and these factors have been widely treated in recent days. In this paper, we survey some latest proposed WSN Contention-based, Scheduling-based and Hybrid MAC protocols while presenting an examination, correlation of advantages and limitations of each protocol. Concentration is directed towards investigating the treatment of Quality of Service (QoS) performance metrics within these particular protocols. The result shows that majority of the protocols leaned towards energy conservation. We, therefore, believe that other performance metrics of guaranteed QoS such as latency, throughput, packet loss, network and bandwidth availability may play a critical role in the design of future MAC protocols for WSNs.Keywords: WSN, QoS, energy consumption, MAC protocol
Procedia PDF Downloads 40023143 Next-Gen Solutions: How Generative AI Will Reshape Businesses
Authors: Aishwarya Rai
Abstract:
This study explores the transformative influence of generative AI on startups, businesses, and industries. We will explore how large businesses can benefit in the area of customer operations, where AI-powered chatbots can improve self-service and agent effectiveness, greatly increasing efficiency. In marketing and sales, generative AI could transform businesses by automating content development, data utilization, and personalization, resulting in a substantial increase in marketing and sales productivity. In software engineering-focused startups, generative AI can streamline activities, significantly impacting coding processes and work experiences. It can be extremely useful in product R&D for market analysis, virtual design, simulations, and test preparation, altering old workflows and increasing efficiency. Zooming into the retail and CPG industry, industry findings suggest a 1-2% increase in annual revenues, equating to $400 billion to $660 billion. By automating customer service, marketing, sales, and supply chain management, generative AI can streamline operations, optimizing personalized offerings and presenting itself as a disruptive force. While celebrating economic potential, we acknowledge challenges like external inference and adversarial attacks. Human involvement remains crucial for quality control and security in the era of generative AI-driven transformative innovation. This talk provides a comprehensive exploration of generative AI's pivotal role in reshaping businesses, recognizing its strategic impact on customer interactions, productivity, and operational efficiency.Keywords: generative AI, digital transformation, LLM, artificial intelligence, startups, businesses
Procedia PDF Downloads 7623142 Peak Data Rate Enhancement Using Switched Micro-Macro Diversity in Cellular Multiple-Input-Multiple-Output Systems
Authors: Jihad S. Daba, J. P. Dubois, Yvette Antar
Abstract:
With the exponential growth of cellular users, a new generation of cellular networks is needed to enhance the required peak data rates. The co-channel interference between neighboring base stations inhibits peak data rate increase. To overcome this interference, multi-cell cooperation known as coordinated multipoint transmission is proposed. Such a solution makes use of multiple-input-multiple-output (MIMO) systems under two different structures: Micro- and macro-diversity. In this paper, we study the capacity and bit error rate in cellular networks using MIMO technology. We analyse both micro- and macro-diversity schemes and develop a hybrid model that switches between macro- and micro-diversity in the case of hard handoff based on a cut-off range of signal-to-noise ratio values. We conclude that our hybrid switched micro-macro MIMO system outperforms classical MIMO systems at the cost of increased hardware and software complexity.Keywords: cooperative multipoint transmission, ergodic capacity, hard handoff, macro-diversity, micro-diversity, multiple-input-multiple output systems, orthogonal frequency division multiplexing
Procedia PDF Downloads 31223141 Automated Building Internal Layout Design Incorporating Post-Earthquake Evacuation Considerations
Authors: Sajjad Hassanpour, Vicente A. González, Yang Zou, Jiamou Liu
Abstract:
Earthquakes pose a significant threat to both structural and non-structural elements in buildings, putting human lives at risk. Effective post-earthquake evacuation is critical for ensuring the safety of building occupants. However, current design practices often neglect the integration of post-earthquake evacuation considerations into the early-stage architectural design process. To address this gap, this paper presents a novel automated internal architectural layout generation tool that optimizes post-earthquake evacuation performance. The tool takes an initial plain floor plan as input, along with specific requirements from the user/architect, such as minimum room dimensions, corridor width, and exit lengths. Based on these inputs, firstly, the tool randomly generates different architectural layouts. Secondly, the human post-earthquake evacuation behaviour will be thoroughly assessed for each generated layout using the advanced Agent-Based Building Earthquake Evacuation Simulation (AB2E2S) model. The AB2E2S prototype is a post-earthquake evacuation simulation tool that incorporates variables related to earthquake intensity, architectural layout, and human factors. It leverages a hierarchical agent-based simulation approach, incorporating reinforcement learning to mimic human behaviour during evacuation. The model evaluates different layout options and provides feedback on evacuation flow, time, and possible casualties due to earthquake non-structural damage. By integrating the AB2E2S model into the automated layout generation tool, architects and designers can obtain optimized architectural layouts that prioritize post-earthquake evacuation performance. Through the use of the tool, architects and designers can explore various design alternatives, considering different minimum room requirements, corridor widths, and exit lengths. This approach ensures that evacuation considerations are embedded in the early stages of the design process. In conclusion, this research presents an innovative automated internal architectural layout generation tool that integrates post-earthquake evacuation simulation. By incorporating evacuation considerations into the early-stage design process, architects and designers can optimize building layouts for improved post-earthquake evacuation performance. This tool empowers professionals to create resilient designs that prioritize the safety of building occupants in the face of seismic events.Keywords: agent-based simulation, automation in design, architectural layout, post-earthquake evacuation behavior
Procedia PDF Downloads 10423140 A Case Study on Machine Learning-Based Project Performance Forecasting for an Urban Road Reconstruction Project
Authors: Soheila Sadeghi
Abstract:
In construction projects, predicting project performance metrics accurately is essential for effective management and successful delivery. However, conventional methods often depend on fixed baseline plans, disregarding the evolving nature of project progress and external influences. To address this issue, we introduce a distinct approach based on machine learning to forecast key performance indicators, such as cost variance and earned value, for each Work Breakdown Structure (WBS) category within an urban road reconstruction project. Our proposed model leverages time series forecasting techniques, namely Autoregressive Integrated Moving Average (ARIMA) and Long Short-Term Memory (LSTM) networks, to predict future performance by analyzing historical data and project progress. Additionally, the model incorporates external factors, including weather patterns and resource availability, as features to improve forecast accuracy. By harnessing the predictive capabilities of machine learning, our performance forecasting model enables project managers to proactively identify potential deviations from the baseline plan and take timely corrective measures. To validate the effectiveness of the proposed approach, we conduct a case study on an urban road reconstruction project, comparing the model's predictions with actual project performance data. The outcomes of this research contribute to the advancement of project management practices in the construction industry by providing a data-driven solution for enhancing project performance monitoring and control.Keywords: project performance forecasting, machine learning, time series forecasting, cost variance, schedule variance, earned value management
Procedia PDF Downloads 3923139 Analysis of Nuclear Power Plant Operator Activities and Risk Factors Using an EEG System
Authors: John Gaber, Youssef Ahmed, Hossam A.Gabbar, Jing Ren
Abstract:
Nuclear Power Plant (NPP) operators have a large responsibility on their shoulders. They must allow the plant to generate a high amount of energy while inspecting and maintaining the safety of the plant. This type of occupation comes with high amounts of mental fatigue, and a small mistake can have grave consequences. Electroencephalography (EEG) is a method of gathering the electromagnetic waves emitted by a human brain. We propose a safety system by monitoring brainwaves for signs of mental fatigue. This requires an analysis of the tasks and mental models of the NPP operator, as well as risk factors on mental fatigue and attention that NPP operators face when performing their tasks. The brain waves generated from experiencing mental fatigue can then be monitored for. These factors are analyzed, developing an EEG-based monitoring system, which aims to alert NPP operators when levels of mental fatigue and attention start affecting their performance in task completion.Keywords: EEG, power plant operator, psychology, task analysis
Procedia PDF Downloads 9923138 Relationship between Personality Traits and Postural Stability among Czech Military Combat Troops
Authors: K. Rusnakova, D. Gerych, M. Stehlik
Abstract:
Postural stability is a complex process involving actions of biomechanical, motor, sensory and central nervous system components. Numerous joint systems, muscles involved, the complexity of sporting movements and situations require perfect coordination of the body's movement patterns. To adapt to a constantly changing situation in such a dynamic environment as physical performance, optimal input of information from visual, vestibular and somatosensory sensors are needed. Combat soldiers are required to perform physically and mentally demanding tasks in adverse conditions, and poor postural stability has been identified as a risk factor for lower extremity musculoskeletal injury. The aim of this study is to investigate whether some personality traits are related to the performance of static postural stability among soldiers of combat troops. NEO personality inventory (NEO-PI-R) was used to identify personality traits and the Nintendo Wii Balance Board was used to assess static postural stability of soldiers. Postural stability performance was assessed by changes in center of pressure (CoP) and center of gravity (CoG). A posturographic test was performed for 60 s with eyes opened during quiet upright standing. The results showed that facets of neuroticism and conscientiousness personality traits were significantly correlated with measured parameters of CoP and CoG. This study can help for better understanding the relationship between personality traits and static postural stability. The results can be used to optimize the training process at the individual level.Keywords: neuroticism, conscientiousness, postural stability, combat troops
Procedia PDF Downloads 14223137 A Framework for Successful TQM Implementation and Its Effect on the Organizational Sustainability Development
Authors: Redha Elhuni, M. Munir Ahmad
Abstract:
The main purpose of this research is to construct a generic model for successful implementation of Total Quality Management (TQM) in oil sector, and to find out the effects of this model on the organizational sustainability development (OSD) performance of Libyan oil and gas companies using the structured equation modeling (SEM) approach. The research approach covers both quantitative and qualitative methods. A questionnaire was developed in order to identify the quality factors that are seen by Libyan oil and gas companies to be critical to the success of TQM implementation. Hypotheses were developed to evaluate the impact of TQM implementation on O SD. Data analysis reveals that there is a significant positive effect of the TQM implementation on OSD. 24 quality factors are found to be critical and absolutely essential for successful TQM implementation. The results generated a structure of the TQMSD implementation framework based on the four major road map constructs (Top management commitment, employee involvement and participation, customer-driven processes, and continuous improvement culture).Keywords: total quality management, critical success factors, oil and gas, organizational sustainability development (SD), Libya
Procedia PDF Downloads 27323136 Connected Objects with Optical Rectenna for Wireless Information Systems
Authors: Chayma Bahar, Chokri Baccouch, Hedi Sakli, Nizar Sakli
Abstract:
Harvesting and transport of optical and radiofrequency signals are a topical subject with multiple challenges. In this paper, we present a Optical RECTENNA system. We propose here a hybrid system solar cell antenna for 5G mobile communications networks. Thus, we propose rectifying circuit. A parametric study is done to follow the influence of load resistance and input power on Optical RECTENNA system performance. Thus, we propose a solar cell antenna structure in the frequency band of future 5G standard in 2.45 GHz bands.Keywords: antenna, IoT, optical rectenna, solar cell
Procedia PDF Downloads 17823135 The Appraisal of Construction Sites Productivity: In Kendall’s Concordance
Authors: Abdulkadir Abu Lawal
Abstract:
For the dearth of reliable cardinal numerical data, the linked phenomena in productivity indices such as operational costs and company turnovers, etc. could not be investigated. This would not give us insight to the root of productivity problems at unique sites. So, ordinal ranking by professionals who were most directly involved with construction sites was applied for Kendall’s concordance. Responses gathered from independent architects, builders/engineers, and quantity surveyors were herein analyzed. They were responses based on factors that affect sites productivity, and these factors were categorized as head office factors, resource management effectiveness factors, motivational factors, and training/skill development factors. It was found that productivity is low and has to be improved in order to facilitate Nigerian efforts in bridging its infrastructure deficit. The significance of this work is underlined with the Kendall’s coefficient of concordance of 0.78, while remedial measures must be emphasized to stimulate better productivity. Further detailed study can be undertaken by using Fuzzy logic analysis on wider Delphi survey.Keywords: factors, Kendall's coefficient of concordance, magnitude of agreement, percentage magnitude of dichotomy, ranking variables
Procedia PDF Downloads 62723134 Continuous-Time Analysis And Performance Assessment For Digital Control Of High-Frequency Switching Synchronous Dc-Dc Converter
Authors: Rihab Hamdi, Amel Hadri Hamida, Ouafae Bennis, Sakina Zerouali
Abstract:
This paper features a performance analysis and robustness assessment of a digitally controlled DC-DC three-cell buck converter associated in parallel, operating in continuous conduction mode (CCM), facing feeding parameters variation and loads disturbance. The control strategy relies on the continuous-time with an averaged modeling technique for high-frequency switching converter. The methodology is to modulate the complete design procedure, in regard to the existence of an instantaneous current operating point for designing the digital closed-loop, to the same continuous-time domain. Moreover, the adopted approach is to include a digital voltage control (DVC) technique, taking an account for digital control delays and sampling effects, which aims at improving efficiency and dynamic response and preventing generally undesired phenomena. The results obtained under load change, input change, and reference change clearly demonstrates an excellent dynamic response of the proposed technique, also as provide stability in any operating conditions, the effectiveness is fast with a smooth tracking of the specified output voltage. Simulations studies in MATLAB/Simulink environment are performed to verify the concept.Keywords: continuous conduction mode, digital control, parallel multi-cells converter, performance analysis, power electronics
Procedia PDF Downloads 15023133 Comparison of Competitive State Anxiety among Elite and Non-Elite Futsal Players and Its Relationship with Situational Factors
Authors: Hassan Habibi, Hossein Soltani, Amir Moghadam, Najmeh Bakhshi
Abstract:
The purpose of this study was to compare competitive state anxiety among elite and non-elite futsal players and its relationship with situational factors. 130 non-elite and 70 elite male futsal players participated in the study. Competitive State Anxiety Inventory-2 and situational factors Inventory were applied. Data was analyzed using one-way ANOVA and product moment correlation. Results showed there was significant difference between competitive state anxiety subscales (cognitive anxiety somatic anxiety & self-confidence) and situational factors among elite and non-elite futsal players (P<0.05) but there was no significant correlations between situational factors subscales among elite and non-elite futsal players (P<0.05).Keywords: competitive state anxiety, situational factors, elite players, non-elite players
Procedia PDF Downloads 65023132 Enhancement of Natural Convection Heat Transfer within Closed Enclosure Using Parallel Fins
Authors: F. A. Gdhaidh, K. Hussain, H. S. Qi
Abstract:
A numerical study of natural convection heat transfer in water filled cavity has been examined in 3D for single phase liquid cooling system by using an array of parallel plate fins mounted to one wall of a cavity. The heat generated by a heat source represents a computer CPU with dimensions of 37.5×37.5 mm mounted on substrate. A cold plate is used as a heat sink installed on the opposite vertical end of the enclosure. The air flow inside the computer case is created by an exhaust fan. A turbulent air flow is assumed and k-ε model is applied. The fins are installed on the substrate to enhance the heat transfer. The applied power energy range used is between 15- 40W. In order to determine the thermal behaviour of the cooling system, the effect of the heat input and the number of the parallel plate fins are investigated. The results illustrate that as the fin number increases the maximum heat source temperature decreases. However, when the fin number increases to critical value the temperature start to increase due to the fins are too closely spaced and that cause the obstruction of water flow. The introduction of parallel plate fins reduces the maximum heat source temperature by 10% compared to the case without fins. The cooling system maintains the maximum chip temperature at 64.68℃ when the heat input was at 40 W which is much lower than the recommended computer chips limit temperature of no more than 85℃ and hence the performance of the CPU is enhanced.Keywords: chips limit temperature, closed enclosure, natural convection, parallel plate, single phase liquid
Procedia PDF Downloads 26523131 Customers' Attitudes towards Marketing Mix Affecting Purchasing Behavior of Starbucks Coffee (Thailand) Customers in Bangkok
Authors: Polamorn Tamprateep, Warapong Thakanun
Abstract:
This researchs' objectives are: 1. To study the customer demographics that affects the purchasing behavior; 2. To study the marketing mix that affects the purchasing behavior; 3. To study the relationship between purchasing behavior and customers’ perception of Brand Equity. Population of this research is Starbucks Coffee (Thailand) customers in Bangkok. The tool used in this study was questionnaire created from concepts, theories and related researches. The study showed that, of 400 respondents, overall opinion received high score (xˉ= 3.77). When each item is considered, it was found that ‘Staff are knowledgeable in providing service.’, ‘ Staff are friendly.’, ‘Staff possess good communication skill with customers.’, ‘Staff know all types of coffee well.’, and ‘Staff are enthusiastic in giving service.’, all these items received high score with a mean of 3.92, 3.87, 3.77, 3.71 and 3.63, respectively.Keywords: mix attitude of the product, consumer, buying behavior, Starbucks
Procedia PDF Downloads 26423130 Linear MIMO Model Identification Using an Extended Kalman Filter
Authors: Matthew C. Best
Abstract:
Linear Multi-Input Multi-Output (MIMO) dynamic models can be identified, with no a priori knowledge of model structure or order, using a new Generalised Identifying Filter (GIF). Based on an Extended Kalman Filter, the new filter identifies the model iteratively, in a continuous modal canonical form, using only input and output time histories. The filter’s self-propagating state error covariance matrix allows easy determination of convergence and conditioning, and by progressively increasing model order, the best fitting reduced-order model can be identified. The method is shown to be resistant to noise and can easily be extended to identification of smoothly nonlinear systems.Keywords: system identification, Kalman filter, linear model, MIMO, model order reduction
Procedia PDF Downloads 59423129 A Method to Ease the Military Certification Process by Taking Advantage of Civil Standards in the Scope of Human Factors
Authors: Burcu Uçan
Abstract:
The certification approach differs in civil and military projects in aviation. Sets of criteria and standards created by airworthiness authorities for the determination of certification basis are distinct. While the civil standards are more understandable and clear because of not only include detailed specifications but also the help of guidance materials such as Advisory Circular, military criteria do not provide this level of guidance. Therefore, specifications that are more negotiable and sometimes more difficult to reconcile arise for the certification basis of a military aircraft. This study investigates a method of how to develop a military specification set by taking advantage of civil standards, regarding the European Military Airworthiness Criteria (EMACC) that establishes the airworthiness criteria for aircraft systems. Airworthiness Certification Criteria (MIL-HDBK-516C) is a handbook published for guidance that contains qualitative evaluation for military aircrafts meanwhile Certification Specifications (CS-29) is published for civil aircrafts by European Union Aviation Safety Agency (EASA). This method intends to compare and contrast specifications that MIL-HDBK-516C and CS-29 contain within the scope of Human Factors. Human Factors supports human performance and aims to improve system performance by encompassing knowledge from a range of scientific disciplines. Human Factors focuses on how people perform their tasks and reduce the risk of an accident occurring due to human physical and cognitive limitations. Hence, regardless of whether the project is civil or military, the specifications must be guided at a certain level by taking into account human limits. This study presents an advisory method for this purpose. The method in this study develops a solution for the military certification process by identifying the CS requirement corresponding to the criteria in the MIL-HDBK-516C by means of EMACC. Thus, it eases understanding the expectations of the criteria and establishing derived requirements. As a result of this method, it may not always be preferred to derive new requirements. Instead, it is possible to add remarks to make the expectancy of the criteria and required verification methods more comprehensible for all stakeholders. This study contributes to creating a certification basis for military aircraft, which is difficult and takes plenty of time for stakeholders to agree due to gray areas in the certification process for military aircrafts.Keywords: human factors, certification, aerospace, requirement
Procedia PDF Downloads 7823128 Problems and Needs Help of Frozen Shrimp Industry Small and Medium in the Central Region of the Lower Three Provinces
Authors: P. Thepnarintra
Abstract:
Frozen shrimp industry plays an important role in the development of production industry of the country. There has been a continuing development to response the increasing demand; however, there have been some problems in running the enterprises. The purposes of this study are to: 1) investigate problems related to basic factors in operating frozen shrimp industry based on the entrepreneurs’ points of view. The enterprises involved in this study were small and medium industry receiving Thai Frozen Foods Association. 2) Compare the problems of the frozen shrimp industry according to their sizes of operation in 3 provinces of the central region Thailand. Population in this study consisted of 148 managers from 148 frozen shrimp enterprises Thai Frozen Foods Association, of which 77 were small size and 71 were medium size. The data were analyzed to find percentage, arithmetic mean, standard deviation, and independent sample T-test with the significant hypothesis at .05. The results revealed that the problems of the frozen shrimp industries of both size were in high level. The needs for government supporting were in high level. The comparison of the problems and the basic factors between the small and medium size enterprises showed no statistically significant level. The problems that they mentioned included raw materials, labors, production, marketing, and the need for academic supporting from the government sector.Keywords: frozen shrimp industry, problems, related to the enterprise, operation
Procedia PDF Downloads 54123127 Earthquakes and Buildings: Lesson Learnt from Past Earthquakes in Turkey
Authors: Yavuz Yardım
Abstract:
The most important criteria for structural engineering is the structure’s ability to carry intended loads safely. The key element of this ability is mathematical modeling of really loadings situation into a simple loads input to use in structure analysis and design. Amongst many different types of loads, the most challenging load is earthquake load. It is possible magnitude is unclear and timing is unknown. Therefore the concept of intended loads and safety have been built on experience of previous earthquake impact on the structures. Understanding and developing these concepts is achieved by investigating performance of the structures after real earthquakes. Damage after an earthquake provide results of thousands of full-scale structure test under a real seismic load. Thus, Earthquakes reveille all the weakness, mistakes and deficiencies of analysis, design rules and practice. This study deals with lesson learnt from earthquake recoded last two decades in Turkey. Results of investigation after several earthquakes exposes many deficiencies in structural detailing, inappropriate design, wrong architecture layout, and mainly mistake in construction practice.Keywords: earthquake, seismic assessment, RC buildings, building performance
Procedia PDF Downloads 26423126 Deep Learning Based on Image Decomposition for Restoration of Intrinsic Representation
Authors: Hyohun Kim, Dongwha Shin, Yeonseok Kim, Ji-Su Ahn, Kensuke Nakamura, Dongeun Choi, Byung-Woo Hong
Abstract:
Artefacts are commonly encountered in the imaging process of clinical computed tomography (CT) where the artefact refers to any systematic discrepancy between the reconstructed observation and the true attenuation coefficient of the object. It is known that CT images are inherently more prone to artefacts due to its image formation process where a large number of independent detectors are involved, and they are assumed to yield consistent measurements. There are a number of different artefact types including noise, beam hardening, scatter, pseudo-enhancement, motion, helical, ring, and metal artefacts, which cause serious difficulties in reading images. Thus, it is desired to remove nuisance factors from the degraded image leaving the fundamental intrinsic information that can provide better interpretation of the anatomical and pathological characteristics. However, it is considered as a difficult task due to the high dimensionality and variability of data to be recovered, which naturally motivates the use of machine learning techniques. We propose an image restoration algorithm based on the deep neural network framework where the denoising auto-encoders are stacked building multiple layers. The denoising auto-encoder is a variant of a classical auto-encoder that takes an input data and maps it to a hidden representation through a deterministic mapping using a non-linear activation function. The latent representation is then mapped back into a reconstruction the size of which is the same as the size of the input data. The reconstruction error can be measured by the traditional squared error assuming the residual follows a normal distribution. In addition to the designed loss function, an effective regularization scheme using residual-driven dropout determined based on the gradient at each layer. The optimal weights are computed by the classical stochastic gradient descent algorithm combined with the back-propagation algorithm. In our algorithm, we initially decompose an input image into its intrinsic representation and the nuisance factors including artefacts based on the classical Total Variation problem that can be efficiently optimized by the convex optimization algorithm such as primal-dual method. The intrinsic forms of the input images are provided to the deep denosing auto-encoders with their original forms in the training phase. In the testing phase, a given image is first decomposed into the intrinsic form and then provided to the trained network to obtain its reconstruction. We apply our algorithm to the restoration of the corrupted CT images by the artefacts. It is shown that our algorithm improves the readability and enhances the anatomical and pathological properties of the object. The quantitative evaluation is performed in terms of the PSNR, and the qualitative evaluation provides significant improvement in reading images despite degrading artefacts. The experimental results indicate the potential of our algorithm as a prior solution to the image interpretation tasks in a variety of medical imaging applications. This work was supported by the MISP(Ministry of Science and ICT), Korea, under the National Program for Excellence in SW (20170001000011001) supervised by the IITP(Institute for Information and Communications Technology Promotion).Keywords: auto-encoder neural network, CT image artefact, deep learning, intrinsic image representation, noise reduction, total variation
Procedia PDF Downloads 19023125 A Review of Farmer Participation in Information and Communication Technology through Mobile Banking and Mobile Marketing in Rural Agricultural Systems
Authors: J. Cadby, K. Miyazawa
Abstract:
Information and Communication Technology (ICT) has been widely adopted into the agricultural landscape with advancements of mobile connectivity and data accessibility. In developed nations, mobile-technology is well integrated into marketing transactions, and also plays a crucial role in making data-driven decisions on-farm. In developing nations, mobile banking and access to agricultural extension services allow for informed decision-making and smoother transactions. In addition, the availability of updated and readily available market and climate data provides a negotiation platform, reducing economic risks for farmers worldwide. The total usage of mobile technology has risen over the past 20 years, and almost three-quarters of the world’s population subscribes to mobile technology. This study reviewed mobile technology integration into agricultural systems in developing and developed nations. Data from secondary sources were collected and investigated. The objectives of the study include a review of the success of mobile banking transactions in developing nations, and a review of application and SMS based services for direct marketing in both developed and developing nations. Rural farmers in developing countries with access to diverse m-banking options experienced increased access to farm investment resources with the use of mobile banking technology. Rural farmers involved in perishable crop production were also more likely to benefit from mobile platform sales participation. ICT programs reached through mobile application and SMS increased access to agricultural extension materials and marketing tools for demographics that faced literacy-challenges and isolated markets. As mobile technology becomes more ubiquitous in the global agricultural system, training and market opportunities to facilitate mobile usage in developing agricultural systems are necessary. Digital skills training programs are necessary in order to improve equal global adoption of ICT in agriculture.Keywords: market participation, mobile banking, mobile technology, rural farming
Procedia PDF Downloads 25523124 Web 2.0 Enabling Knowledge-Sharing Practices among Students of IIUM: An Exploration of the Determinants
Authors: Shuaibu Hassan Usman, Ishaq Oyebisi Oyefolahan
Abstract:
This study was aimed to explore the latent factors in the web 2.0 enabled knowledge sharing practices instrument. Seven latent factors were identified through a factor analysis with orthogonal rotation and interpreted based on simple structure convergence, item loadings, and analytical statistics. The number of factors retains was based on the analysis of Kaiser Normalization criteria and Scree plot. The reliability tests revealed a satisfactory reliability scores on each of the seven latent factors of the web 2.0 enabled knowledge sharing practices. Limitation, conclusion, and future work of this study were also discussed.Keywords: factor analysis, latent factors, knowledge sharing practices, students, web 2.0 enabled
Procedia PDF Downloads 43423123 Predicting the Diagnosis of Alzheimer’s Disease: Development and Validation of Machine Learning Models
Authors: Jay L. Fu
Abstract:
Patients with Alzheimer's disease progressively lose their memory and thinking skills and, eventually, the ability to carry out simple daily tasks. The disease is irreversible, but early detection and treatment can slow down the disease progression. In this research, publicly available MRI data and demographic data from 373 MRI imaging sessions were utilized to build models to predict dementia. Various machine learning models, including logistic regression, k-nearest neighbor, support vector machine, random forest, and neural network, were developed. Data were divided into training and testing sets, where training sets were used to build the predictive model, and testing sets were used to assess the accuracy of prediction. Key risk factors were identified, and various models were compared to come forward with the best prediction model. Among these models, the random forest model appeared to be the best model with an accuracy of 90.34%. MMSE, nWBV, and gender were the three most important contributing factors to the detection of Alzheimer’s. Among all the models used, the percent in which at least 4 of the 5 models shared the same diagnosis for a testing input was 90.42%. These machine learning models allow early detection of Alzheimer’s with good accuracy, which ultimately leads to early treatment of these patients.Keywords: Alzheimer's disease, clinical diagnosis, magnetic resonance imaging, machine learning prediction
Procedia PDF Downloads 14323122 The Interplay of Factors Affecting Learning of Introductory Programming: A Comparative Study of an Australian and an Indian University
Authors: Ritu Sharma, Haifeng Shen
Abstract:
Teaching introductory programming is a challenging task in tertiary education and various factors are believed to have influence on students’ learning of programming. However, these factors were largely studied independently in a chosen context. This paper aims to investigate whether interrelationships exist among the factors and whether the interrelationships are context-dependent. In this empirical study, two universities were chosen from two continents, which represent different cultures, teaching methodologies, assessment criteria and languages used to teach programming in west and east worlds respectively. The results reveal that some interrelationships are common across the two different contexts, while others appear context-dependent.Keywords: introductory programming, tertiary education, factors, interrelationships, context, empirical study
Procedia PDF Downloads 36323121 Chatbots as Language Teaching Tools for L2 English Learners
Authors: Feiying Wu
Abstract:
Chatbots are computer programs that attempt to engage a human in a dialogue, which originated in the 1960s with MIT's Eliza. However, they have become widespread more recently as advances in language technology have produced chatbots with increasing linguistic quality and sophistication, leading to their potential to serve as a tool for Computer-Assisted Language Learning(CALL). The aim of this article is to assess the feasibility of using two chatbots, Mitsuku and CleverBot, as pedagogical tools for learning English as a second language by stimulating L2 learners with distinct English proficiencies. Speaking of the input of stimulated learners, they are measured by AntWordProfiler to match the user's expected vocabulary proficiency. Totally, there are four chat sessions as each chatbot will converse with both beginners and advanced learners. For evaluation, it focuses on chatbots' responses from a linguistic standpoint, encompassing vocabulary and sentence levels. The vocabulary level is determined by the vocabulary range and the reaction to misspelled words. Grammatical accuracy and responsiveness to poorly formed sentences are assessed for the sentence level. In addition, the assessment of this essay sets 25% lexical and grammatical incorrect input to determine chatbots' corrective ability towards different linguistic forms. Based on statistical evidence and illustration of examples, despite the small sample size, neither Mitsuku nor CleverBot is ideal as educational tools based on their performance through word range, grammatical accuracy, topic range, and corrective feedback for incorrect words and sentences, but rather as a conversational tool for beginners of L2 English.Keywords: chatbots, CALL, L2, corrective feedback
Procedia PDF Downloads 78