Search results for: computational neuroscience
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2138

Search results for: computational neuroscience

1148 Peristaltic Transport of a Jeffrey Fluid with Double-Diffusive Convection in Nanofluids in the Presence of Inclined Magnetic Field

Authors: Safia Akram

Abstract:

In this article, the effects of peristaltic transport with double-diffusive convection in nanofluids through an asymmetric channel with different waveforms is presented. Mathematical modelling for two-dimensional and two directional flows of a Jeffrey fluid model along with double-diffusive convection in nanofluids are given. Exact solutions are obtained for nanoparticle fraction field, concentration field, temperature field, stream functions, pressure gradient and pressure rise in terms of axial and transverse coordinates under the restrictions of long wavelength and low Reynolds number. With the help of computational and graphical results the effects of Brownian motion, thermophoresis, Dufour, Soret, and Grashof numbers (thermal, concentration, nanoparticles) on peristaltic flow patterns with double-diffusive convection are discussed.

Keywords: nanofluid particles, peristaltic flow, Jeffrey fluid, magnetic field, asymmetric channel, different waveforms

Procedia PDF Downloads 384
1147 A Relationship Extraction Method from Literary Fiction Considering Korean Linguistic Features

Authors: Hee-Jeong Ahn, Kee-Won Kim, Seung-Hoon Kim

Abstract:

The knowledge of the relationship between characters can help readers to understand the overall story or plot of the literary fiction. In this paper, we present a method for extracting the specific relationship between characters from a Korean literary fiction. Generally, methods for extracting relationships between characters in text are statistical or computational methods based on the sentence distance between characters without considering Korean linguistic features. Furthermore, it is difficult to extract the relationship with direction from text, such as one-sided love, because they consider only the weight of relationship, without considering the direction of the relationship. Therefore, in order to identify specific relationships between characters, we propose a statistical method considering linguistic features, such as syntactic patterns and speech verbs in Korean. The result of our method is represented by a weighted directed graph of the relationship between the characters. Furthermore, we expect that proposed method could be applied to the relationship analysis between characters of other content like movie or TV drama.

Keywords: data mining, Korean linguistic feature, literary fiction, relationship extraction

Procedia PDF Downloads 383
1146 Mechanistic Analysis of an L-2-Haloacid Dehalogenase (DehL) from Rhizobium Sp. RC1: Computational Approach

Authors: Aliyu Adamu, Fahrul Huyop, Roswanira Abdul Wahab, Mohd Shahir Shamsir

Abstract:

Halogenated organic compounds occur in huge amount in biosphere. This is attributable to the diverse use of halogen-based compounds in the synthesis of various industrially important products. Halogenated compound is toxic and may persist in the environment, thereby causing serious health and environmental pollution problems. L-2-haloacid dehalogenases (EC 3.8.1.2) catalyse the specific cleavage of carbon-halogen bond in L-isomers of halogenated compounds, which consequently reverse the effects of environmental halogen-associated pollution. To enhance the efficiency and utility of these enzymes, this study investigates the catalytic amino acid residues and the molecular functional mechanism of DehL, by classical molecular dynamic simulations, MM-PBSA and ab initio fragments molecular orbital (FMO) calculations. The results of the study will serve as the basis for the molecular engineering of the enzyme.

Keywords: DehL, Functional mechanism, Catalytic residues, L-2-haloacid dehalogenase

Procedia PDF Downloads 364
1145 CFD Analysis of Solar Floor Radiant Heating System with ‎PCM

Authors: Mohammad Nazififard, Reihane Faghihi

Abstract:

This paper is aimed at understanding convective heat transfer of enclosed phase change material (PCM) in the solar and low-temperature hot water radiant floor heating geometry. In order to obtain the best performance of PCM, a radiant heating structure of the energy storage floor is designed which places heat pipes in the enclosed phase change material (PCM) layer, without concrete in it. The governing equations are numerically solved. The PCM thermal storage time is considered in relation to the floor surface temperature under different hot water temperatures. Moreover the PCM thermal storage time is numerically estimated under different supply water temperatures and flow rate. Results show the PCM floor heating system has a potential of making use of the daytime solar energy for heating at night efficiently.

Keywords: solar floor, heating system, phase change material, computational fluid dynamics

Procedia PDF Downloads 245
1144 An Improved Ant Colony Algorithm for Genome Rearrangements

Authors: Essam Al Daoud

Abstract:

Genome rearrangement is an important area in computational biology and bioinformatics. The basic problem in genome rearrangements is to compute the edit distance, i.e., the minimum number of operations needed to transform one genome into another. Unfortunately, unsigned genome rearrangement problem is NP-hard. In this study an improved ant colony optimization algorithm to approximate the edit distance is proposed. The main idea is to convert the unsigned permutation to signed permutation and evaluate the ants by using Kaplan algorithm. Two new operations are added to the standard ant colony algorithm: Replacing the worst ants by re-sampling the ants from a new probability distribution and applying the crossover operations on the best ants. The proposed algorithm is tested and compared with the improved breakpoint reversal sort algorithm by using three datasets. The results indicate that the proposed algorithm achieves better accuracy ratio than the previous methods.

Keywords: ant colony algorithm, edit distance, genome breakpoint, genome rearrangement, reversal sort

Procedia PDF Downloads 345
1143 Optical Flow Localisation and Appearance Mapping (OFLAAM) for Long-Term Navigation

Authors: Daniel Pastor, Hyo-Sang Shin

Abstract:

This paper presents a novel method to use optical flow navigation for long-term navigation. Unlike standard SLAM approaches for augmented reality, OFLAAM is designed for Micro Air Vehicles (MAV). It uses an optical flow camera pointing downwards, an IMU and a monocular camera pointing frontwards. That configuration avoids the expensive mapping and tracking of the 3D features. It only maps these features in a vocabulary list by a localization module to tackle the loss of the navigation estimation. That module, based on the well-established algorithm DBoW2, will be also used to close the loop and allow long-term navigation in confined areas. That combination of high-speed optical flow navigation with a low rate localization algorithm allows fully autonomous navigation for MAV, at the same time it reduces the overall computational load. This framework is implemented in ROS (Robot Operating System) and tested attached to a laptop. A representative scenarios is used to analyse the performance of the system.

Keywords: vision, UAV, navigation, SLAM

Procedia PDF Downloads 607
1142 New Approach for Load Modeling

Authors: Slim Chokri

Abstract:

Load forecasting is one of the central functions in power systems operations. Electricity cannot be stored, which means that for electric utility, the estimate of the future demand is necessary in managing the production and purchasing in an economically reasonable way. A majority of the recently reported approaches are based on neural network. The attraction of the methods lies in the assumption that neural networks are able to learn properties of the load. However, the development of the methods is not finished, and the lack of comparative results on different model variations is a problem. This paper presents a new approach in order to predict the Tunisia daily peak load. The proposed method employs a computational intelligence scheme based on the Fuzzy neural network (FNN) and support vector regression (SVR). Experimental results obtained indicate that our proposed FNN-SVR technique gives significantly good prediction accuracy compared to some classical techniques.

Keywords: neural network, load forecasting, fuzzy inference, machine learning, fuzzy modeling and rule extraction, support vector regression

Procedia PDF Downloads 436
1141 Diffusion Adaptation Strategies for Distributed Estimation Based on the Family of Affine Projection Algorithms

Authors: Mohammad Shams Esfand Abadi, Mohammad Ranjbar, Reza Ebrahimpour

Abstract:

This work presents the distributed processing solution problem in a diffusion network based on the adapt then combine (ATC) and combine then adapt (CTA)selective partial update normalized least mean squares (SPU-NLMS) algorithms. Also, we extend this approach to dynamic selection affine projection algorithm (DS-APA) and ATC-DS-APA and CTA-DS-APA are established. The purpose of ATC-SPU-NLMS and CTA-SPU-NLMS algorithm is to reduce the computational complexity by updating the selected blocks of weight coefficients at every iteration. In CTA-DS-APA and ATC-DS-APA, the number of the input vectors is selected dynamically. Diffusion cooperation strategies have been shown to provide good performance based on these algorithms. The good performance of introduced algorithm is illustrated with various experimental results.

Keywords: selective partial update, affine projection, dynamic selection, diffusion, adaptive distributed networks

Procedia PDF Downloads 708
1140 Fourier Galerkin Approach to Wave Equation with Absorbing Boundary Conditions

Authors: Alexandra Leukauf, Alexander Schirrer, Emir Talic

Abstract:

Numerical computation of wave propagation in a large domain usually requires significant computational effort. Hence, the considered domain must be truncated to a smaller domain of interest. In addition, special boundary conditions, which absorb the outward travelling waves, need to be implemented in order to describe the system domains correctly. In this work, the linear one dimensional wave equation is approximated by utilizing the Fourier Galerkin approach. Furthermore, the artificial boundaries are realized with absorbing boundary conditions. Within this work, a systematic work flow for setting up the wave problem, including the absorbing boundary conditions, is proposed. As a result, a convenient modal system description with an effective absorbing boundary formulation is established. Moreover, the truncated model shows high accuracy compared to the global domain.

Keywords: absorbing boundary conditions, boundary control, Fourier Galerkin approach, modal approach, wave equation

Procedia PDF Downloads 398
1139 Molecular Insights into the Adsorption Mechanism of Perfluorooctanoic Acid on Clay Surfaces Using Density Functional Theory

Authors: Duwage C. Perera, Ravisha N. Mudalige, Jay N. Meegoda

Abstract:

Per- and polyfluoroalkyl substances (PFAS), often referred to as "forever chemicals," are a class of environmentally persistent pollutants known for their exceptional chemical stability and resistance to conventional degradation methods. Among the various PFAS compounds, perfluorooctanoic acid (PFOA) has emerged as a priority contaminant due to its widespread occurrence, bioaccumulative nature, and toxicological effects on human health and ecosystems. The need for effective remediation strategies has driven significant interest in understanding the interactions between PFOA and potential adsorbent materials such as soils and sediments at the molecular level. In this study, density functional theory (DFT) is employed to investigate the adsorption mechanisms of PFOA on kaolinite, a naturally abundant clay mineral with promising applications in PFAS remediation. The computational approach involves constructing atomistic models of the kaolinite (001) surface to capture its unique structural and chemical characteristics. Both the tetrahedral (Si-O) and octahedral (Al-O) layers of kaolinite are included in the models, with varying degrees of surface hydroxylation to simulate environmentally relevant conditions. PFOA is modeled in both protonated and deprotonated states, reflecting its behavior under different pH levels commonly encountered in natural and engineered systems. The adsorption energies are calculated to quantify the affinity of PFOA for kaolinite, while Bader charge analysis is conducted to examine charge redistribution and electrostatic interactions during the adsorption process. A detailed investigation of the molecular interactions between PFOA and kaolinite reveals the critical role of hydrogen bonding, van der Waals forces, and electrostatic interactions in PFOA adsorption. The carboxylic group of PFOA demonstrates strong binding to hydroxylated sites on the kaolinite surface, while the hydrophobic tail of PFOA interacts minimally with the mineral, reflecting its dual hydrophilic-hydrophobic nature. Vibrational frequency analysis is performed to identify shifts in the functional group vibrations, providing additional evidence of strong chemical interactions between PFOA and kaolinite. This study provides a comprehensive understanding of the molecular-level interactions governing PFOA adsorption on kaolinite. By elucidating the underlying mechanisms, it establishes a foundation for the design and optimization of clay-based remediation technologies aimed at mitigating PFAS contamination in environmental systems. Future work integrating experimental validation with the computational insights presented here will further enhance the applicability of kaolinite and other clay minerals in PFAS remediation efforts, addressing a critical global environmental challenge.

Keywords: adsorption mechanism, carbon-fluorine bond stability, density functional theory, kaolinite adsorption, perfluorooctanoic acid, PFAS, soil and water contamination

Procedia PDF Downloads 3
1138 Virtualization of Biomass Colonization: Potential of Application in Precision Medicine

Authors: Maria Valeria De Bonis, Gianpaolo Ruocco

Abstract:

Nowadays, computational modeling is paving new design and verification ways in a number of industrial sectors. The technology is ripe to challenge some case in the Bioengineering and Medicine frameworks: for example, looking at the strategical and ethical importance of oncology research, efforts should be made to yield new and powerful resources to tumor knowledge and understanding. With these driving motivations, we approach this gigantic problem by using some standard engineering tools such as the mathematics behind the biomass transfer. We present here some bacterial colonization studies in complex structures. As strong analogies hold with some tumor proliferation, we extend our study to a benchmark case of solid tumor. By means of a commercial software, we model biomass and energy evolution in arbitrary media. The approach will be useful to cast virtualization cases of cancer growth in human organs, while augmented reality tools will be used to yield for a realistic aid to informed decision in treatment and surgery.

Keywords: bacteria, simulation, tumor, precision medicine

Procedia PDF Downloads 335
1137 A Boundary Fitted Nested Grid Model for Tsunami Computation along Penang Island in Peninsular Malaysia

Authors: Md. Fazlul Karim, Ahmad Izani Md. Ismail, Mohammed Ashaque Meah

Abstract:

This paper focuses on the development of a 2-D Boundary Fitted and Nested Grid (BFNG) model to compute the tsunami propagation of Indonesian tsunami 2004 along the coastal region of Penang in Peninsular Malaysia. In the presence of a curvilinear coastline, boundary fitted grids are suitable to represent the model boundaries accurately. On the other hand, when large gradient of velocity within a confined area is expected, the use of a nested grid system is appropriate to improve the numerical accuracy with the least grid numbers. This paper constructs a shallow water nested and orthogonal boundary fitted grid model and presents computational results of the tsunami impact on the Penang coast due to the Indonesian tsunami of 2004. The results of the numerical simulations are compared with available data.

Keywords: boundary fitted nested model, tsunami, Penang Island, 2004 Indonesian Tsunami

Procedia PDF Downloads 324
1136 The Geometry of Natural Formation: an Application of Geometrical Analysis for Complex Natural Order of Pomegranate

Authors: Anahita Aris

Abstract:

Geometry always plays a key role in natural structures, which can be a source of inspiration for architects and urban designers to create spaces. By understanding formative principles in nature, a variety of options can be provided that lead to freedom of formation. The main purpose of this paper is to analyze the geometrical order found in pomegranate to find formative principles explaining its complex structure. The point is how spherical arils of pomegranate pressed together inside the fruit and filled the space as they expand in the growing process, which made a self-organized system leads to the formation of each of the arils are unique in size, topology and shape. The main challenge of this paper would be using advanced architectural modeling techniques to discover these principles.

Keywords: advanced modeling techniques, architectural modeling, computational design, the geometry of natural formation, geometrical analysis, the natural order of pomegranate, voronoi diagrams

Procedia PDF Downloads 220
1135 Prediction of Solidification Behavior of Al Alloy in a Cube Mold Cavity

Authors: N. P. Yadav, Deepti Verma

Abstract:

This paper focuses on the mathematical modeling for solidification of Al alloy in a cube mould cavity to study the solidification behavior of casting process. The parametric investigation of solidification process inside the cavity was performed by using computational solidification/melting model coupled with Volume of fluid (VOF) model. The implicit filling algorithm is used in this study to understand the overall process from the filling stage to solidification in a model metal casting process. The model is validated with past studied at same conditions. The solidification process are analyzed by including the effect of pouring velocity and temperature of liquid metal, effect of wall temperature as well natural convection from the wall and geometry of the cavity. These studies show the possibility of various defects during solidification process.

Keywords: buoyancy driven flow, natural convection driven flow, residual flow, secondary flow, volume of fluid

Procedia PDF Downloads 417
1134 Message Passing Neural Network (MPNN) Approach to Multiphase Diffusion in Reservoirs for Well Interconnection Assessments

Authors: Margarita Mayoral-Villa, J. Klapp, L. Di G. Sigalotti, J. E. V. Guzmán

Abstract:

Automated learning techniques are widely applied in the energy sector to address challenging problems from a practical point of view. To this end, we discuss the implementation of a Message Passing algorithm (MPNN)within a Graph Neural Network(GNN)to leverage the neighborhood of a set of nodes during the aggregation process. This approach enables the characterization of multiphase diffusion processes in the reservoir, such that the flow paths underlying the interconnections between multiple wells may be inferred from previously available data on flow rates and bottomhole pressures. The results thus obtained compare favorably with the predictions produced by the Reduced Order Capacitance-Resistance Models (CRM) and suggest the potential of MPNNs to enhance the robustness of the forecasts while improving the computational efficiency.

Keywords: multiphase diffusion, message passing neural network, well interconnection, interwell connectivity, graph neural network, capacitance-resistance models

Procedia PDF Downloads 149
1133 Modeling Study of Short Fiber Orientation in Simple Injection Molding Processes

Authors: Ihsane Modhaffar, Kamal Gueraoui, Abouelkacem Qais, Abderrahmane Maaouni, Samir Men-La-Yakhaf, Hamid Eltourroug

Abstract:

The main objective of this paper is to develop a Computational Fluid Dynamics (CFD) model to simulate and characterize the fiber suspension in flow in rectangular cavities. The model is intended to describe the velocity profile and to predict the fiber orientation. The flow was considered to be incompressible, and behave as Newtonian fluid containing suspensions of short-fibers. The numerical model for determination of velocity profile and fiber orientation during mold-filling stage of injection molding process was solved using finite volume method. The governing equations of this problem are: the continuity, the momentum and the energy. The obtained results were compared to available experimental findings. A good agreement between the numerical results and the experimental data was achieved.

Keywords: injection, composites, short-fiber reinforced thermoplastics, fiber orientation, incompressible fluid, numerical simulation

Procedia PDF Downloads 466
1132 Experimental and Numerical Investigation of Fluid Flow inside Concentric Heat Exchanger Using Different Inlet Geometry Configurations

Authors: Mohamed M. Abo Elazm, Ali I. Shehata, Mohamed M. Khairat Dawood

Abstract:

A computational fluid dynamics (CFD) program FLUENT has been used to predict the fluid flow and heat transfer distribution within concentric heat exchangers. The effect of inlet inclination angle has been investigated with Reynolds number range (3000 – 4000) and Pr=0.71. The heat exchanger is fabricated from copper concentric inner tube with a length of 750 mm. The effects of hot to cold inlet flow rate ratio (MH/MC), Reynolds's number and of inlet inclination angle of 30°, 45°, 60° and 90° are considered. The results showed that the numerical prediction shows a good agreement with experimental measurement. The results present an efficient design of concentric tube heat exchanger to enhance the heat transfer by increasing the swirling effect.

Keywords: heat transfer, swirling effect, CFD, inclination angle, concentric tube heat exchange

Procedia PDF Downloads 321
1131 Numerical Simulation of Diesel Sprays under Hot Bomb Conditions

Authors: Ishtiaq A. Chaudhry, Zia R. Tahir, F. A. Siddiqui, F. Noor, M. J. Rashid

Abstract:

It has experimentally been proved that the performance of compression ignition (CI) engine is spray characteristics related. In modern diesel engine the spray formation and the eventual combustion process are the vital processes that offer more challenges towards enhancing the engine performance. In the present work, the numerical simulation has been carried out for evaporating diesel sprays using Fluent software. For computational fluid dynamics simulation “Meshing” is done using Gambit software before transmitting it into fluent. The simulation is carried out using hot bomb conditions under varying chamber conditions such as gas pressure, nozzle diameter and fuel injection pressure. For comparison purpose, the numerical simulations the chamber conditions were kept the same as that of the experimental data. At varying chamber conditions the spray penetration rates are compared with the existing experimental results.

Keywords: evaporating diesel sprays, penetration rates, hot bomb conditions

Procedia PDF Downloads 360
1130 Linear Array Geometry Synthesis with Minimum Sidelobe Level and Null Control Using Taguchi Method

Authors: Amara Prakasa Rao, N. V. S. N. Sarma

Abstract:

This paper describes the synthesis of linear array geometry with minimum sidelobe level and null control using the Taguchi method. Based on the concept of the orthogonal array, Taguchi method effectively reduces the number of tests required in an optimization process. Taguchi method has been successfully applied in many fields such as mechanical, chemical engineering, power electronics, etc. Compared to other evolutionary methods such as genetic algorithms, simulated annealing and particle swarm optimization, the Taguchi method is much easier to understand and implement. It requires less computational/iteration processing to optimize the problem. Different cases are considered to illustrate the performance of this technique. Simulation results show that this method outperforms the other evolution algorithms (like GA, PSO) for smart antenna systems design.

Keywords: array factor, beamforming, null placement, optimization method, orthogonal array, Taguchi method, smart antenna system

Procedia PDF Downloads 394
1129 A Parallel Algorithm for Solving the PFSP on the Grid

Authors: Samia Kouki

Abstract:

Solving NP-hard combinatorial optimization problems by exact search methods, such as Branch-and-Bound, may degenerate to complete enumeration. For that reason, exact approaches limit us to solve only small or moderate size problem instances, due to the exponential increase in CPU time when problem size increases. One of the most promising ways to reduce significantly the computational burden of sequential versions of Branch-and-Bound is to design parallel versions of these algorithms which employ several processors. This paper describes a parallel Branch-and-Bound algorithm called GALB for solving the classical permutation flowshop scheduling problem as well as its implementation on a Grid computing infrastructure. The experimental study of our distributed parallel algorithm gives promising results and shows clearly the benefit of the parallel paradigm to solve large-scale instances in moderate CPU time.

Keywords: grid computing, permutation flow shop problem, branch and bound, load balancing

Procedia PDF Downloads 283
1128 Computational Study and Wear Prediction of Steam Turbine Blade with Titanium-Nitride Coating Deposited by Physical Vapor Deposition Method

Authors: Karuna Tuchinda, Sasithon Bland

Abstract:

This work investigates the wear of a steam turbine blade coated with titanium nitride (TiN), and compares to the wear of uncoated blades. The coating is deposited on by physical vapor deposition (PVD) method. The working conditions of the blade were simulated and surface temperature and pressure values as well as flow velocity and flow direction were obtained. This data was used in the finite element wear model developed here in order to predict the wear of the blade. The wear mechanisms considered are erosive wear due to particle impingement and fluid jet, and fatigue wear due to repeated impingement of particles and fluid jet. Results show that the life of the TiN-coated blade is approximately 1.76 times longer than the life of the uncoated one.

Keywords: physical vapour deposition, steam turbine blade, titanium-based coating, wear prediction

Procedia PDF Downloads 375
1127 Simulation of Wave Propagation in Multiphase Medium

Authors: Edip Kemal, Sheshov Vlatko, Bojadjieva Julijana, Bogdanovic ALeksandra, Gjorgjeska Irena

Abstract:

The wave propagation phenomenon in porous domains is of great importance in the field of geotechnical earthquake engineering. In these kinds of problems, the elastic waves propagate from the interior to the exterior domain and require special treatment at the computational level since apart from displacement in the solid-state there is a p-wave that takes place in the pore water phase. In this paper, a study on the implementation of multiphase finite elements is presented. The proposed algorithm is implemented in the ANSYS finite element software and tested on one-dimensional wave propagation considering both pore pressure wave propagation and displacement fields. In the simulation of porous media such as soils, the behavior is governed largely by the interaction of the solid skeleton with water and/or air in the pores. Therefore, coupled problems of fluid flow and deformation of the solid skeleton are considered in a detailed way.

Keywords: wave propagation, multiphase model, numerical methods, finite element method

Procedia PDF Downloads 166
1126 An Efficient Algorithm of Time Step Control for Error Correction Method

Authors: Youngji Lee, Yonghyeon Jeon, Sunyoung Bu, Philsu Kim

Abstract:

The aim of this paper is to construct an algorithm of time step control for the error correction method most recently developed by one of the authors for solving stiff initial value problems. It is achieved with the generalized Chebyshev polynomial and the corresponding error correction method. The main idea of the proposed scheme is in the usage of the duplicated node points in the generalized Chebyshev polynomials of two different degrees by adding necessary sample points instead of re-sampling all points. At each integration step, the proposed method is comprised of two equations for the solution and the error, respectively. The constructed algorithm controls both the error and the time step size simultaneously and possesses a good performance in the computational cost compared to the original method. Two stiff problems are numerically solved to assess the effectiveness of the proposed scheme.

Keywords: stiff initial value problem, error correction method, generalized Chebyshev polynomial, node points

Procedia PDF Downloads 574
1125 Discussion on Big Data and One of Its Early Training Application

Authors: Fulya Gokalp Yavuz, Mark Daniel Ward

Abstract:

This study focuses on a contemporary and inevitable topic of Data Science and its exemplary application for early career building: Big Data and Leaving Learning Community (LLC). ‘Academia’ and ‘Industry’ have a common sense on the importance of Big Data. However, both of them are in a threat of missing the training on this interdisciplinary area. Some traditional teaching doctrines are far away being effective on Data Science. Practitioners needs some intuition and real-life examples how to apply new methods to data in size of terabytes. We simply explain the scope of Data Science training and exemplified its early stage application with LLC, which is a National Science Foundation (NSF) founded project under the supervision of Prof. Ward since 2014. Essentially, we aim to give some intuition for professors, researchers and practitioners to combine data science tools for comprehensive real-life examples with the guides of mentees’ feedback. As a result of discussing mentoring methods and computational challenges of Big Data, we intend to underline its potential with some more realization.

Keywords: Big Data, computation, mentoring, training

Procedia PDF Downloads 363
1124 Towards a Secure Storage in Cloud Computing

Authors: Mohamed Elkholy, Ahmed Elfatatry

Abstract:

Cloud computing has emerged as a flexible computing paradigm that reshaped the Information Technology map. However, cloud computing brought about a number of security challenges as a result of the physical distribution of computational resources and the limited control that users have over the physical storage. This situation raises many security challenges for data integrity and confidentiality as well as authentication and access control. This work proposes a security mechanism for data integrity that allows a data owner to be aware of any modification that takes place to his data. The data integrity mechanism is integrated with an extended Kerberos authentication that ensures authorized access control. The proposed mechanism protects data confidentiality even if data are stored on an untrusted storage. The proposed mechanism has been evaluated against different types of attacks and proved its efficiency to protect cloud data storage from different malicious attacks.

Keywords: access control, data integrity, data confidentiality, Kerberos authentication, cloud security

Procedia PDF Downloads 335
1123 Solving Linear Systems Involved in Convex Programming Problems

Authors: Yixun Shi

Abstract:

Many interior point methods for convex programming solve an (n+m)x(n+m)linear system in each iteration. Many implementations solve this system in each iteration by considering an equivalent mXm system (4) as listed in the paper, and thus the job is reduced into solving the system (4). However, the system(4) has to be solved exactly since otherwise the error would be entirely passed onto the last m equations of the original system. Often the Cholesky factorization is computed to obtain the exact solution of (4). One Cholesky factorization is to be done in every iteration, resulting in higher computational costs. In this paper, two iterative methods for solving linear systems using vector division are combined together and embedded into interior point methods. Instead of computing one Cholesky factorization in each iteration, it requires only one Cholesky factorization in the entire procedure, thus significantly reduces the amount of computation needed for solving the problem. Based on that, a hybrid algorithm for solving convex programming problems is proposed.

Keywords: convex programming, interior point method, linear systems, vector division

Procedia PDF Downloads 402
1122 Evolution under Length Constraints for Convolutional Neural Networks Architecture Design

Authors: Ousmane Youme, Jean Marie Dembele, Eugene Ezin, Christophe Cambier

Abstract:

In recent years, the convolutional neural networks (CNN) architectures designed by evolution algorithms have proven to be competitive with handcrafted architectures designed by experts. However, these algorithms need a lot of computational power, which is beyond the capabilities of most researchers and engineers. To overcome this problem, we propose an evolution architecture under length constraints. It consists of two algorithms: a search length strategy to find an optimal space and a search architecture strategy based on a genetic algorithm to find the best individual in the optimal space. Our algorithms drastically reduce resource costs and also keep good performance. On the Cifar-10 dataset, our framework presents outstanding performance with an error rate of 5.12% and only 4.6 GPU a day to converge to the optimal individual -22 GPU a day less than the lowest cost automatic evolutionary algorithm in the peer competition.

Keywords: CNN architecture, genetic algorithm, evolution algorithm, length constraints

Procedia PDF Downloads 129
1121 A Simulation Model to Analyze the Impact of Virtual Responsiveness in an E-Commerce Supply Chain

Authors: T. Godwin

Abstract:

The design of a supply chain always entails the trade-off between responsiveness and efficiency. The launch of e-commerce has not only changed the way of shopping but also altered the supply chain design while trading off efficiency with responsiveness. A concept called ‘virtual responsiveness’ is introduced in the context of e-commerce supply chain. A simulation model is developed to compare actual responsiveness and virtual responsiveness to the customer in an e-commerce supply chain. The simulation is restricted to the movement of goods from the e-tailer to the customer. Customer demand follows a statistical distribution and is generated using inverse transformation technique. The two responsiveness schemes of the supply chain are compared in terms of the minimum number of inventory required at the e-tailer to fulfill the orders. Computational results show the savings achieved through virtual responsiveness. The insights gained from this study could be used to redesign e-commerce supply chain by incorporating virtual responsiveness. A part of the achieved cost savings could be passed back to the customer, thereby making the supply chain both effective and competitive.

Keywords: e-commerce, simulation modeling, supply chain, virtual responsiveness

Procedia PDF Downloads 345
1120 Study on the Neurotransmitters and Digestion of Amino Acids Affecting Psychological Chemical Imbalance

Authors: Yoonah Lee, Richard Kyung

Abstract:

With technological advances in the computational biomedical field, the ability to measure neurotransmitters’ chemical imbalances that affect depression and anxiety has been established. By comparing the thermodynamics stability of amino acid supplements, such as glutamine, tyrosine, phe-nylalanine, and methionine, this research analyzes mood-regulating neurotransmitters, amino acid supplements, and antipsychotic substances (ie. Reserpine molecule and CRF complexes) in relation to depression and anxiety and suggests alternative complexes that are low in energy to act as more efficient treatments for mood disorders. To determine a molecule’s thermodynamic stability, this research examines the molecular energy using Avogadro, a software for building virtual molecules and calculating optimized geometry using GAFF (General Amber Force Field) and UFF (Universal Force Field). The molecules, built using Avogadro, is analyzed using their theoretical values and atomic properties.

Keywords: amino acids, anxiety, depression, neurotransmitters

Procedia PDF Downloads 163
1119 Numerical Simulation of the Air Pollutants Dispersion Emitted by CPH Using ANSYS CFX

Authors: Oliver Mărunţălu, Gheorghe Lăzăroiu, Elena Elisabeta Manea, Dana Andreya Bondrea, Lăcrămioara Diana Robescu

Abstract:

This paper presents the results obtained by numerical simulation of the pollutants dispersion in the atmosphere coming from the evacuation of combustion gases resulting from the fuel combustion used by electric thermal power plant using the software ANSYS CFX-CFD. The model uses the Navier-Stokes equation to simulate the dispersion of pollutants in the atmosphere. We considered as important factors in elaboration of simulation the atmospheric conditions (pressure, temperature, wind speed, wind direction), the exhaust velocity of the combustion gases, chimney height and the obstacles (buildings). Using the air quality monitoring stations we have measured the concentrations of main pollutants (SO2, NOx and PM). The pollutants were monitored over a period of 3 months, after that we calculated the average concentration, which is used by the software. The concentrations are: 8.915 μg/m3 (NOx), 9.587 μg/m3 (SO2) and 42 μg/m3 (PM). A comparison of test data with simulation results demonstrated that CFX was able to describe the dispersion of the pollutant as well the concentration of this pollutants in the atmosphere.

Keywords: air pollutants, computational fluid dynamics, dispersion, simulation

Procedia PDF Downloads 457