Search results for: traffic forecasts
380 AI Software Algorithms for Drivers Monitoring within Vehicles Traffic - SiaMOTO
Authors: Ioan Corneliu Salisteanu, Valentin Dogaru Ulieru, Mihaita Nicolae Ardeleanu, Alin Pohoata, Bogdan Salisteanu, Stefan Broscareanu
Abstract:
Creating a personalized statistic for an individual within the population using IT systems, based on the searches and intercepted spheres of interest they manifest, is just one 'atom' of the artificial intelligence analysis network. However, having the ability to generate statistics based on individual data intercepted from large demographic areas leads to reasoning like that issued by a human mind with global strategic ambitions. The DiaMOTO device is a technical sensory system that allows the interception of car events caused by a driver, positioning them in time and space. The device's connection to the vehicle allows the creation of a source of data whose analysis can create psychological, behavioural profiles of the drivers involved. The SiaMOTO system collects data from many vehicles equipped with DiaMOTO, driven by many different drivers with a unique fingerprint in their approach to driving. In this paper, we aimed to explain the software infrastructure of the SiaMOTO system, a system designed to monitor and improve driver driving behaviour, as well as the criteria and algorithms underlying the intelligent analysis process.Keywords: artificial intelligence, data processing, driver behaviour, driver monitoring, SiaMOTO
Procedia PDF Downloads 88379 Disaster Resilience Analysis of Atlanta Interstate Highway System within the Perimeter
Authors: Mengmeng Liu, J. David Frost
Abstract:
Interstate highway system within the Atlanta Perimeter plays an important role in residents’ daily life. The serious influence of Atlanta I-85 Collapses implies that transportation system in the region lacks a cohesive and comprehensive transportation plan. Therefore, disaster resilience analysis of the transportation system is necessary. Resilience is the system’s capability to persist or to maintain transportation services when exposed to changes or shocks. This paper analyzed the resilience of the whole transportation system within the Perimeter and see how removing interstates within the Perimeter will affect the resilience of the transportation system. The data used in the paper are Atlanta transportation networks and LEHD Origin-Destination Employment Statistics data. First, we calculate the traffic flow on each road section based on LEHD data assuming each trip travel along the shortest travel time paths. Second, we calculate the measure of resilience, which is flow-based connectivity and centrality of the transportation network, and see how they will change if we remove each section of interstates from the current transportation system. Finally, we get the resilience function curve of the interstates and identify the most resilient interstates section. The resilience analysis results show that the framework of calculation resilience is effective and can provide some useful information for the transportation planning and sustainability analysis of the transportation infrastructures.Keywords: connectivity, interstate highway system, network analysis, resilience analysis
Procedia PDF Downloads 260378 Vehicle Risk Evaluation in Low Speed Accidents: Consequences for Relevant Test Scenarios
Authors: Philip Feig, Klaus Gschwendtner, Julian Schatz, Frank Diermeyer
Abstract:
Projects of accident research analysis are mostly focused on accidents involving personal damage. Property damage only has a high frequency of occurrence combined with high economic impact. This paper describes main influencing parameters for the extent of damage and presents a repair cost model. For a prospective evaluation method of the monetary effect of advanced driver assistance systems (ADAS), it is necessary to be aware of and quantify all influencing parameters. Furthermore, this method allows the evaluation of vehicle concepts in combination with an ADAS at an early point in time of the product development process. In combination with a property damage database and the introduced repair cost model relevant test scenarios for specific vehicle configurations and their individual property damage risk may be determined. Currently, equipment rates of ADAS are low and a purchase incentive for customers would be beneficial. The next ADAS generation will prevent property damage to a large extent or at least reduce damage severity. Both effects may be a purchasing incentive for the customer and furthermore contribute to increased traffic safety.Keywords: accident research, accident scenarios, ADAS, effectiveness, property damage analysis
Procedia PDF Downloads 340377 Assessing Environmental Urban Sustainability Using Multivariate Analysis: A Case of Nagpur, India
Authors: Anusha Vaddiraj Pallapu
Abstract:
Measuring urban sustainable development is at the forefront in contributing to overall sustainability, and it refers to attaining social equity, environmental protection and minimizing the impacts of urbanization. Assessing performance of urban issues ranging from larger consumption of natural resources by humans in terms of lifestyle to creating a polluted nearby environment, social and even economic dimensions of sustainability major issues observed such as water quality, transportation, management of solid waste and traffic pollution. However, relying on the framework of the project to do the goals of sustainable development or minimization of urban impacts through management practices is not enough to deal with the present urban issues. The aim of the sustainability is to know how severely the resources are depleted because of human consumption and how issues are characterized. The paper aims to assign benchmarks for the selected sustainability indicators for research, and analysis is done through multivariate analysis in Indian context a case of Nagpur city to identify the play role of each urban issues in the overall sustainability. The main objectives of this paper are to examine the indicators over by time basis on various scenarios and how benchmarking is used, what and which categories of values should be considered as the performance of indicators function.Keywords: environmental sustainability indicators, principal component analysis, urban sustainability, urban clusters, benchmarking
Procedia PDF Downloads 342376 Permanent Deformation Resistance of Asphalt Mixtures with Red Mud as a Filler
Authors: Liseane Padilha Thives, Mayara S. S. Lima, João Victor Staub De Melo, Glicério Trichês
Abstract:
Red mud is a waste resulting from the processing of bauxite to alumina, the raw material of the production of aluminum. The large quantity of red mud generated and inadequately disposed in the environment has motivated researchers to develop methods for reinsertion of this waste into the productive cycle. This work aims to evaluate the resistance to permanent deformation of dense asphalt mixtures with red mud filler. The red mud was characterized by tests of X-ray diffraction, fluorescence, specific mass, laser granulometry, pH and scanning electron microscopy. For the analysis of the influence of the quantity of red mud in the mechanical performance of asphalt mixtures, a total filler content of 7% was established. Asphalt mixtures with 3%, 5% and 7% red mud were produced. A conventional mixture with 7% stone powder filler was used as reference. The asphalt mixtures were evaluated for performance to permanent deformation in the French Rutting Tester (FRT) traffic simulator. The mixture with 5% red mud presented greater resistance to permanent deformation with rutting depth at 30,000 cycles of 3.50%. The asphalt mixtures with red mud presented better performance, with reduction of the rutting of 12.63 to 42.62% in relation to the reference mixture. This study confirmed the viability of reinserting the red mud in the production chain and possible usage in the construction industry. The red mud as filler in asphalt mixtures is a reuse option of this waste and mitigation of the disposal problems, as well as being an environmentally friendly alternative.Keywords: asphalt mixtures, permanent deformation, red mud, pavements
Procedia PDF Downloads 289375 Aircraft Automatic Collision Avoidance Using Spiral Geometric Approach
Authors: M. Orefice, V. Di Vito
Abstract:
This paper provides a description of a Collision Avoidance algorithm that has been developed starting from the mathematical modeling of the flight of insects, in terms of spirals and conchospirals geometric paths. It is able to calculate a proper avoidance manoeuver aimed to prevent the infringement of a predefined distance threshold between ownship and the considered intruder, while minimizing the ownship trajectory deviation from the original path and in compliance with the aircraft performance limitations and dynamic constraints. The algorithm is designed in order to be suitable for real-time applications, so that it can be considered for the implementation in the most recent airborne automatic collision avoidance systems using the traffic data received through an ADS-B IN device. The presented approach is able to take into account the rules-of-the-air, due to the possibility to select, through specifically designed decision making logic based on the consideration of the encounter geometry, the direction of the calculated collision avoidance manoeuver that allows complying with the rules-of-the-air, as for instance the fundamental right of way rule. In the paper, the proposed collision avoidance algorithm is presented and its preliminary design and software implementation is described. The applicability of this method has been proved through preliminary simulation tests performed in a 2D environment considering single intruder encounter geometries, as reported and discussed in the paper.Keywords: ADS-B Based Application, Collision Avoidance, RPAS, Spiral Geometry.
Procedia PDF Downloads 241374 Facility Data Model as Integration and Interoperability Platform
Authors: Nikola Tomasevic, Marko Batic, Sanja Vranes
Abstract:
Emerging Semantic Web technologies can be seen as the next step in evolution of the intelligent facility management systems. Particularly, this considers increased usage of open source and/or standardized concepts for data classification and semantic interpretation. To deliver such facility management systems, providing the comprehensive integration and interoperability platform in from of the facility data model is a prerequisite. In this paper, one of the possible modelling approaches to provide such integrative facility data model which was based on the ontology modelling concept was presented. Complete ontology development process, starting from the input data acquisition, ontology concepts definition and finally ontology concepts population, was described. At the beginning, the core facility ontology was developed representing the generic facility infrastructure comprised of the common facility concepts relevant from the facility management perspective. To develop the data model of a specific facility infrastructure, first extension and then population of the core facility ontology was performed. For the development of the full-blown facility data models, Malpensa and Fiumicino airports in Italy, two major European air-traffic hubs, were chosen as a test-bed platform. Furthermore, the way how these ontology models supported the integration and interoperability of the overall airport energy management system was analyzed as well.Keywords: airport ontology, energy management, facility data model, ontology modeling
Procedia PDF Downloads 448373 In-Depth Analysis of Involved Factors to Car-Motorcycle Accidents in Budapest City
Authors: Danish Farooq, Janos Juhasz
Abstract:
Car-motorcycle accidents have been observed higher in recent years, which caused mainly riders’ fatalities and serious injuries. In-depth crash investigation methods aim to investigate the main factors which are likely involved in fatal road accidents and injury outcomes. The main objective of this study is to investigate the involved factors in car-motorcycle accidents in Budapest city. The procedure included statistical analysis and data sampling to identify car-motorcycle accidents by dominant accident types based on collision configurations. The police report was used as a data source for specified accidents, and simulation models were plotted according to scale (M 1:200). Car-motorcycle accidents were simulated in Virtual Crash software for 5 seconds before the collision. The simulation results showed that the main involved factors to car-motorcycle accidents were human behavior and view obstructions. The comprehensive, in-depth analysis also found that most of the car drivers and riders were unable to perform collision avoidance manoeuvres before the collision. This study can help the traffic safety authorities to focus on simulated involved factors to solve road safety issues in car-motorcycle accidents. The study also proposes safety measures to improve safe movements among road users.Keywords: car motorcycle accidents, in-depth analysis, microscopic simulation, safety measures
Procedia PDF Downloads 150372 Human Factors Simulation Approach to Analyze Older Drivers’ Performance in Intersections Left-Turn Scenarios
Authors: Yassir AbdelRazig, Eren Ozguven, Ren Moses
Abstract:
While there exists a greater understanding of the differences between the driving behaviors of older and younger drivers, there is still a need to further understand how the two groups perform when attempting to perform complex intersection maneuvers. This paper looks to determine if, and to what extent, these differences exist when drivers encounter permissive left-hand turns, pedestrian traffic, two and four-lane intersections, heavy fog, and night conditions. The study will utilize a driving simulator to develop custom drivable scenarios containing one or more of the previously mentioned conditions. 32 younger and 32 older (+65 years) participants perform driving simulation scenarios and have their velocity, time to the nearest oncoming vehicle, accepted and rejected gaps, etc., recorded. The data collected from the simulator is analyzed via Raff’s method and logistic regression in order to determine and compare the critical gaps values of the two cohorts. Out of the parameters considered for this study, only the age of the driver, their experience (if they are a younger driver), the size of a gap, and the presence of pedestrians on the crosswalk proved significant. The results did not support the hypothesis that older drivers would be significantly more conservative in their critical gaps judgment and acceptance.Keywords: older drivers, simulation, left-turn, human factors
Procedia PDF Downloads 247371 Blockchain for Transport: Performance Simulations of Blockchain Network for Emission Monitoring Scenario
Authors: Dermot O'Brien, Vasileios Christaras, Georgios Fontaras, Igor Nai Fovino, Ioannis Kounelis
Abstract:
With the rise of the Internet of Things (IoT), 5G, and blockchain (BC) technologies, vehicles are becoming ever increasingly connected and are already transmitting substantial amounts of data to the original equipment manufacturers (OEMs) servers. This data could be used to help detect mileage fraud and enable more accurate vehicle emissions monitoring. This would not only help regulators but could enable applications such as permitting efficient drivers to pay less tax, geofencing for air quality improvement, as well as pollution tolling and trading platforms for transport-related businesses and EU citizens. Other applications could include traffic management and shared mobility systems. BC enables the transmission of data with additional security and removes single points of failure while maintaining data provenance, identity ownership, and the possibility to retain varying levels of privacy depending on the requirements of the applied use case. This research performs simulations of vehicles interacting with European member state authorities and European Commission BC nodes that are running hyperleger fabric and explores whether the technology is currently feasible for transport applications such as the emission monitoring use-case.Keywords: future transportation systems, technological innovations, policy approaches for transportation future, economic and regulatory trends, blockchain
Procedia PDF Downloads 176370 Mode Choice for School Trip of Children’s Independence Mobility: A Case Study of School Proximity to Mass Transit Stations in Bangkok, Thailand
Authors: Phannarithisen Ong
Abstract:
Children's independent mobility for school trips promotes physical and mental well-being, reduces parental chauffeuring and traffic congestion, and boosts children's public confidence. However, in Thailand, despite a decade of rail mass transit development in Bangkok City, cars still queue to drop students at schools near transit stations. This worsens congestion, urging better independent mobility among children in mass transit regions. The high reliance on the private vehicle will influence the private mode in the children's adulthood. This research emphasizes mass transit use among high school students near transit systems. Through a questionnaire survey, quantitative and qualitative methods reveal key factors impacting school trip mode choice. Preliminary findings highlight children's independence as crucial. The socioeconomic, demographic, trip, and transportation traits explain private car use, even schools near mass transit stations. The outcomes of this study will shed light on urban strategic policies for improvement, advocacy, and encouragement of students using mass transit for school trips, which will help normalize the use of mass transit for such trips.Keywords: children's independence mobility, mode choice, school trips, TOD, extraneous variable, children's independency
Procedia PDF Downloads 141369 Integrating Radar Sensors with an Autonomous Vehicle Simulator for an Enhanced Smart Parking Management System
Authors: Mohamed Gazzeh, Bradley Null, Fethi Tlili, Hichem Besbes
Abstract:
The burgeoning global ownership of personal vehicles has posed a significant strain on urban infrastructure, notably parking facilities, leading to traffic congestion and environmental concerns. Effective parking management systems (PMS) are indispensable for optimizing urban traffic flow and reducing emissions. The most commonly deployed systems nowadays rely on computer vision technology. This paper explores the integration of radar sensors and simulation in the context of smart parking management. We concentrate on radar sensors due to their versatility and utility in automotive applications, which extends to PMS. Additionally, radar sensors play a crucial role in driver assistance systems and autonomous vehicle development. However, the resource-intensive nature of radar data collection for algorithm development and testing necessitates innovative solutions. Simulation, particularly the monoDrive simulator, an internal development tool used by NI the Test and Measurement division of Emerson, offers a practical means to overcome this challenge. The primary objectives of this study encompass simulating radar sensors to generate a substantial dataset for algorithm development, testing, and, critically, assessing the transferability of models between simulated and real radar data. We focus on occupancy detection in parking as a practical use case, categorizing each parking space as vacant or occupied. The simulation approach using monoDrive enables algorithm validation and reliability assessment for virtual radar sensors. It meticulously designed various parking scenarios, involving manual measurements of parking spot coordinates, orientations, and the utilization of TI AWR1843 radar. To create a diverse dataset, we generated 4950 scenarios, comprising a total of 455,400 parking spots. This extensive dataset encompasses radar configuration details, ground truth occupancy information, radar detections, and associated object attributes such as range, azimuth, elevation, radar cross-section, and velocity data. The paper also addresses the intricacies and challenges of real-world radar data collection, highlighting the advantages of simulation in producing radar data for parking lot applications. We developed classification models based on Support Vector Machines (SVM) and Density-Based Spatial Clustering of Applications with Noise (DBSCAN), exclusively trained and evaluated on simulated data. Subsequently, we applied these models to real-world data, comparing their performance against the monoDrive dataset. The study demonstrates the feasibility of transferring models from a simulated environment to real-world applications, achieving an impressive accuracy score of 92% using only one radar sensor. This finding underscores the potential of radar sensors and simulation in the development of smart parking management systems, offering significant benefits for improving urban mobility and reducing environmental impact. The integration of radar sensors and simulation represents a promising avenue for enhancing smart parking management systems, addressing the challenges posed by the exponential growth in personal vehicle ownership. This research contributes valuable insights into the practicality of using simulated radar data in real-world applications and underscores the role of radar technology in advancing urban sustainability.Keywords: autonomous vehicle simulator, FMCW radar sensors, occupancy detection, smart parking management, transferability of models
Procedia PDF Downloads 81368 Implementation of an Autonomous Driving, On-Demand Bus System for Public Transportation
Authors: Eric Neidhardt
Abstract:
A well-functioning public transport system that is accepted and used by the general population contributes a lot to a sustainable city. Especially young and elderly people rely on public transport to get to work, go shopping, visit a doctor, and take advantage of entertainment options. The sustainability of a public transport system can be considered from different points of view. In urban areas, acceptance is particularly important. As many people as possible should use public transport and not their private vehicle. This reduces traffic jams and increases air quality. In rural areas, the cost efficiency of public transport is especially important. Longer distances and a low population density mean that these modes of transportation can rarely be used cost-effectively. It is crucial to avoid a low utilization, because empty rides are neither sustainable nor cost-effective. With a demand-oriented approach, we try to both improve flexibility and therefore attractiveness for the user and improve cost- efficiency. The vehicles only operate when they are needed and only where they are needed. Empty rides are avoided to improve sustainability. In the subproject "Autonomous public driving" of the project RealLabHH, such a system was implemented and tested in Hamburg-Bergedorf, a suburb of Hamburg. In this paper, some of the steps necessary for this are considered from a technical point of view, and problems that arose in real-life use are addressed.Keywords: public transport, demand-oriented, autonomous driving, RealLabHH
Procedia PDF Downloads 191367 A Long Short-Term Memory Based Deep Learning Model for Corporate Bond Price Predictions
Authors: Vikrant Gupta, Amrit Goswami
Abstract:
The fixed income market forms the basis of the modern financial market. All other assets in financial markets derive their value from the bond market. Owing to its over-the-counter nature, corporate bonds have relatively less data publicly available and thus is researched upon far less compared to Equities. Bond price prediction is a complex financial time series forecasting problem and is considered very crucial in the domain of finance. The bond prices are highly volatile and full of noise which makes it very difficult for traditional statistical time-series models to capture the complexity in series patterns which leads to inefficient forecasts. To overcome the inefficiencies of statistical models, various machine learning techniques were initially used in the literature for more accurate forecasting of time-series. However, simple machine learning methods such as linear regression, support vectors, random forests fail to provide efficient results when tested on highly complex sequences such as stock prices and bond prices. hence to capture these intricate sequence patterns, various deep learning-based methodologies have been discussed in the literature. In this study, a recurrent neural network-based deep learning model using long short term networks for prediction of corporate bond prices has been discussed. Long Short Term networks (LSTM) have been widely used in the literature for various sequence learning tasks in various domains such as machine translation, speech recognition, etc. In recent years, various studies have discussed the effectiveness of LSTMs in forecasting complex time-series sequences and have shown promising results when compared to other methodologies. LSTMs are a special kind of recurrent neural networks which are capable of learning long term dependencies due to its memory function which traditional neural networks fail to capture. In this study, a simple LSTM, Stacked LSTM and a Masked LSTM based model has been discussed with respect to varying input sequences (three days, seven days and 14 days). In order to facilitate faster learning and to gradually decompose the complexity of bond price sequence, an Empirical Mode Decomposition (EMD) has been used, which has resulted in accuracy improvement of the standalone LSTM model. With a variety of Technical Indicators and EMD decomposed time series, Masked LSTM outperformed the other two counterparts in terms of prediction accuracy. To benchmark the proposed model, the results have been compared with traditional time series models (ARIMA), shallow neural networks and above discussed three different LSTM models. In summary, our results show that the use of LSTM models provide more accurate results and should be explored more within the asset management industry.Keywords: bond prices, long short-term memory, time series forecasting, empirical mode decomposition
Procedia PDF Downloads 136366 A Semantic Registry to Support Brazilian Aeronautical Web Services Operations
Authors: Luís Antonio de Almeida Rodriguez, José Maria Parente de Oliveira, Ednelson Oliveira
Abstract:
In the last two decades, the world’s aviation authorities have made several attempts to create consensus about a global and accepted approach for applying semantics to web services registry descriptions. This problem has led communities to face a fat and disorganized infrastructure to describe aeronautical web services. It is usual for developers to implement ad-hoc connections among consumers and providers and manually create non-standardized service compositions, which need some particular approach to compose and semantically discover a desired web service. Current practices are not precise and tend to focus on lightweight specifications of some parts of the OWL-S and embed them into syntactic descriptions (SOAP artifacts and OWL language). It is necessary to have the ability to manage the use of both technologies. This paper presents an implementation of the ontology OWL-S that describes a Brazilian Aeronautical Web Service Registry, which makes it able to publish, advertise, make multi-criteria semantic discovery aligned with the ideas of the System Wide Information Management (SWIM) Program, and invoke web services within the Air Traffic Management context. The proposal’s best finding is a generic approach to describe semantic web services. The paper also presents a set of functional requirements to guide the ontology development and to compare them to the results to validate the implementation of the OWL-S Ontology.Keywords: aeronautical web services, OWL-S, semantic web services discovery, ontologies
Procedia PDF Downloads 86365 Extending BDI Multiagent Systems with Agent Norms
Authors: Francisco José Plácido da Cunha, Tassio Ferenzini Martins Sirqueira, Marx Leles Viana, Carlos José Pereira de Lucena
Abstract:
Open Multiagent Systems (MASs) are societies in which heterogeneous and independently designed entities (agents) work towards similar, or different ends. Software agents are autonomous and the diversity of interests among different members living in the same society is a fact. In order to deal with this autonomy, these open systems use mechanisms of social control (norms) to ensure a desirable social order. This paper considers the following types of norms: (i) obligation — agents must accomplish a specific outcome; (ii) permission — agents may act in a particular way, and (iii) prohibition — agents must not act in a specific way. All of these characteristics mean to encourage the fulfillment of norms through rewards and to discourage norm violation by pointing out the punishments. Once the software agent decides that its priority is the satisfaction of its own desires and goals, each agent must evaluate the effects associated to the fulfillment of one or more norms before choosing which one should be fulfilled. The same applies when agents decide to violate a norm. This paper also introduces a framework for the development of MASs that provide support mechanisms to the agent’s decision-making, using norm-based reasoning. The applicability and validation of this approach is demonstrated applying a traffic intersection scenario.Keywords: BDI agent, BDI4JADE framework, multiagent systems, normative agents
Procedia PDF Downloads 231364 Freight Time and Cost Optimization in Complex Logistics Networks, Using a Dimensional Reduction Method and K-Means Algorithm
Authors: Egemen Sert, Leila Hedayatifar, Rachel A. Rigg, Amir Akhavan, Olha Buchel, Dominic Elias Saadi, Aabir Abubaker Kar, Alfredo J. Morales, Yaneer Bar-Yam
Abstract:
The complexity of providing timely and cost-effective distribution of finished goods from industrial facilities to customers makes effective operational coordination difficult, yet effectiveness is crucial for maintaining customer service levels and sustaining a business. Logistics planning becomes increasingly complex with growing numbers of customers, varied geographical locations, the uncertainty of future orders, and sometimes extreme competitive pressure to reduce inventory costs. Linear optimization methods become cumbersome or intractable due to a large number of variables and nonlinear dependencies involved. Here we develop a complex systems approach to optimizing logistics networks based upon dimensional reduction methods and apply our approach to a case study of a manufacturing company. In order to characterize the complexity in customer behavior, we define a “customer space” in which individual customer behavior is described by only the two most relevant dimensions: the distance to production facilities over current transportation routes and the customer's demand frequency. These dimensions provide essential insight into the domain of effective strategies for customers; direct and indirect strategies. In the direct strategy, goods are sent to the customer directly from a production facility using box or bulk trucks. In the indirect strategy, in advance of an order by the customer, goods are shipped to an external warehouse near a customer using trains and then "last-mile" shipped by trucks when orders are placed. Each strategy applies to an area of the customer space with an indeterminate boundary between them. Specific company policies determine the location of the boundary generally. We then identify the optimal delivery strategy for each customer by constructing a detailed model of costs of transportation and temporary storage in a set of specified external warehouses. Customer spaces help give an aggregate view of customer behaviors and characteristics. They allow policymakers to compare customers and develop strategies based on the aggregate behavior of the system as a whole. In addition to optimization over existing facilities, using customer logistics and the k-means algorithm, we propose additional warehouse locations. We apply these methods to a medium-sized American manufacturing company with a particular logistics network, consisting of multiple production facilities, external warehouses, and customers along with three types of shipment methods (box truck, bulk truck and train). For the case study, our method forecasts 10.5% savings on yearly transportation costs and an additional 4.6% savings with three new warehouses.Keywords: logistics network optimization, direct and indirect strategies, K-means algorithm, dimensional reduction
Procedia PDF Downloads 139363 Investigating Message Timing Side Channel Attacks on Networks on Chip with Ring Topology
Authors: Mark Davey
Abstract:
Communications on a Network on Chip (NoC) produce timing information, i.e., network injection delays, packet traversal times, throughput metrics, and other attributes relating to the traffic being sent across the chip. The security requirements of a platform encompass each node to operate with confidentiality, integrity, and availability (ISO 27001). Inherently, a shared NoC interconnect is exposed to analysis of timing patterns created by contention for the network components, i.e., links and switches/routers. This phenomenon is defined as information leakage, which represents a ‘side channel’ of sensitive information that can be correlated to platform activity. The key algorithm presented in this paper evaluates how an adversary can control two platform neighbouring nodes of a target node to obtain sensitive information about communication with the target node. The actual information obtained is the period value of a periodic task communication. This enacts a breach of the expected confidentiality of a node operating in a multiprocessor platform. An experimental investigation of the side channel is undertaken to judge the level and significance of inferred information produced by access times to the NoC. Results are presented with a series of expanding task set scenarios to evaluate the efficacy of the side channel detection algorithm as the network load increases.Keywords: embedded systems, multiprocessor, network on chip, side channel
Procedia PDF Downloads 71362 An Enhanced Hybrid Backoff Technique for Minimizing the Occurrence of Collision in Mobile Ad Hoc Networks
Authors: N. Sabiyath Fatima, R. K. Shanmugasundaram
Abstract:
In Mobile Ad-hoc Networks (MANETS), every node performs both as transmitter and receiver. The existing backoff models do not exactly forecast the performance of the wireless network. Also, the existing models experience elevated packet collisions. Every time a collision happens, the station’s contention window (CW) is doubled till it arrives at the utmost value. The main objective of this paper is to diminish collision by means of contention window Multiplicative Increase Decrease Backoff (CWMIDB) scheme. The intention of rising CW is to shrink the collision possibility by distributing the traffic into an outsized point in time. Within wireless Ad hoc networks, the CWMIDB algorithm dynamically controls the contention window of the nodes experiencing collisions. During packet communication, the backoff counter is evenly selected from the given choice of [0, CW-1]. At this point, CW is recognized as contention window and its significance lies on the amount of unsuccessful transmission that had happened for the packet. On the initial transmission endeavour, CW is put to least amount value (C min), if transmission effort fails, subsequently the value gets doubled, and once more the value is set to least amount on victorious broadcast. CWMIDB is simulated inside NS2 environment and its performance is compared with Binary Exponential Backoff Algorithm. The simulation results show improvement in transmission probability compared to that of the existing backoff algorithm.Keywords: backoff, contention window, CWMIDB, MANET
Procedia PDF Downloads 276361 Industrial Investment and Contract Models in Subway Projects: Case Study
Authors: Seyed Habib A. Rahmati, Parsa Fallah Sheikhlari, Morteza Musakhani
Abstract:
This paper studies the structure of financial investment and efficiency on the subway would be created between Hashtgerd and Qazvin in Iran. Regarding ascending rate of transportation between Tehran and Qazvin which directly air pollution, it clearly implies to public transportation requirement between these two cities near Tehran. The railway transportation like subway can help each country to terminate traffic jam which has some advantages such as speed, security, non-pollution, low cost of public transport, etc. This type of transportation needs national infrastructures which require enormous investment. It couldn’t implement without leading and managing funds and investments properly. In order to response 'needs', clear norms or normative targets have to be agreed and obviously it is important to distinguish costs from investment requirements critically. Implementation phase affects investment requirements and financing needs. So recognizing barrier related to investment and the quality of investment (what technologies and services are invested in) is as important as the amounts of investment. Different investment methods have mentioned as follows loan, leasing, equity participation, Line of financing, finance, usance, bay back. Alternatives survey before initiation and analyzing of risk management is one of the most important parts in this project. Observation of similar project cities each country has the own specification to choose investment method.Keywords: subway project, project investment, project contract, project management
Procedia PDF Downloads 480360 Locating Speed Limit Signs for Highway Tunnel Entrance and Exit
Authors: Han Bai, Lemei Yu, Tong Zhang, Doudou Xie, Liang Zhao
Abstract:
The brightness changes at highway tunnel entrance and exit have an effect on the physical and psychological conditions of drivers. It is more conducive for examining driving safety with quantitative analysis of the physical and psychological characteristics of drivers to determine the speed limit sign locations at the tunnel entrance and exit sections. In this study, the physical and psychological effects of tunnels on traffic sign recognition of drivers are analyzed; subsequently, experiments with the assistant of Eyelink-II Type eye movement monitoring system are conducted in the typical tunnels in Ji-Qing freeway and Xi-Zha freeway, to collect the data of eye movement indexes “Fixation Duration” and “Eyeball Rotating Speed”, which typically represent drivers' mental load and visual characteristics. On this basis, the paper establishes a visual recognition model for the speed limit signs at the highway tunnel entrances and exits. In combination with related standards and regulations, it further presents the recommended values for locating speed limit signs under different tunnel conditions. A case application on Panlong tunnel in Ji-Qing freeway is given to generate the helpful improvement suggestions.Keywords: driver psychological load, eye movement index, speed limit sign location, tunnel entrance and exit
Procedia PDF Downloads 293359 Teleconnection between El Nino-Southern Oscillation and Seasonal Flow of the Surma River and Possibilities of Long Range Flood Forecasting
Authors: Monika Saha, A. T. M. Hasan Zobeyer, Nasreen Jahan
Abstract:
El Nino-Southern Oscillation (ENSO) is the interaction between atmosphere and ocean in tropical Pacific which causes inconsistent warm/cold weather in tropical central and eastern Pacific Ocean. Due to the impact of climate change, ENSO events are becoming stronger in recent times, and therefore it is very important to study the influence of ENSO in climate studies. Bangladesh, being in the low-lying deltaic floodplain, experiences the worst consequences due to flooding every year. To reduce the catastrophe of severe flooding events, non-structural measures such as flood forecasting can be helpful in taking adequate precautions and steps. Forecasting seasonal flood with a longer lead time of several months is a key component of flood damage control and water management. The objective of this research is to identify the possible strength of teleconnection between ENSO and river flow of Surma and examine the potential possibility of long lead flood forecasting in the wet season. Surma is one of the major rivers of Bangladesh and is a part of the Surma-Meghna river system. In this research, sea surface temperature (SST) has been considered as the ENSO index and the lead time is at least a few months which is greater than the basin response time. The teleconnection has been assessed by the correlation analysis between July-August-September (JAS) flow of Surma and SST of Nino 4 region of the corresponding months. Cumulative frequency distribution of standardized JAS flow of Surma has also been determined as part of assessing the possible teleconnection. Discharge data of Surma river from 1975 to 2015 is used in this analysis, and remarkable increased value of correlation coefficient between flow and ENSO has been observed from 1985. From the cumulative frequency distribution of the standardized JAS flow, it has been marked that in any year the JAS flow has approximately 50% probability of exceeding the long-term average JAS flow. During El Nino year (warm episode of ENSO) this probability of exceedance drops to 23% and while in La Nina year (cold episode of ENSO) it increases to 78%. Discriminant analysis which is known as 'Categoric Prediction' has been performed to identify the possibilities of long lead flood forecasting. It has helped to categorize the flow data (high, average and low) based on the classification of predicted SST (warm, normal and cold). From the discriminant analysis, it has been found that for Surma river, the probability of a high flood in the cold period is 75% and the probability of a low flood in the warm period is 33%. A synoptic parameter, forecasting index (FI) has also been calculated here to judge the forecast skill and to compare different forecasts. This study will help the concerned authorities and the stakeholders to take long-term water resources decisions and formulate policies on river basin management which will reduce possible damage of life, agriculture, and property.Keywords: El Nino-Southern Oscillation, sea surface temperature, surma river, teleconnection, cumulative frequency distribution, discriminant analysis, forecasting index
Procedia PDF Downloads 153358 Proposal of Commutation Protocol in Hybrid Sensors and Vehicular Networks for Intelligent Transport Systems
Authors: Taha Bensiradj, Samira Moussaoui
Abstract:
Hybrid Sensors and Vehicular Networks (HSVN), represent a hybrid network, which uses several generations of Ad-Hoc networks. It is used especially in Intelligent Transport Systems (ITS). The HSVN allows making collaboration between the Wireless Sensors Network (WSN) deployed on the border of the road and the Vehicular Network (VANET). This collaboration is defined by messages exchanged between the two networks for the purpose to inform the drivers about the state of the road, provide road safety information and more information about traffic on the road. Moreover, this collaboration created by HSVN, also allows the use of a network and the advantage of improving another network. For example, the dissemination of information between the sensors quickly decreases its energy, and therefore, we can use vehicles that do not have energy constraint to disseminate the information between sensors. On the other hand, to solve the disconnection problem in VANET, the sensors can be used as gateways that allow sending the messages received by one vehicle to another. However, because of the short communication range of the sensor and its low capacity of storage and processing of data, it is difficult to ensure the exchange of road messages between it and the vehicle, which can be moving at high speed at the time of exchange. This represents the time where the vehicle is in communication range with the sensor. This work is the proposition of a communication protocol between the sensors and the vehicle used in HSVN. The latter has as the purpose to ensure the exchange of road messages in the available time of exchange.Keywords: HSVN, ITS, VANET, WSN
Procedia PDF Downloads 361357 Multi-Level Clustering Based Congestion Control Protocol for Cyber Physical Systems
Authors: Manpreet Kaur, Amita Rani, Sanjay Kumar
Abstract:
The Internet of Things (IoT), a cyber-physical paradigm, allows a large number of devices to connect and send the sensory data in the network simultaneously. This tremendous amount of data generated leads to very high network load consequently resulting in network congestion. It further amounts to frequent loss of useful information and depletion of significant amount of nodes’ energy. Therefore, there is a need to control congestion in IoT so as to prolong network lifetime and improve the quality of service (QoS). Hence, we propose a two-level clustering based routing algorithm considering congestion score and packet priority metrics that focus on minimizing the network congestion. In the proposed Priority based Congestion Control (PBCC) protocol the sensor nodes in IoT network form clusters that reduces the amount of traffic and the nodes are prioritized to emphasize important data. Simultaneously, a congestion score determines the occurrence of congestion at a particular node. The proposed protocol outperforms the existing Packet Discard Network Clustering (PDNC) protocol in terms of buffer size, packet transmission range, network region and number of nodes, under various simulation scenarios.Keywords: internet of things, cyber-physical systems, congestion control, priority, transmission rate
Procedia PDF Downloads 308356 Transport Emission Inventories and Medical Exposure Modeling: A Missing Link for Urban Health
Authors: Frederik Schulte, Stefan Voß
Abstract:
The adverse effects of air pollution on public health are an increasingly vital problem in planning for urban regions in many parts of the world. The issue is addressed from various angles and by distinct disciplines in research. Epidemiological studies model the relative increase of numerous diseases in response to an increment of different forms of air pollution. A significant share of air pollution in urban regions is related to transport emissions that are often measured and stored in emission inventories. Though, most approaches in transport planning, engineering, and operational design of transport activities are restricted to general emission limits for specific air pollutants and do not consider more nuanced exposure models. We conduct an extensive literature review on exposure models and emission inventories used to study the health impact of transport emissions. Furthermore, we review methods applied in both domains and use emission inventory data of transportation hubs such as ports, airports, and urban traffic for an in-depth analysis of public health impacts deploying medical exposure models. The results reveal specific urban health risks related to transport emissions that may improve urban planning for environmental health by providing insights in actual health effects instead of only referring to general emission limits.Keywords: emission inventories, exposure models, transport emissions, urban health
Procedia PDF Downloads 388355 Numerical Analysis of Rainfall-Induced Roadside Slope Failures and Their Stabilizing Solution
Authors: Muhammad Suradi, Sugiarto, Abdullah Latip
Abstract:
Many roadside slope failures occur during the rainy season, particularly in the period of extreme rainfall along Connecting National Road of Salubatu-Mambi, West Sulawesi, Indonesia. These occurrences cause traffic obstacles and endanger people along and around the road. Research collaboration between P2JN (National Road Construction Board) West Sulawesi Province, who authorize to supervise the road condition, and Ujung Pandang State Polytechnic (Applied University) was established to cope with the landslide problem. This research aims to determine factors triggering roadside slope failures and their optimum stabilizing solution. To achieve this objective, site observation and soil investigation were carried out to obtain parameters for analyses of rainfall-induced slope instability and reinforcement design using the SV Flux and SV Slope software. The result of this analysis will be taken into account for the next analysis to get an optimum design of the slope reinforcement. The result indicates some factors such as steep slopes, sandy soils, and unvegetated slope surface mainly contribute to the slope failures during intense rainfall. With respect to the contributing factors as well as construction material and technology, cantilever/butressing retaining wall becomes the optimum solution for the roadside slope reinforcement.Keywords: roadside slope, failure, rainfall, slope reinforcement, optimum solution
Procedia PDF Downloads 104354 Applicability of Fuzzy Logic for Intrusion Detection in Mobile Adhoc Networks
Authors: Ruchi Makani, B. V. R. Reddy
Abstract:
Mobile Adhoc Networks (MANETs) are gaining popularity due to their potential of providing low-cost mobile connectivity solutions to real-world communication problems. Integrating Intrusion Detection Systems (IDS) in MANETs is a tedious task by reason of its distinctive features such as dynamic topology, de-centralized authority and highly controlled/limited resource environment. IDS primarily use automated soft-computing techniques to monitor the inflow/outflow of traffic packets in a given network to detect intrusion. Use of machine learning techniques in IDS enables system to make decisions on intrusion while continuous keep learning about their dynamic environment. An appropriate IDS model is essential to be selected to expedite this application challenges. Thus, this paper focused on fuzzy-logic based machine learning IDS technique for MANETs and presented their applicability for achieving effectiveness in identifying the intrusions. Further, the selection of appropriate protocol attributes and fuzzy rules generation plays significant role for accuracy of the fuzzy-logic based IDS, have been discussed. This paper also presents the critical attributes of MANET’s routing protocol and its applicability in fuzzy logic based IDS.Keywords: AODV, mobile adhoc networks, intrusion detection, anomaly detection, fuzzy logic, fuzzy membership function, fuzzy inference system
Procedia PDF Downloads 177353 Geochemical Evaluation of Weathering-Induced Release of Trace Metals from the Maastritchian Shales in Parts of Bida an Anambra Basins, Nigeria
Authors: Adetunji Olusegun Aderigibigbe
Abstract:
Shales, especially black shales, are of great geological significance, in the study of heavy/trace metal contamination. This is due to their abundance in occurrence and high concentration of heavy metals embedded which are released during their weathering. Heavy metals constitute one of the most dangerous pollution known to human because they are toxic (i.e., carcinogenic), non-biodegradable and can enter the global eco-biological circle. In the past, heavy metal contamination in aquatic environment and agricultural top soil has been attributed to industrial wastes, mining extractions and pollution from traffic vehicles; only a few studies have focused on weathering of shale as possible source of heavy metal contamination. Based on the above background, this study attempts to establish weathering of shale as possible source of trace/heavy metal contaminations. This was done by carefully selecting fresh and their corresponding weathered shale samples from selected localities in Bida and Anambra Basins. The samples were analysed in Activation Laboratories Ltd; Ontario, Canada for trace/heavy metal. It was observed that some major and trace metals were released during weathering, i.e., some were depleted and some enriched. By this contamination of water zones and agricultural top soils are not only traceable to biogenic processes but geogenic inputs (weathering of shale) as well.Keywords: contamination, fresh samples, heavy metals, pollution, shales, trace metals, weathered samples
Procedia PDF Downloads 133352 Building a Dynamic News Category Network for News Sources Recommendations
Authors: Swati Gupta, Shagun Sodhani, Dhaval Patel, Biplab Banerjee
Abstract:
It is generic that news sources publish news in different broad categories. These categories can either be generic such as Business, Sports, etc. or time-specific such as World Cup 2015 and Nepal Earthquake or both. It is up to the news agencies to build the categories. Extracting news categories automatically from numerous online news sources is expected to be helpful in many applications including news source recommendations and time specific news category extraction. To address this issue, existing systems like DMOZ directory and Yahoo directory are mostly considered though they are mostly human annotated and do not consider the time dynamism of categories of news websites. As a remedy, we propose an approach to automatically extract news category URLs from news websites in this paper. News category URL is a link which points to a category in news websites. We use the news category URL as a prior knowledge to develop a news source recommendation system which contains news sources listed in various categories in order of ranking. In addition, we also propose an approach to rank numerous news sources in different categories using various parameters like Traffic Based Website Importance, Social media Analysis and Category Wise Article Freshness. Experimental results on category URLs captured from GDELT project during April 2016 to December 2016 show the adequacy of the proposed method.Keywords: news category, category network, news sources, ranking
Procedia PDF Downloads 386351 Instrumentation of Urban Pavements Built with Construction and Demolition Waste
Authors: Sofia Figueroa, Efrain Bernal, Silvia Del Pilar Forero, Humberto Ramirez
Abstract:
This work shows a detailed review of the scope of global research on the road infrastructure using materials from Construction and Demolition Waste (C&DW), also called RCD. In the first phase of this research, a segment of road was designed using recycled materials such as Reclaimed Asphalt Pavement (RAP) on the top, the natural coarse base including 30% of RAP and recycled concrete blocks. The second part of this segment was designed using regular materials for each layer of the pavement. Both structures were built next to each other in order to analyze and measure the material properties as well as performance and environmental factors in the pavement under real traffic and weather conditions. Different monitoring devices were installed among the structure, based on the literature revision, such as soil cells, linear potentiometer, moisture sensors, and strain gauges that help us to know the C&DW as a part of the pavement structure. This research includes not only the physical characterization but also the measured parameters in a field such as an asphalt mixture (RAP) strain (ετ), vertical strain (εᵥ) and moisture control in coarse layers (%w), and the applied loads and strain in the subgrade (εᵥ). The results will show us what is happening with these materials in order to obtain not only a sustainable solution but also to know its behavior and lifecycle.Keywords: sustainable pavements, construction & demolition waste-C&DW, recycled rigid concrete, reclaimed asphalt pavement-rap
Procedia PDF Downloads 159