Search results for: vehicle following models
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8000

Search results for: vehicle following models

7040 Using Photogrammetry to Survey the Côa Valley Iron Age Rock Art Motifs: Vermelhosa Panel 3 Case Study

Authors: Natália Botica, Luís Luís, Paulo Bernardes

Abstract:

The Côa Valley, listed World Heritage since 1998, presents more than 1300 open-air engraved rock panels. The Archaeological Park of the Côa Valley recorded the rock art motifs, testing various techniques based on direct tracing processes on the rock, using natural and artificial lighting. In this work, integrated in the "Open Access Rock Art Repository" (RARAA) project, we present the methodology adopted for the vectorial drawing of the rock art motifs based on orthophotos taken from the photogrammetric survey and 3D models of the rocks. We also present the information system designed to integrate the vector drawing and the characterization data of the motifs, as well as the open access sharing, in order to promote their reuse in multiple areas. The 3D models themselves constitute a very detailed record, ensuring the digital preservation of the rock and iconography. Thus, even if a rock or motif disappears, it can continue to be studied and even recreated.

Keywords: rock art, archaeology, iron age, 3D models

Procedia PDF Downloads 83
7039 Models of Environmental: Cracker Propagation of Some Aluminum Alloys (7xxx)

Authors: H. Jawan

Abstract:

This review describes the models of environmental-related crack propagation of aluminum alloys (7xxx) during the last few decades. Acknowledge on effects of different factors on the susceptibility to SCC permits to propose valuable mechanisms on crack advancement. The reliable mechanism of cracking give a possibility to propose the optimum chemical composition and thermal treatment conditions resulting in microstructure the most suitable for real environmental condition and stress state.

Keywords: microstructure, environmental, propagation, mechanism

Procedia PDF Downloads 390
7038 Assessing Performance of Data Augmentation Techniques for a Convolutional Network Trained for Recognizing Humans in Drone Images

Authors: Masood Varshosaz, Kamyar Hasanpour

Abstract:

In recent years, we have seen growing interest in recognizing humans in drone images for post-disaster search and rescue operations. Deep learning algorithms have shown great promise in this area, but they often require large amounts of labeled data to train the models. To keep the data acquisition cost low, augmentation techniques can be used to create additional data from existing images. There are many techniques of such that can help generate variations of an original image to improve the performance of deep learning algorithms. While data augmentation is potentially assumed to improve the accuracy and robustness of the models, it is important to ensure that the performance gains are not outweighed by the additional computational cost or complexity of implementing the techniques. To this end, it is important to evaluate the impact of data augmentation on the performance of the deep learning models. In this paper, we evaluated the most currently available 2D data augmentation techniques on a standard convolutional network which was trained for recognizing humans in drone images. The techniques include rotation, scaling, random cropping, flipping, shifting, and their combination. The results showed that the augmented models perform 1-3% better compared to a base network. However, as the augmented images only contain the human parts already visible in the original images, a new data augmentation approach is needed to include the invisible parts of the human body. Thus, we suggest a new method that employs simulated 3D human models to generate new data for training the network.

Keywords: human recognition, deep learning, drones, disaster mitigation

Procedia PDF Downloads 95
7037 Pricing European Continuous-Installment Options under Regime-Switching Models

Authors: Saghar Heidari

Abstract:

In this paper, we study the valuation problem of European continuous-installment options under Markov-modulated models with a partial differential equation approach. Due to the opportunity for continuing or stopping to pay installments, the valuation problem under regime-switching models can be formulated as coupled partial differential equations (CPDE) with free boundary features. To value the installment options, we express the truncated CPDE as a linear complementarity problem (LCP), then a finite element method is proposed to solve the resulted variational inequality. Under some appropriate assumptions, we establish the stability of the method and illustrate some numerical results to examine the rate of convergence and accuracy of the proposed method for the pricing problem under the regime-switching model.

Keywords: continuous-installment option, European option, regime-switching model, finite element method

Procedia PDF Downloads 137
7036 A Comparative Analysis of Machine Learning Techniques for PM10 Forecasting in Vilnius

Authors: Mina Adel Shokry Fahim, Jūratė Sužiedelytė Visockienė

Abstract:

With the growing concern over air pollution (AP), it is clear that this has gained more prominence than ever before. The level of consciousness has increased and a sense of knowledge now has to be forwarded as a duty by those enlightened enough to disseminate it to others. This realisation often comes after an understanding of how poor air quality indices (AQI) damage human health. The study focuses on assessing air pollution prediction models specifically for Lithuania, addressing a substantial need for empirical research within the region. Concentrating on Vilnius, it specifically examines particulate matter concentrations 10 micrometers or less in diameter (PM10). Utilizing Gaussian Process Regression (GPR) and Regression Tree Ensemble, and Regression Tree methodologies, predictive forecasting models are validated and tested using hourly data from January 2020 to December 2022. The study explores the classification of AP data into anthropogenic and natural sources, the impact of AP on human health, and its connection to cardiovascular diseases. The study revealed varying levels of accuracy among the models, with GPR achieving the highest accuracy, indicated by an RMSE of 4.14 in validation and 3.89 in testing.

Keywords: air pollution, anthropogenic and natural sources, machine learning, Gaussian process regression, tree ensemble, forecasting models, particulate matter

Procedia PDF Downloads 53
7035 Combining Laser Scanning and High Dynamic Range Photography for the Presentation of Bloodstain Pattern Evidence

Authors: Patrick Ho

Abstract:

Bloodstain Pattern Analysis (BPA) forensic evidence can be complex, requiring effective courtroom presentation to ensure clear and comprehensive understanding of the analyst’s findings. BPA witness statements can often involve reference to spatial information (such as location of rooms, objects, walls) which, when coupled with classified blood patterns, may illustrate the reconstructed movements of suspects and injured parties. However, it may be difficult to communicate this information through photography alone, despite this remaining the UK’s established method for presenting BPA evidence. Through an academic-police partnership between the University of Warwick and West Midlands Police (WMP), an integrated 3D scanning and HDR photography workflow for BPA was developed. Homicide scenes were laser scanned and, after processing, the 3D models were utilised in the BPA peer-review process. The same 3D models were made available for court but were not always utilised. This workflow has improved the ease of presentation for analysts and provided 3D scene models that assist with the investigation. However, the effects of incorporating 3D scene models in judicial processes may need to be studied before they are adopted more widely. 3D models from a simulated crime scene and West Midlands Police cases approved for conference disclosure are presented. We describe how the workflow was developed and integrated into established practices at WMP, including peer-review processes and witness statement delivery in court, and explain the impact the work has had on the Criminal Justice System in the West Midlands.

Keywords: bloodstain pattern analysis, forensic science, criminal justice, 3D scanning

Procedia PDF Downloads 97
7034 Study on Optimization Design of Pressure Hull for Underwater Vehicle

Authors: Qasim Idrees, Gao Liangtian, Liu Bo, Miao Yiran

Abstract:

In order to improve the efficiency and accuracy of the pressure hull structure, optimization of underwater vehicle based on response surface methodology, a method for optimizing the design of pressure hull structure was studied. To determine the pressure shell of five dimensions as a design variable, the application of thin shell theory and the Chinese Classification Society (CCS) specification was carried on the preliminary design. In order to optimize variables of the feasible region, different methods were studied and implemented such as Opt LHD method (to determine the design test sample points in the feasible domain space), parametric ABAQUS solution for each sample point response, and the two-order polynomial response for the surface model of the limit load of structures. Based on the ultimate load of the structure and the quality of the shell, the two-generation genetic algorithm was used to solve the response surface, and the Pareto optimal solution set was obtained. The final optimization result was 41.68% higher than that of the initial design, and the shell quality was reduced by about 27.26%. The parametric method can ensure the accuracy of the test and improve the efficiency of optimization.

Keywords: parameterization, response surface, structure optimization, pressure hull

Procedia PDF Downloads 233
7033 A Graph-Based Retrieval Model for Passage Search

Authors: Junjie Zhong, Kai Hong, Lei Wang

Abstract:

Passage Retrieval (PR) plays an important role in many Natural Language Processing (NLP) tasks. Traditional efficient retrieval models relying on exact term-matching, such as TF-IDF or BM25, have nowadays been exceeded by pre-trained language models which match by semantics. Though they gain effectiveness, deep language models often require large memory as well as time cost. To tackle the trade-off between efficiency and effectiveness in PR, this paper proposes Graph Passage Retriever (GraphPR), a graph-based model inspired by the development of graph learning techniques. Different from existing works, GraphPR is end-to-end and integrates both term-matching information and semantics. GraphPR constructs a passage-level graph from BM25 retrieval results and trains a GCN-like model on the graph with graph-based objectives. Passages were regarded as nodes in the constructed graph and were embedded in dense vectors. PR can then be implemented using embeddings and a fast vector-similarity search. Experiments on a variety of real-world retrieval datasets show that the proposed model outperforms related models in several evaluation metrics (e.g., mean reciprocal rank, accuracy, F1-scores) while maintaining a relatively low query latency and memory usage.

Keywords: efficiency, effectiveness, graph learning, language model, passage retrieval, term-matching model

Procedia PDF Downloads 150
7032 Fault Diagnosis of Squirrel-Cage Induction Motor by a Neural Network Multi-Models

Authors: Yahia. Kourd, N. Guersi D. Lefebvre

Abstract:

In this paper we propose to study the faults diagnosis in squirrel-cage induction motor using MLP neural networks. We use neural healthy and faulty models of the behavior in order to detect and isolate some faults in machine. In the first part of this work, we have created a neural model for the healthy state using Matlab and a motor located in LGEB by acquirins data inputs and outputs of this engine. Then we detected the faults in the machine by residual generation. These residuals are not sufficient to isolate the existing faults. For this reason, we proposed additive neural networks to represent the faulty behaviors. From the analysis of these residuals and the choice of a threshold we propose a method capable of performing the detection and diagnosis of some faults in asynchronous machines with squirrel cage rotor.

Keywords: faults diagnosis, neural networks, multi-models, squirrel-cage induction motor

Procedia PDF Downloads 636
7031 A Mixed Integer Linear Programming Model for Container Collection

Authors: J. Van Engeland, C. Lavigne, S. De Jaeger

Abstract:

In the light of the transition towards a more circular economy, recovery of products, parts or materials will gain in importance. Additionally, the EU proximity principle related to waste management and emissions generated by transporting large amounts of end-of-life products, shift attention to local recovery networks. The Flemish inter-communal cooperation for municipal solid waste management Meetjesland (IVM) is currently investigating the set-up of such a network. More specifically, the network encompasses the recycling of polyvinyl chloride (PVC), which is collected in separate containers. When these containers are full, a truck should transport them to the processor which can recycle the PVC into new products. This paper proposes a model to optimize the container collection. The containers are located at different Civic Amenity sites (CA sites) in a certain region. Since people can drop off their waste at these CA sites, the containers will gradually fill up during a planning horizon. If a certain container is full, it has to be collected and replaced by an empty container. The collected waste is then transported to a single processor. To perform this collection and transportation of containers, the responsible firm has a set of vehicles stationed at a single depot and different personnel crews. A vehicle can load exactly one container. If a trailer is attached to the vehicle, it can load an additional container. Each day of the planning horizon, the different crews and vehicles leave the depot to collect containers at the different sites. After loading one or two containers, the crew has to drive to the processor for unloading the waste and to pick up empty containers. Afterwards, the crew can again visit sites or it can return to the depot to end its collection work for that day. All along the collection process, the crew has to respect the opening hours of the sites. In order to allow for some flexibility, a crew is allowed to wait a certain amount of time at the gate of a site until it opens. The problem described can be modelled as a variant to the PVRP-TW (Periodic Vehicle Routing Problem with Time Windows). However, a vehicle can at maximum load two containers, hence only two subsequent site visits are possible. For that reason, we will refer to the model as a model for building tactical waste collection schemes. The goal is to a find a schedule describing which crew should visit which CA site on which day to minimize the number of trucks and the routing costs. The model was coded in IBM CPLEX Optimization studio and applied to a number of test instances. Good results were obtained, and specific suggestions concerning route and truck costs could be made. For a large range of input parameters, collection schemes using two trucks are obtained.

Keywords: container collection, crew scheduling, mixed integer linear programming, waste management

Procedia PDF Downloads 134
7030 Location Quotients Model in Turkey’s Provinces and Nuts II Regions

Authors: Semih Sözer

Abstract:

One of the most common issues in economic systems is understanding characteristics of economic activities in cities and regions. Although there are critics to economic base models in conceptual and empirical aspects, these models are useful tools to examining the economic structure of a nation, regions or cities. This paper uses one of the methodologies of economic base models namely the location quotients model. Data for this model includes employment numbers of provinces and NUTS II regions in Turkey. Time series of data covers the years of 1990, 2000, 2003, and 2009. Aim of this study is finding which sectors are export-base and which sectors are import-base in provinces and regions. Model results show that big provinces or powerful regions (population, size etc.) mostly have basic sectors in their economic system. However, interesting facts came from different sectors in different provinces and regions in the model results.

Keywords: economic base, location quotients model, regional economics, regional development

Procedia PDF Downloads 424
7029 Modeling and Simulation of Practical Metamaterial Structures

Authors: Ridha Salhi, Mondher Labidi, Fethi Choubani

Abstract:

Metamaterials have attracted much attention in recent years because of their electromagnetic exquisite proprieties. We will present, in this paper, the modeling of three metamaterial structures by equivalent circuit model. We begin by modeling the SRR (Split Ring Resonator), then we model the HIS (High Impedance Surfaces), and finally, we present the model of the CPW (Coplanar Wave Guide). In order to validate models, we compare the results obtained by an equivalent circuit models with numerical simulation.

Keywords: metamaterials, SRR, HIS, CPW, IDC

Procedia PDF Downloads 429
7028 Effective Charge Coupling in Low Dimensional Doped Quantum Antiferromagnets

Authors: Suraka Bhattacharjee, Ranjan Chaudhury

Abstract:

The interaction between the charge degrees of freedom for itinerant antiferromagnets is investigated in terms of generalized charge stiffness constant corresponding to nearest neighbour t-J model and t1-t2-t3-J model. The low dimensional hole doped antiferromagnets are the well known systems that can be described by the t-J-like models. Accordingly, we have used these models to investigate the fermionic pairing possibilities and the coupling between the itinerant charge degrees of freedom. A detailed comparison between spin and charge couplings highlights that the charge and spin couplings show very similar behaviour in the over-doped region, whereas, they show completely different trends in the lower doping regimes. Moreover, a qualitative equivalence between generalized charge stiffness and effective Coulomb interaction is also established based on the comparisons with other theoretical and experimental results. Thus it is obvious that the enhanced possibility of fermionic pairing is inherent in the reduction of Coulomb repulsion with increase in doping concentration. However, the increased possibility can not give rise to pairing without the presence of any other pair producing mechanism outside the t-J model. Therefore, one can conclude that the t-J-like models themselves solely are not capable of producing conventional momentum-based superconducting pairing on their own.

Keywords: generalized charge stiffness constant, charge coupling, effective Coulomb interaction, t-J-like models, momentum-space pairing

Procedia PDF Downloads 159
7027 The Analysis of Increment of Road Traffic Accidents in Libya: Case Study City of Tripoli

Authors: Fares Elturki, Shaban Ismael Albrka Ali Zangena, H. A. M. Yahia

Abstract:

Safety is an important consideration in the design and operation of streets and highways. Traffic and highway engineers working with law enforcement officials are constantly seeking for better methods to ensure safety for motorists and pedestrians. Also, a highway safety improvement process involves planning, implementation, and evaluation. The planning process requires that engineers collect and maintain traffic safety data, identify the hazards location, conduct studies and establish project priorities. Unfortunately, in Libya, the increase in demand for private transportation in recent years, due to poor or lack of public transportation led to some traffic problems especially in the capital (Tripoli). Also, the growth of private transportation has significant influences on the society regarding road traffic accidents (RTAs). This study investigates the most critical factors affect RTAs in Tripoli the capital city of Libya. Four main classifications were chosen to build the questionnaire, namely; human factors, road factors, vehicle factors and environmental factors. Moreover, a quantitative method was used to collect the data from the field, the targeted sample size 400 respondents include; drivers, pedestrian and passengers and relative importance index (RII) were used to rank the factors of one group and between all groups. The results show that the human factors have the most significant impacts compared with other factors. Also, 84% of respondents considered the over speeding as the most significant factor cusses of RTAs while 81% considered the disobedience to driving regulations as the second most influential factor in human factors. Also, the results showed that poor brakes or brake failure factor a great impact on the RTAs among the vehicle factors with nearly 74%, while 79% categorized poor or no street lighting factor as one of the most effective factors on RTAs in road factors and third effecting factor concerning all factors. The environmental factors have the slights influences compared with other factors.

Keywords: road traffic accidents, Libya, vehicle factors, human factors, relative importance index

Procedia PDF Downloads 279
7026 Assimilating Remote Sensing Data Into Crop Models: A Global Systematic Review

Authors: Luleka Dlamini, Olivier Crespo, Jos van Dam

Abstract:

Accurately estimating crop growth and yield is pivotal for timely sustainable agricultural management and ensuring food security. Crop models and remote sensing can complement each other and form a robust analysis tool to improve crop growth and yield estimations when combined. This study thus aims to systematically evaluate how research that exclusively focuses on assimilating RS data into crop models varies among countries, crops, data assimilation methods, and farming conditions. A strict search string was applied in the Scopus and Web of Science databases, and 497 potential publications were obtained. After screening for relevance with predefined inclusion/exclusion criteria, 123 publications were considered in the final review. Results indicate that over 81% of the studies were conducted in countries associated with high socio-economic and technological advancement, mainly China, the United States of America, France, Germany, and Italy. Many of these studies integrated MODIS or Landsat data into WOFOST to improve crop growth and yield estimation of staple crops at the field and regional scales. Most studies use recalibration or updating methods alongside various algorithms to assimilate remotely sensed leaf area index into crop models. However, these methods cannot account for the uncertainties in remote sensing observations and the crop model itself. l. Over 85% of the studies were based on commercial and irrigated farming systems. Despite a great global interest in data assimilation into crop models, limited research has been conducted in resource- and data-limited regions like Africa. We foresee a great potential for such application in those conditions. Hence facilitating and expanding the use of such an approach, from which developing farming communities could benefit.

Keywords: crop models, remote sensing, data assimilation, crop yield estimation

Procedia PDF Downloads 131
7025 Assimilating Remote Sensing Data into Crop Models: A Global Systematic Review

Authors: Luleka Dlamini, Olivier Crespo, Jos van Dam

Abstract:

Accurately estimating crop growth and yield is pivotal for timely sustainable agricultural management and ensuring food security. Crop models and remote sensing can complement each other and form a robust analysis tool to improve crop growth and yield estimations when combined. This study thus aims to systematically evaluate how research that exclusively focuses on assimilating RS data into crop models varies among countries, crops, data assimilation methods, and farming conditions. A strict search string was applied in the Scopus and Web of Science databases, and 497 potential publications were obtained. After screening for relevance with predefined inclusion/exclusion criteria, 123 publications were considered in the final review. Results indicate that over 81% of the studies were conducted in countries associated with high socio-economic and technological advancement, mainly China, the United States of America, France, Germany, and Italy. Many of these studies integrated MODIS or Landsat data into WOFOST to improve crop growth and yield estimation of staple crops at the field and regional scales. Most studies use recalibration or updating methods alongside various algorithms to assimilate remotely sensed leaf area index into crop models. However, these methods cannot account for the uncertainties in remote sensing observations and the crop model itself. l. Over 85% of the studies were based on commercial and irrigated farming systems. Despite a great global interest in data assimilation into crop models, limited research has been conducted in resource- and data-limited regions like Africa. We foresee a great potential for such application in those conditions. Hence facilitating and expanding the use of such an approach, from which developing farming communities could benefit.

Keywords: crop models, remote sensing, data assimilation, crop yield estimation

Procedia PDF Downloads 82
7024 Innovative Business Models in the Era of Digital Tourism: Examining Their Impact on International Travel, Local Businesses, and Residents’ Quality of Life

Authors: Madad Ali

Abstract:

In the contemporary landscape of international travel, the infusion of digital technologies has given rise to innovative business models that are reshaping the dynamics of tourism. This research delves into the transformative potential of these novel business models within the realm of digital tourism and their multifaceted impact on local businesses, residents' quality of life, and the overall travel experience. The study focuses on the captivating backdrop of Yunnan Province, China, renowned for its rich cultural heritage and diverse ethnic minorities, to uncover the intricate nuances of this phenomenon. The primary objectives of this research encompass the identification and categorization of emerging business models facilitated by digital technologies, their implications on tourist engagement, and their integration into the operations of local businesses. By employing a mixed-methods approach, blending qualitative techniques like interviews and content analysis with quantitative tools such as surveys and data analysis, the study provides a comprehensive evaluation of these business models' effects on various dimensions of the tourism landscape. The distinctiveness of this research lies in its exclusive focus on Yunnan Province, China. By concentrating on Yunnan Province, the research contributes exceptional insights into the interplay between digital tourism, ethnic diversity, cultural heritage, and sustainable development. The study's outcomes hold significance for both scholarly discourse and the stakeholders involved in shaping the region's tourism strategies.

Keywords: business model, digital tourism, international travel, local businesses, quality of life

Procedia PDF Downloads 58
7023 CFD Simulation of a Large Scale Unconfined Hydrogen Deflagration

Authors: I. C. Tolias, A. G. Venetsanos, N. Markatos

Abstract:

In the present work, CFD simulations of a large scale open deflagration experiment are performed. Stoichiometric hydrogen-air mixture occupies a 20 m hemisphere. Two combustion models are compared and are evaluated against the experiment. The Eddy Dissipation Model and a Multi-physics combustion model which is based on Yakhot’s equation for the turbulent flame speed. The values of models’ critical parameters are investigated. The effect of the turbulence model is also examined. k-ε model and LES approach were tested.

Keywords: CFD, deflagration, hydrogen, combustion model

Procedia PDF Downloads 502
7022 Adaptive Power Control of the City Bus Integrated Photovoltaic System

Authors: Piotr Kacejko, Mariusz Duk, Miroslaw Wendeker

Abstract:

This paper presents an adaptive controller to track the maximum power point of a photovoltaic modules (PV) under fast irradiation change on the city-bus roof. Photovoltaic systems have been a prominent option as an additional energy source for vehicles. The Municipal Transport Company (MPK) in Lublin has installed photovoltaic panels on its buses roofs. The solar panels turn solar energy into electric energy and are used to load the buses electric equipment. This decreases the buses alternators load, leading to lower fuel consumption and bringing both economic and ecological profits. A DC–DC boost converter is selected as the power conditioning unit to coordinate the operating point of the system. In addition to the conversion efficiency of a photovoltaic panel, the maximum power point tracking (MPPT) method also plays a main role to harvest most energy out of the sun. The MPPT unit on a moving vehicle must keep tracking accuracy high in order to compensate rapid change of irradiation change due to dynamic motion of the vehicle. Maximum power point track controllers should be used to increase efficiency and power output of solar panels under changing environmental factors. There are several different control algorithms in the literature developed for maximum power point tracking. However, energy performances of MPPT algorithms are not clarified for vehicle applications that cause rapid changes of environmental factors. In this study, an adaptive MPPT algorithm is examined at real ambient conditions. PV modules are mounted on a moving city bus designed to test the solar systems on a moving vehicle. Some problems of a PV system associated with a moving vehicle are addressed. The proposed algorithm uses a scanning technique to determine the maximum power delivering capacity of the panel at a given operating condition and controls the PV panel. The aim of control algorithm was matching the impedance of the PV modules by controlling the duty cycle of the internal switch, regardless of changes of the parameters of the object of control and its outer environment. Presented algorithm was capable of reaching the aim of control. The structure of an adaptive controller was simplified on purpose. Since such a simple controller, armed only with an ability to learn, a more complex structure of an algorithm can only improve the result. The presented adaptive control system of the PV system is a general solution and can be used for other types of PV systems of both high and low power. Experimental results obtained from comparison of algorithms by a motion loop are presented and discussed. Experimental results are presented for fast change in irradiation and partial shading conditions. The results obtained clearly show that the proposed method is simple to implement with minimum tracking time and high tracking efficiency proving superior to the proposed method. This work has been financed by the Polish National Centre for Research and Development, PBS, under Grant Agreement No. PBS 2/A6/16/2013.

Keywords: adaptive control, photovoltaic energy, city bus electric load, DC-DC converter

Procedia PDF Downloads 211
7021 A Novel Multi-Objective Park and Ride Control Scheme Using Renewable Energy Sources: Cairo Case Study

Authors: Mohammed Elsayed Lotfy Elsayed Abouzeid, Tomonobu Senjyu

Abstract:

A novel multi-objective park and ride control approach is presented in this research. Park and ride will encourage the owners of the vehicles to leave their cars in the nearest points (on the edges of the crowded cities) and use public transportation facilities (train, bus, metro, or mon-rail) to reach their work inside the crowded city. The proposed control scheme is used to design electric vehicle charging stations (EVCS) to charge 1000 electric vehicles (EV) during their owners' work time. Cairo, Egypt is used as a case study. Photovoltaic (PV) and battery energy storage system (BESS) are used to meet the EVCS demand. Two multi-objective optimization techniques (MOGA and epsilon-MOGA) are utilized to get the optimal sizes of PV and BESS so as to meet the load demand and minimize the total life cycle cost. Detailed analysis and comparison are held to investigate the performance of the proposed control scheme using MATLAB.

Keywords: Battery Energy Storage System, Electric Vehicle, Park and Ride, Photovoltaic, Multi-objective

Procedia PDF Downloads 144
7020 Measuring and Evaluating the Effectiveness of Mobile High Efficiency Particulate Air Filtering on Particulate Matter within the Road Traffic Network of a Sample of Non-Sparse and Sparse Urban Environments in the UK

Authors: Richard Maguire

Abstract:

This research evaluates the efficiency of using mobile HEPA filters to reduce localized Particulate Matter (PM), Total Volatile Organic Chemical (TVOC) and Formaldehyde (HCHO) Air Pollution. The research is being performed using a standard HEPA filter that is tube fitted and attached to a motor vehicle. The velocity of the vehicle is used to generate the pressure difference that allows the filter to remove PM, VOC and HCOC pollution from the localized atmosphere of a road transport traffic route. The testing has been performed on a sample of traffic routes in Non-Sparse and Sparse urban environments within the UK. Pre and Post filter measuring of the PM2.5 Air Quality has been carried out along with demographics of the climate environment, including live filming of the traffic conditions. This provides a base line for future national and international research. The effectiveness measurement is generated through evaluating the difference in PM2.5 Air Quality measured pre- and post- the mobile filter test equipment. A series of further research opportunities and future exploitation options are made based on the results of the research.

Keywords: high efficiency particulate air, HEPA filter, particulate matter, traffic pollution

Procedia PDF Downloads 124
7019 Modelling of Filters CO2 (Carbondioxide) and CO (Carbonmonoxide) Portable in Motor Vehicle's Exhaust with Absorbent Chitosan

Authors: Yuandanis Wahyu Salam, Irfi Panrepi, Nuraeni

Abstract:

The increased of greenhouse gases, that is CO2 (carbondioxide) in atmosphere induce the rising of earth’s surface average temperature. One of the largest contributors to greenhouse gases is motor vehicles. Smoke which is emitted by motor’s exhaust containing gases such as CO2 (carbondioxide) and CO (carbon monoxide). Chemically, chitosan is cellulose like plant fiber that has the ability to bind like absorbant foam. Chitosan is a natural antacid (absorb toxins), when chitosan is spread over the surface of water, chitosan is able to absorb fats, oils, heavy metals, and other toxic substances. Judging from the nature of chitosan is able to absorb various toxic substances, it is expected that chitosan is also able to filter out gas emission from the motor vehicles. This study designing a carbondioxide filter in the exhaust of motor vehicles using chitosan as its absorbant. It aims to filter out gases in the exhaust so that CO2 and CO can be reducted before emitted by exhaust. Form of this reseach is study of literature and applied with experimental research of tool manufacture. Data collected through documentary studies by studying books, magazines, thesis, search on the internet as well as the relevant reference. This study will produce a filters which has main function to filter out CO2 and CO emissions that generated by vehicle’s exhaust and can be used as portable.

Keywords: filter, carbon, carbondioxide, exhaust, chitosan

Procedia PDF Downloads 351
7018 Profitability Assessment of Granite Aggregate Production and the Development of a Profit Assessment Model

Authors: Melodi Mbuyi Mata, Blessing Olamide Taiwo, Afolabi Ayodele David

Abstract:

The purpose of this research is to create empirical models for assessing the profitability of granite aggregate production in Akure, Ondo state aggregate quarries. In addition, an artificial neural network (ANN) model and multivariate predicting models for granite profitability were developed in the study. A formal survey questionnaire was used to collect data for the study. The data extracted from the case study mine for this study includes granite marketing operations, royalty, production costs, and mine production information. The following methods were used to achieve the goal of this study: descriptive statistics, MATLAB 2017, and SPSS16.0 software in analyzing and modeling the data collected from granite traders in the study areas. The ANN and Multi Variant Regression models' prediction accuracy was compared using a coefficient of determination (R²), Root mean square error (RMSE), and mean square error (MSE). Due to the high prediction error, the model evaluation indices revealed that the ANN model was suitable for predicting generated profit in a typical quarry. More quarries in Nigeria's southwest region and other geopolitical zones should be considered to improve ANN prediction accuracy.

Keywords: national development, granite, profitability assessment, ANN models

Procedia PDF Downloads 101
7017 Seismic Response of Belt Truss System in Regular RC Frame Structure at the Different Positions of the Storey

Authors: Mohd Raish Ansari, Tauheed Alam Khan

Abstract:

This research paper is a comparative study of the belt truss in the Regular RC frame structure at the different positions of the floor. The method used in this research is the response spectrum method with the help of the ETABS Software, there are six models in this paper with belt truss. The Indian standard code used in this work are IS 456:2000, IS 800:2007, IS 875 part-1, IS 875 part-1, and IS 1893 Part-1:2016. The cross-section of the belt truss is the I-section, a grade of steel that is made up of Mild Steel. The basic model in this research paper is the same, only position of the belt truss is going to change, and the dimension of the belt truss is remain constant for all models. The plan area of all models is 24.5 meters x 28 meters, and the model has G+20, where the height of the ground floor is 3.5 meters, and all floor height is 3.0 meters remains constant. This comparative research work selected some important seismic parameters to check the stability of all models, the parameters are base shear, fundamental period, storey overturning moment, and maximum storey displacement.

Keywords: belt truss, RC frames structure, ETABS, response spectrum analysis, special moment resisting frame

Procedia PDF Downloads 93
7016 Selection of Designs in Ordinal Regression Models under Linear Predictor Misspecification

Authors: Ishapathik Das

Abstract:

The purpose of this article is to find a method of comparing designs for ordinal regression models using quantile dispersion graphs in the presence of linear predictor misspecification. The true relationship between response variable and the corresponding control variables are usually unknown. Experimenter assumes certain form of the linear predictor of the ordinal regression models. The assumed form of the linear predictor may not be correct always. Thus, the maximum likelihood estimates (MLE) of the unknown parameters of the model may be biased due to misspecification of the linear predictor. In this article, the uncertainty in the linear predictor is represented by an unknown function. An algorithm is provided to estimate the unknown function at the design points where observations are available. The unknown function is estimated at all points in the design region using multivariate parametric kriging. The comparison of the designs are based on a scalar valued function of the mean squared error of prediction (MSEP) matrix, which incorporates both variance and bias of the prediction caused by the misspecification in the linear predictor. The designs are compared using quantile dispersion graphs approach. The graphs also visually depict the robustness of the designs on the changes in the parameter values. Numerical examples are presented to illustrate the proposed methodology.

Keywords: model misspecification, multivariate kriging, multivariate logistic link, ordinal response models, quantile dispersion graphs

Procedia PDF Downloads 393
7015 A Review of Gas Hydrate Rock Physics Models

Authors: Hemin Yuan, Yun Wang, Xiangchun Wang

Abstract:

Gas hydrate is drawing attention due to the fact that it has an enormous amount all over the world, which is almost twice the conventional hydrocarbon reserves, making it a potential alternative source of energy. It is widely distributed in permafrost and continental ocean shelves, and many countries have launched national programs for investigating the gas hydrate. Gas hydrate is mainly explored through seismic methods, which include bottom simulating reflectors (BSR), amplitude blanking, and polarity reverse. These seismic methods are effective at finding the gas hydrate formations but usually contain large uncertainties when applying to invert the micro-scale petrophysical properties of the formations due to lack of constraints. Rock physics modeling links the micro-scale structures of the rocks to the macro-scale elastic properties and can work as effective constraints for the seismic methods. A number of rock physics models have been proposed for gas hydrate modeling, which addresses different mechanisms and applications. However, these models are generally not well classified, and it is confusing to determine the appropriate model for a specific study. Moreover, since the modeling usually involves multiple models and steps, it is difficult to determine the source of uncertainties. To solve these problems, we summarize the developed models/methods and make four classifications of the models according to the hydrate micro-scale morphology in sediments, the purpose of reservoir characterization, the stage of gas hydrate generation, and the lithology type of hosting sediments. Some sub-categories may overlap each other, but they have different priorities. Besides, we also analyze the priorities of different models, bring up the shortcomings, and explain the appropriate application scenarios. Moreover, by comparing the models, we summarize a general workflow of the modeling procedure, which includes rock matrix forming, dry rock frame generating, pore fluids mixing, and final fluid substitution in the rock frame. These procedures have been widely used in various gas hydrate modeling and have been confirmed to be effective. We also analyze the potential sources of uncertainties in each modeling step, which enables us to clearly recognize the potential uncertainties in the modeling. In the end, we explicate the general problems of the current models, including the influences of pressure and temperature, pore geometry, hydrate morphology, and rock structure change during gas hydrate dissociation and re-generation. We also point out that attenuation is also severely affected by gas hydrate in sediments and may work as an indicator to map gas hydrate concentration. Our work classifies rock physics models of gas hydrate into different categories, generalizes the modeling workflow, analyzes the modeling uncertainties and potential problems, which can facilitate the rock physics characterization of gas hydrate bearding sediments and provide hints for future studies.

Keywords: gas hydrate, rock physics model, modeling classification, hydrate morphology

Procedia PDF Downloads 158
7014 A Content Analysis of Corporate Sustainability Performance and Business Excellence Models

Authors: Kari M. Solomon

Abstract:

Companies with a culture accepting of change management and performance excellence are better suited to determine their sustainability performance and impacts. A mature corporate culture supportive of performance excellence is better positioned to integrate sustainability management tools into their standard business strategy. Companies use various sustainability management tools and reporting standards to communicate levels of sustainability performance to their stakeholders, more often focusing on shareholders and investors. A research gap remains in understanding how companies adapt business excellence models to define corporate sustainability performance. A content analysis of medium-sized enterprises using corporate sustainability reports and business excellence models reveals the challenges and opportunities of reporting sustainability performance in the context of organizational excellence. The outcomes of this content analysis contribute knowledge on the resources needed for companies to build sustainability performance management systems integral to existing management systems. The findings of this research inform academic research areas of corporate sustainability performance, the business community contributing to sustainable development initiatives, and integrating sustainable development issues into business excellence models. There are potential research links between sustainability performance management and the alignment of the United Nations Sustainable Development Goals (UN SDGs) when organizations promote a culture of performance or business excellence.

Keywords: business excellence, corporate sustainability, performance excellence, sustainability performance

Procedia PDF Downloads 183
7013 Utilization of an Object Oriented Tool to Perform Model-Based Safety Analysis According to Extended Failure System Models

Authors: Royia Soliman, Salma ElAnsary, Akram Amin Abdellatif, Florian Holzapfel

Abstract:

Model-Based Safety Analysis (MBSA) is an approach in which the system and safety engineers share a common system model created using a model-based development process. The model can also be extended by the failure modes of the system components. There are two famous approaches for the addition of fault behaviors to system models. The first one is to enclose the failure into the system design directly. The second approach is to develop a fault model separately from the system model, thus combining both independent models for safety analysis. This paper introduces a hybrid approach of MBSA. The approach tries to use informal abstracted models to investigate failure behaviors. The approach will combine various concepts such as directed graph traversal, event lists and Constraint Satisfaction Problems (CSP). The approach is implemented using an Object Oriented programming language. The components are abstracted to its failure logic and relationships of connected components. The implemented approach is tested on various flight control systems, including electrical and multi-domain examples. The various tests are analyzed, and a comparison to different approaches is represented.

Keywords: flight control systems, model based safety analysis, safety assessment analysis, system modelling

Procedia PDF Downloads 164
7012 A Method to Compute Efficient 3D Helicopters Flight Trajectories Based On a Motion Polymorph-Primitives Algorithm

Authors: Konstanca Nikolajevic, Nicolas Belanger, David Duvivier, Rabie Ben Atitallah, Abdelhakim Artiba

Abstract:

Finding the optimal 3D path of an aerial vehicle under flight mechanics constraints is a major challenge, especially when the algorithm has to produce real-time results in flight. Kinematics models and Pythagorian Hodograph curves have been widely used in mobile robotics to solve this problematic. The level of difficulty is mainly driven by the number of constraints to be saturated at the same time while minimizing the total length of the path. In this paper, we suggest a pragmatic algorithm capable of saturating at the same time most of dimensioning helicopter 3D trajectories’ constraints like: curvature, curvature derivative, torsion, torsion derivative, climb angle, climb angle derivative, positions. The trajectories generation algorithm is able to generate versatile complex 3D motion primitives feasible by a helicopter with parameterization of the curvature and the climb angle. An upper ”motion primitives’ concatenation” algorithm is presented based. In this article we introduce a new way of designing three-dimensional trajectories based on what we call the ”Dubins gliding symmetry conjecture”. This extremely performing algorithm will be soon integrated to a real-time decisional system dealing with inflight safety issues.

Keywords: robotics, aerial robots, motion primitives, helicopter

Procedia PDF Downloads 616
7011 Aerodynamic Design of a Light Long Range Blended Wing Body Unmanned Vehicle

Authors: Halison da Silva Pereira, Ciro Sobrinho Campolina Martins, Vitor Mainenti Leal Lopes

Abstract:

Long range performance is a goal for aircraft configuration optimization. Blended Wing Body (BWB) is presented in many works of literature as the most aerodynamically efficient design for a fixed-wing aircraft. Because of its high weight to thrust ratio, BWB is the ideal configuration for many Unmanned Aerial Vehicle (UAV) missions on geomatics applications. In this work, a BWB aerodynamic design for typical light geomatics payload is presented. Aerodynamic non-dimensional coefficients are predicted using low Reynolds number computational techniques (3D Panel Method) and wing parameters like aspect ratio, taper ratio, wing twist and sweep are optimized for high cruise performance and flight quality. The methodology of this work is a summary of tailless aircraft wing design and its application, with appropriate computational schemes, to light UAV subjected to low Reynolds number flows leads to conclusions like the higher performance and flight quality of thicker airfoils in the airframe body and the benefits of using aerodynamic twist rather than just geometric.

Keywords: blended wing body, low Reynolds number, panel method, UAV

Procedia PDF Downloads 586