Search results for: robust penalized regression
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4606

Search results for: robust penalized regression

3646 Relationship and Associated Factors of Breastfeeding Self-efficacy among Postpartum Couples in Malawi: A Cross-sectional Study

Authors: Roselyn Chipojola, Shu-yu Kuo

Abstract:

Background: Breastfeeding self-efficacy in both mothers and fathers play a crucial role in improving exclusive breastfeeding rates. However, less is known on the relationship and predictors of paternal and maternal breastfeeding self-efficacy. This study aimed to examine the relationship and associated factors of breastfeeding self-efficacy (BSE) among mothers and fathers in Malawi. Methods: A cross-sectional study was conducted on 180 pairs of postpartum mothers and fathers at a tertiary maternity facility in central Malawi. BSE was measured using the Breastfeeding Self-Efficacy Scale Short-Form. Depressive symptoms were assessed by the Edinburgh Postnatal Depression Scale. A structured questionnaire was used to collect demographic and health variables. Data were analyzed using multivariable logistic regression and multinomial logistic regression. Results: A higher score of self-efficacy was found in mothers (mean=55.7, Standard Deviation (SD) =6.5) compared to fathers (mean=50.2, SD=11.9). A significant association between paternal and maternal breastfeeding self-efficacy was found (r= 0. 32). Age, employment status, mode of birth was significantly related to maternal and paternal BSE, respectively. Older age and caesarean section delivery were significant factors of combined BSE scores in couples. A higher BSE score in either the mother or her partner predicted higher exclusive breastfeeding rates. BSE scores were lower when couples’ depressive symptoms were high. Conclusion: BSE are highly correlated between Malawian mothers and fathers, with a relatively higher score in maternal BSE. Importantly, a high BSE in couples predicted higher odds of exclusive breastfeeding, which highlights the need to include both mothers and fathers in future breastfeeding promotion strategies.

Keywords: paternal, maternal, exclusive breastfeeding, breastfeeding self‑efficacy, malawi

Procedia PDF Downloads 67
3645 Simulation and Experimental Verification of Mechanical Response of Additively Manufactured Lattice Structures

Authors: P. Karlsson, M. Åsberg, R. Eriksson, P. Krakhmalev, N. Strömberg

Abstract:

Additive manufacturing of lattice structures is promising for lightweight design, but the mechanical response of the lattices structures is not fully understood. This investigation presents the results of simulation and experimental investigations of the grid and shell-based gyroid lattices. Specimens containing selected lattices were designed with an in-house software and manufactured from 316L steel with Renishaw AM400 equipment. Results of simulation and experimental investigations correlated well.

Keywords: additive manufacturing, computed tomography, material characterization, lattice structures, robust lightweight design

Procedia PDF Downloads 164
3644 Discrimination during a Resume Audit: The Impact of Job Context in Hiring

Authors: Alexandra Roy

Abstract:

Building on literature on cognitive matching and social categorization and using the correspondence testing method, we test the interaction effect of person characteristics (Gender with physical attractiveness) and job context (client contact, industry status, coworker contact). As expected, while findings show a strong impact of gender with beauty on hiring chances, job context characteristics have also a significant overall effect of this hiring outcome. Moreover, the rate of positive responses varies according some of the recruiter’s characteristics. Results are robust to various sensitivity checks. Implications of the results, limitations of the study, and directions for future research are discussed.

Keywords: correspondence testing, discrimination, hiring, physical attractiveness

Procedia PDF Downloads 208
3643 Association between Severe Acidemia before Endotracheal Intubation and the Lower First Attempt Intubation Success Rate

Authors: Keiko Naito, Y. Nakashima, S. Yamauchi, Y. Kunitani, Y. Ishigami, K. Numata, M. Mizobe, Y. Homma, J. Takahashi, T. Inoue, T. Shiga, H. Funakoshi

Abstract:

Background: A presence of severe acidemia, defined as pH < 7.2, is common during endotracheal intubation for critically ill patients in the emergency department (ED). Severe acidemia is widely recognized as a predisposing factor for intubation failure. However, it is unclear that acidemic condition itself actually makes endotracheal intubation more difficult. We aimed to evaluate if a presence of severe acidemia before intubation is associated with the lower first attempt intubation success rate in the ED. Methods: This is a retrospective observational cohort study in the ED of an urban hospital in Japan. The collected data included patient demographics, such as age, sex, and body mass index, presence of one or more factors of modified LEMON criteria for predicting difficult intubation, reasons for intubation, blood gas levels, airway equipment, intubation by emergency physician or not, and the use of the rapid sequence intubation technique. Those with any of the following were excluded from the analysis: (1) no blood gas drawn before intubation, (2) cardiopulmonary arrest, and (3) under 18 years of age. The primary outcome was the first attempt intubation success rates between a severe acidemic patients (SA) group and a non-severe acidemic patients (NA) group. Logistic regression analysis was used to test the first attempt success rates for intubations between those two groups. Results: Over 5 years, a total of 486 intubations were performed; 105 in the SA group and 381 in the NA group. The univariate analysis showed that the first attempt intubation success rate was lower in the SA group than in the NA group (71.4% vs 83.5%, p < 0.01). The multivariate logistic regression analysis identified that severe acidemia was significantly associated with the first attempt intubation failure (OR 1.9, 95% CI 1.03-3.68, p = 0.04). Conclusions: A presence of severe acidemia before endotracheal intubation lowers the first attempt intubation success rate in the ED.

Keywords: acidemia, airway management, endotracheal intubation, first-attempt intubation success rate

Procedia PDF Downloads 247
3642 Factors Affecting the Adoption of Cloud Business Intelligence among Healthcare Sector: A Case Study of Saudi Arabia

Authors: Raed Alsufyani, Hissam Tawfik, Victor Chang, Muthu Ramachandran

Abstract:

This study investigates the factors that influence the decision by players in the healthcare sector to embrace Cloud Business Intelligence Technology with a focus on healthcare organizations in Saudi Arabia. To bring this matter into perspective, this study primarily considers the Technology-Organization-Environment (TOE) framework and the Human Organization-Technology (HOT) fit model. A survey was hypothetically designed based on literature review and was carried out online. Quantitative data obtained was processed from descriptive and one-way frequency statistics to inferential and regression analysis. Data were analysed to establish factors that influence the decision to adopt Cloud Business intelligence technology in the healthcare sector. The implication of the identified factors was measured, and all assumptions were tested. 66.70% of participants in healthcare organization backed the intention to adopt cloud business intelligence system. 99.4% of these participants considered security concerns and privacy risk have been the most significant factors in the adoption of cloud Business Intelligence (CBI) system. Through regression analysis hypothesis testing point that usefulness, service quality, relative advantage, IT infrastructure preparedness, organization structure; vendor support, perceived technical competence, government support, and top management support positively and significantly influence the adoption of (CBI) system. The paper presents quantitative phase that is a part of an on-going project. The project will be based on the consequences learned from this study.

Keywords: cloud computing, business intelligence, HOT-fit model, TOE, healthcare and innovation adoption

Procedia PDF Downloads 169
3641 Customer Churn Prediction by Using Four Machine Learning Algorithms Integrating Features Selection and Normalization in the Telecom Sector

Authors: Alanoud Moraya Aldalan, Abdulaziz Almaleh

Abstract:

A crucial component of maintaining a customer-oriented business as in the telecom industry is understanding the reasons and factors that lead to customer churn. Competition between telecom companies has greatly increased in recent years. It has become more important to understand customers’ needs in this strong market of telecom industries, especially for those who are looking to turn over their service providers. So, predictive churn is now a mandatory requirement for retaining those customers. Machine learning can be utilized to accomplish this. Churn Prediction has become a very important topic in terms of machine learning classification in the telecommunications industry. Understanding the factors of customer churn and how they behave is very important to building an effective churn prediction model. This paper aims to predict churn and identify factors of customers’ churn based on their past service usage history. Aiming at this objective, the study makes use of feature selection, normalization, and feature engineering. Then, this study compared the performance of four different machine learning algorithms on the Orange dataset: Logistic Regression, Random Forest, Decision Tree, and Gradient Boosting. Evaluation of the performance was conducted by using the F1 score and ROC-AUC. Comparing the results of this study with existing models has proven to produce better results. The results showed the Gradients Boosting with feature selection technique outperformed in this study by achieving a 99% F1-score and 99% AUC, and all other experiments achieved good results as well.

Keywords: machine learning, gradient boosting, logistic regression, churn, random forest, decision tree, ROC, AUC, F1-score

Procedia PDF Downloads 134
3640 An Efficient Machine Learning Model to Detect Metastatic Cancer in Pathology Scans Using Principal Component Analysis Algorithm, Genetic Algorithm, and Classification Algorithms

Authors: Bliss Singhal

Abstract:

Machine learning (ML) is a branch of Artificial Intelligence (AI) where computers analyze data and find patterns in the data. The study focuses on the detection of metastatic cancer using ML. Metastatic cancer is the stage where cancer has spread to other parts of the body and is the cause of approximately 90% of cancer-related deaths. Normally, pathologists spend hours each day to manually classifying whether tumors are benign or malignant. This tedious task contributes to mislabeling metastasis being over 60% of the time and emphasizes the importance of being aware of human error and other inefficiencies. ML is a good candidate to improve the correct identification of metastatic cancer, saving thousands of lives and can also improve the speed and efficiency of the process, thereby taking fewer resources and time. So far, the deep learning methodology of AI has been used in research to detect cancer. This study is a novel approach to determining the potential of using preprocessing algorithms combined with classification algorithms in detecting metastatic cancer. The study used two preprocessing algorithms: principal component analysis (PCA) and the genetic algorithm, to reduce the dimensionality of the dataset and then used three classification algorithms: logistic regression, decision tree classifier, and k-nearest neighbors to detect metastatic cancer in the pathology scans. The highest accuracy of 71.14% was produced by the ML pipeline comprising of PCA, the genetic algorithm, and the k-nearest neighbor algorithm, suggesting that preprocessing and classification algorithms have great potential for detecting metastatic cancer.

Keywords: breast cancer, principal component analysis, genetic algorithm, k-nearest neighbors, decision tree classifier, logistic regression

Procedia PDF Downloads 81
3639 Design and Test a Robust Bearing-Only Target Motion Analysis Algorithm Based on Modified Gain Extended Kalman Filter

Authors: Mohammad Tarek Al Muallim, Ozhan Duzenli, Ceyhun Ilguy

Abstract:

Passive sonar is a method for detecting acoustic signals in the ocean. It detects the acoustic signals emanating from external sources. With passive sonar, we can determine the bearing of the target only, no information about the range of the target. Target Motion Analysis (TMA) is a process to estimate the position and speed of a target using passive sonar information. Since bearing is the only available information, the TMA technique called Bearing-only TMA. Many TMA techniques have been developed. However, until now, there is not a very effective method that could be used to always track an unknown target and extract its moving trace. In this work, a design of effective Bearing-only TMA Algorithm is done. The measured bearing angles are very noisy. Moreover, for multi-beam sonar, the measurements is quantized due to the sonar beam width. To deal with this, modified gain extended Kalman filter algorithm is used. The algorithm is fine-tuned, and many modules are added to improve the performance. A special validation gate module is used to insure stability of the algorithm. Many indicators of the performance and confidence level measurement are designed and tested. A new method to detect if the target is maneuvering is proposed. Moreover, a reactive optimal observer maneuver based on bearing measurements is proposed, which insure converging to the right solution all of the times. To test the performance of the proposed TMA algorithm a simulation is done with a MATLAB program. The simulator program tries to model a discrete scenario for an observer and a target. The simulator takes into consideration all the practical aspects of the problem such as a smooth transition in the speed, a circular turn of the ship, noisy measurements, and a quantized bearing measurement come for multi-beam sonar. The tests are done for a lot of given test scenarios. For all the tests, full tracking is achieved within 10 minutes with very little error. The range estimation error was less than 5%, speed error less than 5% and heading error less than 2 degree. For the online performance estimator, it is mostly aligned with the real performance. The range estimation confidence level gives a value equal to 90% when the range error less than 10%. The experiments show that the proposed TMA algorithm is very robust and has low estimation error. However, the converging time of the algorithm is needed to be improved.

Keywords: target motion analysis, Kalman filter, passive sonar, bearing-only tracking

Procedia PDF Downloads 402
3638 Analysis of Effect of Microfinance on the Profit Level of Small and Medium Scale Enterprises in Lagos State, Nigeria

Authors: Saheed Olakunle Sanusi, Israel Ajibade Adedeji

Abstract:

The study analysed the effect of microfinance on the profit level of small and medium scale enterprises in Lagos. The data for the study were obtained by simple random sampling, and total of one hundred and fifty (150) small and medium scale enterprises (SMEs) were sampled for the study. Seventy-five (75) each are microfinance users and non-users. Data were analysed using descriptive statistics, logit model, t-test and ordinary least square (OLS) regression. The mean profit of the enterprises using microfinance is ₦16.8m, while for the non-users of microfinance is ₦5.9m. The mean profit of microfinance users is statistically different from the non-users. The result of the logit model specified for the determinant of access to microfinance showed that three of specified variables- educational status of the enterprise head, credit utilisation and volume of business investment are significant at P < 0.01. Enterprises with many years of experience, highly educated enterprise heads and high volume of business investment have more potential access to microfinance. The OLS regression model indicated that three parameters namely number of school years, the volume of business investment and (dummy) participation in microfinance were found to be significant at P < 0.05. These variables are therefore significant determinants of impacts of microfinance on profit level in the study area. The study, therefore, concludes and recommends that to improve the status of small and medium scale enterprises for an increase in profit, the full benefit of access to microfinance can be enhanced through investment in social infrastructure and human capital development. Also, concerted efforts should be made to encouraged non-users of microfinance among SMEs to use it in order to boost their profit.

Keywords: credit utilisation, logit model, microfinance, small and medium enterprises

Procedia PDF Downloads 205
3637 A Case Study on the Drivers of Household Water Consumption for Different Socio-Economic Classes in Selected Communities of Metro Manila, Philippines

Authors: Maria Anjelica P. Ancheta, Roberto S. Soriano, Erickson L. Llaguno

Abstract:

The main purpose of this study is to examine whether there is a significant relationship between socio-economic class and household water supply demand, through determining or verifying the factors governing water use consumption patterns of households from a sampling from different socio-economic classes in Metro Manila, the national capital region of the Philippines. This study is also an opportunity to augment the lack of local academic literature due to the very few publications on urban household water demand after 1999. In over 600 Metro Manila households, a rapid survey was conducted on their average monthly water consumption and habits on household water usage. The questions in the rapid survey were based on an extensive review of literature on urban household water demand. Sample households were divided into socio-economic classes A-B and C-D. Cluster analysis, dummy coding and outlier tests were done to prepare the data for regression analysis. Subsequently, backward stepwise regression analysis was used in order to determine different statistical models to describe the determinants of water consumption. The key finding of this study is that the socio-economic class of a household in Metro Manila is a significant factor in water consumption. A-B households consume more water in contrast to C-D families based on the mean average water consumption for A-B and C-D households are 36.75 m3 and 18.92 m3, respectively. The most significant proxy factors of socio-economic class that were related to household water consumption were examined in order to suggest improvements in policy formulation and household water demand management.

Keywords: household water uses, socio-economic classes, urban planning, urban water demand management

Procedia PDF Downloads 302
3636 Impact of Water, Sanitation and Hygiene Interventions on Water Quality in Primary Schools of Pakistan

Authors: Jamil Ahmed, Li P. Wong, Yan P. Chua

Abstract:

The United Nation's sustainable development goals include the target to ensure access to water and sanitation for all; however, very few studies have assessed school-based drinking water in Pakistan. The purpose of this study was to characterize water quality in primary schools of Pakistan and to characterize how recent WASH interventions were associated with school water quality. We conducted a representative cross-sectional study of primary schools in the Sindh province of Pakistan. We used structured observations and structured interviews to ascertain the school’s WASH conditions. Our primary exposures of interest were the implementation of previous WASH interventions in the school and the water source type. Outcomes of interest included water quality (measured by various chemical and microbiological indicators) and water availability at the school’s primary drinking water source. We used log-binomial regression to characterize how WASH exposures were associated with water quality outcomes. We collected data from 256 schools. Groundwater was the primary drinking water source at most schools (87%). Water testing showed that 14% of the school’s water had arsenic above the WHO recommendations, and over 50% of the water samples exceeded recommendations for both lead and cadmium. A majority of the water sources (52%) had fecal coliform contamination. None of the schools had nitrate contamination (0%), and few had fluoride contamination (5%). Regression results indicated that having a recent WASH intervention at the school was not associated with either arsenic contamination (prevalence ratio=0.97; 95% CI: 0.46-2.1) or with fecal coliform contamination (PR=0.88; 95% CI: 0.67-1.17). Our assessment unveiled several water quality gaps that exist, including high heavy metal and fecal contamination. Our findings will help various stakeholders to take suitable action to improve water quality in Pakistani schools.

Keywords: WASH interventions, water quality, primary school children, heavy metals

Procedia PDF Downloads 141
3635 Unraveling Language Contact through Syntactic Dynamics of ‘Also’ in Hong Kong and Britain English

Authors: Xu Zhang

Abstract:

This article unveils an indicator of language contact between English and Cantonese in one of the Outer Circle Englishes, Hong Kong (HK) English, through an empirical investigation into 1000 tokens from the Global Web-based English (GloWbE) corpus, employing frequency analysis and logistic regression analysis. It is perceived that Cantonese and general Chinese are contextually marked by an integral underlying thinking pattern. Chinese speakers exhibit a reliance on semantic context over syntactic rules and lexical forms. This linguistic trait carries over to their use of English, affording greater flexibility to formal elements in constructing English sentences. The study focuses on the syntactic positioning of the focusing subjunct ‘also’, a linguistic element used to add new or contrasting prominence to specific sentence constituents. The English language generally allows flexibility in the relative position of 'also’, while there is a preference for close marking relationships. This article shifts attention to Hong Kong, where Cantonese and English converge, and 'also' finds counterparts in Cantonese ‘jaa’ and Mandarin ‘ye’. Employing a corpus-based data-driven method, we investigate the syntactic position of 'also' in both HK and GB English. The study aims to ascertain whether HK English exhibits a greater 'syntactic freedom,' allowing for a more distant marking relationship with 'also' compared to GB English. The analysis involves a random extraction of 500 samples from both HK and GB English from the GloWbE corpus, forming a dataset (N=1000). Exclusions are made for cases where 'also' functions as an additive conjunct or serves as a copulative adverb, as well as sentences lacking sufficient indication that 'also' functions as a focusing particle. The final dataset comprises 820 tokens, with 416 for GB and 404 for HK, annotated according to the focused constituent and the relative position of ‘also’. Frequency analysis reveals significant differences in the relative position of 'also' and marking relationships between HK and GB English. Regression analysis indicates a preference in HK English for a distant marking relationship between 'also' and its focused constituent. Notably, the subject and other constituents emerge as significant predictors of a distant position for 'also.' Together, these findings underscore the nuanced linguistic dynamics in HK English and contribute to our understanding of language contact. It suggests that future pedagogical practice should consider incorporating the syntactic variation within English varieties, facilitating leaners’ effective communication in diverse English-speaking environments and enhancing their intercultural communication competence.

Keywords: also, Cantonese, English, focus marker, frequency analysis, language contact, logistic regression analysis

Procedia PDF Downloads 55
3634 Foreign Direct Investment on Economic Growth by Industries in Central and Eastern European Countries

Authors: Shorena Pharjiani

Abstract:

The Present empirical paper investigates the relationship between FDI and economic growth by 10 selected industries in 10 Central and Eastern European countries from the period 1995 to 2012. Different estimation approaches were used to explore the connection between FDI and economic growth, for example OLS, RE, FE with and without time dummies. Obtained empirical results leads to some main consequences: First, the Central and East European countries (CEEC) attracted foreign direct investment, which raised the productivity of industries they entered in. It should be concluded that the linkage between FDI and output growth by industries is positive and significant enough to suggest that foreign firm’s participation enhanced the productivity of the industries they occupied. There had been an endogeneity problem in the regression and fixed effects estimation approach was used which partially corrected the regression analysis in order to make the results less biased. Second, it should be stressed that the results show that time has an important role in making FDI operational for enhancing output growth by industries via total factor productivity. Third, R&D positively affected economic growth and at the same time, it should take some time for research and development to influence economic growth. Fourth, the general trends masked crucial differences at the country level: over the last 20 years, the analysis of the tables and figures at the country level show that the main recipients of FDI of the 11 Central and Eastern European countries were Hungary, Poland and the Czech Republic. The main reason was that these countries had more open door policies for attracting the FDI. Fifth, according to the graphical analysis, while Hungary had the highest FDI inflow in this region, it was not reflected in the GDP growth as much as in other Central and Eastern European countries.

Keywords: central and East European countries (CEEC), economic growth, FDI, panel data

Procedia PDF Downloads 237
3633 Resistance of African States Against the African Court on Human and People Rights (ACPHR)

Authors: Ayyoub Jamali

Abstract:

At the first glance, it seems that the African Court on Human and People’s Rights has achieved a tremendous development in the protection of human rights in Africa. Since its first judgement in 2009, the court has taken a robust approach/ assertive stance, showing its strength by finding states to be in violation of the Africana Charter and other human rights treaties. This paper seeks to discuss various challenges and resistance that the Court has faced since the adoption of the Founding Protocol to the Establishment of the African Court on Human and People’s Rights. The outcome of the paper casts shadow on the legitimacy and effectiveness of the African Court as the guarantor of human rights within the African continent.

Keywords: African Court on Human and People’s Rights, African Union, African regional human rights system, compliance

Procedia PDF Downloads 153
3632 Income Inequality among Selected Entrepreneurs in Ondo State, Nigeria

Authors: O.O. Ehinmowo, A.I. Fatuase, D.F. Oke

Abstract:

Nigeria is endowed with resources that could boost the economy as well as generate income and provide jobs to the teaming populace. One of the keys of attaining this is by making the environment conducive for the entrepreneurs to excel in their respective enterprises so that more income could be accrued to the entrepreneurs. This study therefore examines income inequality among selected entrepreneurs in Ondo State, Nigeria using primary data. A multistage sampling technique was used to select 200 respondents for the study with the aid of structured questionnaire and personal interview. The data collected were subjected to descriptive statistics, Lorenz curve, Gini coefficient and Double - Log regression model. Results revealed that majority of the entrepreneurs (63%) were males and 90% were married with an average age of 44 years. About 40% of the respondents spent at most 12 years in school with 81% of the respondents had 4-6 members per household, while hair dressing (43.5%) and fashion designing (31.5%) were the most common enterprises among the sampled respondents. The findings also showed that majority of the entrepreneurs in hairdressing, fashion designing and laundry service earned below N200,000 per annum while the majority of those in restaurant and food vending earned between N400,000 – N600,000 followed by the entrepreneurs in pure water enterprise where majority earned N800,000 and above per annum. The result of the Gini coefficient (0.58) indicated that there was presence of inequality among the entrepreneurs which was also affirmed by the Lorenz curve. The Regression results showed that gender, household size and number of employees significantly affected the income of the entrepreneurs in the study area. Therefore, more female households should be encouraged into entrepreneurial businesses and government should give incentive cum conductive environment that could bridge the disparity in the income of the entrepreneurs in their various enterprises.

Keywords: entrepreneurs, Gini coefficient, income inequality, Lorenz curve

Procedia PDF Downloads 350
3631 Comparison of Different Machine Learning Algorithms for Solubility Prediction

Authors: Muhammet Baldan, Emel Timuçin

Abstract:

Molecular solubility prediction plays a crucial role in various fields, such as drug discovery, environmental science, and material science. In this study, we compare the performance of five machine learning algorithms—linear regression, support vector machines (SVM), random forests, gradient boosting machines (GBM), and neural networks—for predicting molecular solubility using the AqSolDB dataset. The dataset consists of 9981 data points with their corresponding solubility values. MACCS keys (166 bits), RDKit properties (20 properties), and structural properties(3) features are extracted for every smile representation in the dataset. A total of 189 features were used for training and testing for every molecule. Each algorithm is trained on a subset of the dataset and evaluated using metrics accuracy scores. Additionally, computational time for training and testing is recorded to assess the efficiency of each algorithm. Our results demonstrate that random forest model outperformed other algorithms in terms of predictive accuracy, achieving an 0.93 accuracy score. Gradient boosting machines and neural networks also exhibit strong performance, closely followed by support vector machines. Linear regression, while simpler in nature, demonstrates competitive performance but with slightly higher errors compared to ensemble methods. Overall, this study provides valuable insights into the performance of machine learning algorithms for molecular solubility prediction, highlighting the importance of algorithm selection in achieving accurate and efficient predictions in practical applications.

Keywords: random forest, machine learning, comparison, feature extraction

Procedia PDF Downloads 40
3630 Nutritional Status of Children in a Rural Food Environment, Haryana: A Paradox for the Policy Action

Authors: Neha Gupta, Sonika Verma, Seema Puri, Nikhil Tandon, Narendra K. Arora

Abstract:

The concurrent increasing prevalence of underweight and overweight/obesity among children with changing lifestyle and the rapid transitioning society has necessitated the need for a unifying/multi-level approach to understand the determinants of the problem. The present community-based cross-sectional research study was conducted to assess the associations between lifestyle behavior and food environment of the child at household, neighborhood, and school with the BMI of children (6-12 year old) (n=612) residing in three rural clusters of Palwal district, Haryana. The study used innovative and robust methods for assessing the lifestyle and various components of food environment in the study. The three rural clusters selected for the study were located at three different locations according to their access to highways in the SOMAARTH surveillance site. These clusters were significantly different from each other in terms of their socio-demographic and socio-economic profile, living conditions, environmental hygiene, health seeking behavior and retail density. Despite of being different, the quality of living conditions and environmental hygiene was poor across three clusters. The children had higher intakes of dietary energy and sugars; one-fifth share of the energy being derived from unhealthy foods, engagement in high levels of physical activity and significantly different food environment at home, neighborhood and school level. However, despite having a high energy intake, 22.5% of the recruited children were thin/severe thin, and 3% were overweight/obese as per their BMI-for-age categories. The analysis was done using multi-variate logistic regression at three-tier hierarchy including individual, household and community level. The factors significantly explained the variability in governing the risk of getting thin/severe thin among children in rural area (p-value: 0.0001; Adjusted R2: 0.156) included age (>10years) (OR: 2.1; 95% CI: 1.0-4.4), the interaction between minority category and poor SES of the household (OR: 4.4; 95% CI: 1.6-12.1), availability of sweets (OR: 0.9; 95% CI: 0.8-0.99) and cereals (OR: 0.9; 95% CI: 0.8-1.0) in the household and poor street condition (proxy indicator of the hygiene and cleanliness in the neighborhood) (OR: 0.3; 95% CI: 0.1-1.1). The homogeneity of other factors at neighborhood and school level food environment diluted the heterogeneity in the lifestyles and home environment of the recruited children and their households. However, it is evident that when various individual factors interplay at multiple levels amplifies the risk of undernutrition in a rural community. Conclusion: These rural areas in Haryana are undergoing developmental, economic and societal transition. In correspondence, no improvements in the nutritional status of children have happened. Easy access to the unhealthy foods has become a paradox.

Keywords: transition, food environment, lifestyle, undernutrition, overnutrition

Procedia PDF Downloads 180
3629 A Nonlinear Parabolic Partial Differential Equation Model for Image Enhancement

Authors: Tudor Barbu

Abstract:

We present a robust nonlinear parabolic partial differential equation (PDE)-based denoising scheme in this article. Our approach is based on a second-order anisotropic diffusion model that is described first. Then, a consistent and explicit numerical approximation algorithm is constructed for this continuous model by using the finite-difference method. Finally, our restoration experiments and method comparison, which prove the effectiveness of this proposed technique, are discussed in this paper.

Keywords: anisotropic diffusion, finite differences, image denoising and restoration, nonlinear PDE model, anisotropic diffusion, numerical approximation schemes

Procedia PDF Downloads 312
3628 Interactions between Residential Mobility, Car Ownership and Commute Mode: The Case for Melbourne

Authors: Solmaz Jahed Shiran, John Hearne, Tayebeh Saghapour

Abstract:

Daily travel behavior is strongly influenced by the location of the places of residence, education, and employment. Hence a change in those locations due to a move or changes in an occupation leads to a change in travel behavior. Given the interventions of housing mobility and travel behaviors, the hypothesis is that a mobile housing market allows households to move as a result of any change in their life course, allowing them to be closer to central services, public transport facilities and workplace and hence reducing the time spent by individuals on daily travel. Conversely, household’s immobility may lead to longer commutes of residents, for example, after a change of a job or a need for new services such as schools for children who have reached their school age. This paper aims to investigate the association between residential mobility and travel behavior. The Victorian Integrated Survey of Travel and Activity (VISTA) data is used for the empirical analysis. Car ownership and journey to work time and distance of employed people are used as indicators of travel behavior. Change of usual residence within the last five years used to identify movers and non-movers. Statistical analysis, including regression models, is used to compare the travel behavior of movers and non-movers. The results show travel time, and the distance does not differ for movers and non-movers. However, this is not the case when taking into account the residence tenure-type. In addition, car ownership rate and number found to be significantly higher for non-movers. It is hoped that the results from this study will contribute to a better understanding of factors other than common socioeconomic and built environment features influencing travel behavior.

Keywords: journey to work, regression models, residential mobility, commute mode, car ownership

Procedia PDF Downloads 133
3627 Optimization of Machining Parameters by Using Cryogenic Media

Authors: Shafqat Wahab, Waseem Tahir, Manzoor Ahmad, Sarfraz Khan, M. Azam

Abstract:

Optimization and analysis of tool flank wear width and surface finish of alloy steel rods are studied in the presence of cryogenic media (LN2) by using Tungsten Carbide Insert (CNMG 120404- WF 4215). Robust design concept of Taguchi L9(34) method and ANOVA is applied to determine the contribution of key cutting parameters and their optimum conditions. Through analysis, it revealed that cryogenic impact is more significant in reduction of the tool flank wear width while surface finish is mostly dependent on feed rate.

Keywords: turning, cryogenic fluid, liquid nitrogen, flank wear, surface roughness, taguchi

Procedia PDF Downloads 666
3626 Regional Pole Placement by Saturated Power System Stabilizers

Authors: Hisham M. Soliman, Hassan Yousef

Abstract:

This manuscript presents new results on design saturated power system stabilizers (PSS) to assign system poles within a desired region for achieving good dynamic performance. The regional pole placement is accomplished against model uncertainties caused by different load conditions. The design is based on a sufficient condition in the form of linear matrix inequalities (LMI) which forces the saturated nonlinear controller to lie within the linear zone. The controller effectiveness is demonstrated on a single machine infinite bus system.

Keywords: power system stabilizer, saturated control, robust control, regional pole placement, linear matrix inequality (LMI)

Procedia PDF Downloads 564
3625 Factors Affecting Profitability of Pharmaceutical Company During the COVID-19 Pandemic: An Indonesian Evidence

Authors: Septiany Trisnaningtyas

Abstract:

Purpose: This research aims to examine the factors affecting the profitability of pharmaceutical company during the Covid-19 Pandemic in Indonesia. A sharp decline in the number of patients coming to the hospital for treatment during the pandemic has an impact on the growth of the pharmaceutical sector and brought major changes in financial position and business performance. Pharmaceutical companies that provide products related to the Covid-19 pandemic can survive and continue to grow. This study investigates the factors affecting the profitability of pharmaceutical company during the Covid-19 Pandemic in Indonesia associated with the number of Covid-19 cases. Design/methodology/approach: This study uses panel-data regression models to evaluate the influence of the number of Covid-19 confirmed cases on profitability of ninelisted pharmaceuticalcompanies in Indonesia. This research is based on four independent variables that were empirically examined for their relationship with profitability. These variables are liquidity (current ratio), growth rate (sales growth), firm size (total sales), and market power (the Lerner index). Covid-19 case is used as moderating variable. Data of nine pharmaceutical companies listed on the Indonesia Stock Exchange covering the period of 2018–2021 were extracted from companies’ quarterly annual reports. Findings: In the period during Covid-19, company growth (sales growth) and market power (lerner index) have a positive and significant relationship to ROA and ROE. Total of confirmed Covid-19 cases has a positive and significant relationship to ROA and is proven to have a moderating effect between company’s growth (sales growth) to ROA and ROE and market power (Lerner index) to ROA. Research limitations/implications: Due to data availability, this study only includes data from nine listed pharmaceutical companies in Indonesian Stock exchange and quarterly annual reportscovering the period of 2018-2021. Originality/value: This study focuses onpharmaceutical companies in Indonesia during Covid-19 pandemic. Previous study analyzes the data from pharmaceutical companies’ annual reports since 2014 and focus on universal health coverage (national health insurance) implementation from the Indonesian government. This study analyzes the data using fixed effect panel-data regression models to evaluate the influence of Covid-19 confirmed cases on profitability. Pooled ordinary least squares regression and fixed effects were used to analyze the data in previous study. This study also investigate the moderating effect of Covid-19 confirmed cases to profitability in relevant with the pandemic situation.

Keywords: profitability, indonesia, pharmaceutical, Covid-19

Procedia PDF Downloads 123
3624 Admission C-Reactive Protein Serum Levels and In-Hospital Mortality in the Elderly Admitted to the Acute Geriatrics Department

Authors: Anjelika Kremer, Irina Nachimov, Dan Justo

Abstract:

Background: C-reactive protein (CRP) serum levels are commonly measured in hospitalized patients. Elevated admission CRP serum levels and in-hospital mortality has been seldom studied in the general population of elderly patients admitted to the acute Geriatrics department. Methods: A retrospective cross-sectional study was conducted at a tertiary medical center. Included were all elderly patients (age 65 years or more) admitted to a single acute Geriatrics department from the emergency room between April 2014 and January 2015. CRP serum levels were measured routinely in all patients upon the first 24 hours of admission. A logistic regression analysis was used to study if admission CRP serum levels were associated with in-hospital mortality independent of age, gender, functional status, and co-morbidities. Results: Overall, 498 elderly patients were included in the analysis: 306 (61.4%) female patients and 192 (38.6%) male patients. The mean age was 84.8±7.0 years (median: 85 years; IQR: 80-90 years). The mean admission CRP serum levels was 43.2±67.1 mg/l (median: 13.1 mg/l; IQR: 2.8-51.7 mg/l). Overall, 33 (6.6%) elderly patients died during the hospitalization. A logistic regression analysis showed that in-hospital mortality was independently associated with history of stroke (p < 0.0001), heart failure (p < 0.0001), and admission CRP serum levels (p < 0.0001) – and to a lesser extent with age (p = 0.042), collagen vascular disease (p=0.011), and recent venous thromboembolism (p=0.037). Receiver operating characteristic (ROC) curve showed that admission CRP serum levels predict in-hospital mortality fairly with an area under the curve (AUC) of 0.694 (p < 0.0001). Cut-off value with maximal sensitivity and specificity was 19.7 mg/L. Conclusions: Admission CRP serum levels may be used to predict in-hospital mortality in the general population of elderly patients admitted to the acute Geriatrics department.

Keywords: c-reactive protein, elderly, mortality, prediction

Procedia PDF Downloads 238
3623 Digitalization and High Audit Fees: An Empirical Study Applied to US Firms

Authors: Arpine Maghakyan

Abstract:

The purpose of this paper is to study the relationship between the level of industry digitalization and audit fees, especially, the relationship between Big 4 auditor fees and industry digitalization level. On the one hand, automation of business processes decreases internal control weakness and manual mistakes; increases work effectiveness and integrations. On the other hand, it may cause serious misstatements, high business risks or even bankruptcy, typically in early stages of automation. Incomplete automation can bring high audit risk especially if the auditor does not fully understand client’s business automation model. Higher audit risk consequently will cause higher audit fees. Higher audit fees for clients with high automation level are more highlighted in Big 4 auditor’s behavior. Using data of US firms from 2005-2015, we found that industry level digitalization is an interaction for the auditor quality on audit fees. Moreover, the choice of Big4 or non-Big4 is correlated with client’s industry digitalization level. Big4 client, which has higher digitalization level, pays more than one with low digitalization level. In addition, a high-digitalized firm that has Big 4 auditor pays higher audit fee than non-Big 4 client. We use audit fees and firm-specific variables from Audit Analytics and Compustat databases. We analyze collected data by using fixed effects regression methods and Wald tests for sensitivity check. We use fixed effects regression models for firms for determination of the connections between technology use in business and audit fees. We control for firm size, complexity, inherent risk, profitability and auditor quality. We chose fixed effects model as it makes possible to control for variables that have not or cannot be measured.

Keywords: audit fees, auditor quality, digitalization, Big4

Procedia PDF Downloads 302
3622 Structured Cross System Planning and Control in Modular Production Systems by Using Agent-Based Control Loops

Authors: Simon Komesker, Achim Wagner, Martin Ruskowski

Abstract:

In times of volatile markets with fluctuating demand and the uncertainty of global supply chains, flexible production systems are the key to an efficient implementation of a desired production program. In this publication, the authors present a holistic information concept taking into account various influencing factors for operating towards the global optimum. Therefore, a strategy for the implementation of multi-level planning for a flexible, reconfigurable production system with an alternative production concept in the automotive industry is developed. The main contribution of this work is a system structure mixing central and decentral planning and control evaluated in a simulation framework. The information system structure in current production systems in the automotive industry is rigidly hierarchically organized in monolithic systems. The production program is created rule-based with the premise of achieving uniform cycle time. This program then provides the information basis for execution in subsystems at the station and process execution level. In today's era of mixed-(car-)model factories, complex conditions and conflicts arise in achieving logistics, quality, and production goals. There is no provision for feedback loops of results from the process execution level (resources) and process supporting (quality and logistics) systems and reconsideration in the planning systems. To enable a robust production flow, the complexity of production system control is artificially reduced by the line structure and results, for example in material-intensive processes (buffers and safety stocks - two container principle also for different variants). The limited degrees of freedom of line production have produced the principle of progress figure control, which results in one-time sequencing, sequential order release, and relatively inflexible capacity control. As a result, modularly structured production systems such as modular production according to known approaches with more degrees of freedom are currently difficult to represent in terms of information technology. The remedy is an information concept that supports cross-system and cross-level information processing for centralized and decentralized decision-making. Through an architecture of hierarchically organized but decoupled subsystems, the paradigm of hybrid control is used, and a holonic manufacturing system is offered, which enables flexible information provisioning and processing support. In this way, the influences from quality, logistics, and production processes can be linked holistically with the advantages of mixed centralized and decentralized planning and control. Modular production systems also require modularly networked information systems with semi-autonomous optimization for a robust production flow. Dynamic prioritization of different key figures between subsystems should lead the production system to an overall optimum. The tasks and goals of quality, logistics, process, resource, and product areas in a cyber-physical production system are designed as an interconnected multi-agent-system. The result is an alternative system structure that executes centralized process planning and decentralized processing. An agent-based manufacturing control is used to enable different flexibility and reconfigurability states and manufacturing strategies in order to find optimal partial solutions of subsystems, that lead to a near global optimum for hybrid planning. This allows a robust near to plan execution with integrated quality control and intralogistics.

Keywords: holonic manufacturing system, modular production system, planning, and control, system structure

Procedia PDF Downloads 169
3621 Layouting Phase II of New Priok Using Adaptive Port Planning Frameworks

Authors: Mustarakh Gelfi, Tiedo Vellinga, Poonam Taneja, Delon Hamonangan

Abstract:

The development of New Priok/Kalibaru as an expansion terminal of the old port has been being done by IPC (Indonesia Port Cooperation) together with the subsidiary company, Port Developer (PT Pengembangan Pelabuhan Indonesia). As stated in the master plan, from 2 phases that had been proposed, phase I has shown its form and even Container Terminal I has been operated in 2016. It was planned principally, the development will be divided into Phase I (2013-2018) consist of 3 container terminals and 2 product terminals and Phase II (2018-2023) consist of 4 container terminals. In fact, the master plan has to be changed due to some major uncertainties which were escaped in prediction. This study is focused on the design scenario of phase II (2035- onwards) to deal with future uncertainty. The outcome is the robust design of phase II of the Kalibaru Terminal taking into account the future changes. Flexibility has to be a major goal in such a large infrastructure project like New Priok in order to deal and manage future uncertainty. The phasing of project needs to be adapted and re-look frequently before being irrelevant to future challenges. One of the frameworks that have been developed by an expert in port planning is Adaptive Port Planning (APP) with scenario-based planning. The idea behind APP framework is the adaptation that might be needed at any moment as an answer to a challenge. It is a continuous procedure that basically aims to increase the lifespan of waterborne transport infrastructure by increasing flexibility in the planning, contracting and design phases. Other methods used in this study are brainstorming with the port authority, desk study, interview and site visit to the real project. The result of the study is expected to be the insight for the port authority of Tanjung Priok over the future look and how it will impact the design of the port. There will be guidelines to do the design in an uncertain environment as well. Solutions of flexibility can be divided into: 1 - Physical solutions, all the items related hard infrastructure in the projects. The common things in this type of solution are using modularity, standardization, multi-functional, shorter and longer design lifetime, reusability, etc. 2 - Non-physical solutions, usually related to the planning processes, decision making and management of the projects. To conclude, APP framework seems quite robust to deal with the problem of designing phase II of New Priok Project for such a long period.

Keywords: Indonesia port, port's design, port planning, scenario-based planning

Procedia PDF Downloads 240
3620 Replicating Brain’s Resting State Functional Connectivity Network Using a Multi-Factor Hub-Based Model

Authors: B. L. Ho, L. Shi, D. F. Wang, V. C. T. Mok

Abstract:

The brain’s functional connectivity while temporally non-stationary does express consistency at a macro spatial level. The study of stable resting state connectivity patterns hence provides opportunities for identification of diseases if such stability is severely perturbed. A mathematical model replicating the brain’s spatial connections will be useful for understanding brain’s representative geometry and complements the empirical model where it falls short. Empirical computations tend to involve large matrices and become infeasible with fine parcellation. However, the proposed analytical model has no such computational problems. To improve replicability, 92 subject data are obtained from two open sources. The proposed methodology, inspired by financial theory, uses multivariate regression to find relationships of every cortical region of interest (ROI) with some pre-identified hubs. These hubs acted as representatives for the entire cortical surface. A variance-covariance framework of all ROIs is then built based on these relationships to link up all the ROIs. The result is a high level of match between model and empirical correlations in the range of 0.59 to 0.66 after adjusting for sample size; an increase of almost forty percent. More significantly, the model framework provides an intuitive way to delineate between systemic drivers and idiosyncratic noise while reducing dimensions by more than 30 folds, hence, providing a way to conduct attribution analysis. Due to its analytical nature and simple structure, the model is useful as a standalone toolkit for network dependency analysis or as a module for other mathematical models.

Keywords: functional magnetic resonance imaging, multivariate regression, network hubs, resting state functional connectivity

Procedia PDF Downloads 151
3619 Effect of Micro Credit Access on Poverty Reduction among Small Scale Women Entrepreneurs in Ondo State, Nigeria

Authors: Adewale Oladapo, C. A. Afolami

Abstract:

The study analyzed the effect of micro credit access on poverty reduction among small scale women entrepreneurs in Ondo state, Nigeria. Primary data were collected in a cross-sectional survey of 100 randomly selected woman entrepreneurs. These were drawn in multistage sampling process covering four local government areas (LGAS). Data collected include socio economics characteristics of respondents, access to micro credit, sources of micro credit, and constraints faced by the entrepreneur in sourcing for micro credit. Data were analyzed using descriptive statistics, Foster, Greer and Thorbecke (FGT) index of poverty measure, Gini coefficients and probit regression analysis. The study found that respondents sampled for the survey were within the age range of 31-40 years with mean age 38.6%. Mostly (56.0%) of the respondents were educated to the tune of primary school. Majority (87.0%) of the respondents were married with fairly large household size of (4-5). The poverty index analysis revealed that most (67%) of the sample respondents were poor. The result of the Probit regression analyzed showed that income was a significant variable in micro credit access, while the result of the Gini coefficient revealed a very high income inequality among the respondents. The study concluded that most of the respondents were poor and return on investment (income) was an important variable that increased the chance of respondents in sourcing for micro-credit loan and recommended that income realized by entrepreneur should be properly documented to facilitate loan accessibility.

Keywords: entrepreneurs, income, micro-credit, poverty

Procedia PDF Downloads 128
3618 Factors Influencing Family Resilience and Quality of Life in Pediatric Cancer Patients and Their Caregivers: A Cluster Analysis

Authors: Li Wang, Dan Shu, Shiguang Pang, Lixiu Wang, Bing Xiang Yang, Qian Liu

Abstract:

Background: Cancer is one of the most severe diseases in childhood; long-term treatment and its side effects significantly impact the patient's physical, psychological, social functioning and quality of life while also placing substantial physical and psychological burdens on caregivers and families. Family resilience is crucial for children with cancer, helping them cope better with the disease and supporting the family in facing challenges together. As a family-level variable, family resilience requires information from multiple family members. However, to our best knowledge, there is currently no research investigating family resilience from both the perspectives of pediatric cancer patients and their caregivers. Therefore, this study aims to investigate the family resilience and quality of life of pediatric cancer patients from a patient–caregiver dyadic perspective. Methods: A total of 149 dyads of patients diagnosed with pediatric cancer patients and their principal caregivers were recruited from oncology departments of 4 tertiary hospitals in Wuhan and Taiyuan, China. All participants completed questionnaires that identified their demographic and clinical characteristics as well as assessed their family resilience and quality of life for both the patients and their caregivers. K-means cluster analysis was used to identify different clusters of family resilience based on the reports from patients and caregivers. Multivariate logistic regression and linear regression are used to analyze the factors influencing family resilience and quality of life, as well as the relationship between the two. Results: Three clusters of family resilience were identified: a cluster of high family resilience (HR), a cluster of low family resilience (LR), and a cluster of discrepant family resilience (DR). Most (67.1%) families fell into the cluster with low resilience. Characteristics such as the types of caregivers perceived social support of the patient were different among the three clusters. Compared to the LR group, families where the mother is the caregiver and where the patient has high social support are more likely to be assigned to the HR. The quality of life for caregivers was consistently highest in the HR cluster and lowest in the LR cluster. The patient's quality of life is not related to family resilience. In the linear regression analysis of the patient's quality of life, patients who are the first-born have higher quality of life, while those living with their parents have lower quality of life. The participants' characteristics were not associated with the quality of life for caregivers. Conclusions: In most families, family resilience was low. Families with maternal caregivers and patients receiving high levels of social support are more inclined to be higher levels of family resilience. Family resilience was linked to the quality of life of caregivers of pediatric cancer patients. The clinical implications of this findings suggest that healthcare and social support organizations should prioritize and support the participation of mothers in caregiving responsibilities. Furthermore, they should assist families in accessing social support to enhance family resilience. This study also emphasizes the importance of promoting family resilience for enhancing family health and happiness, as well as improving the quality of life for caregivers.

Keywords: pediatric cancer, cluster analysis, family resilience, quality of life

Procedia PDF Downloads 37
3617 Evaluation of Short-Term Load Forecasting Techniques Applied for Smart Micro-Grids

Authors: Xiaolei Hu, Enrico Ferrera, Riccardo Tomasi, Claudio Pastrone

Abstract:

Load Forecasting plays a key role in making today's and future's Smart Energy Grids sustainable and reliable. Accurate power consumption prediction allows utilities to organize in advance their resources or to execute Demand Response strategies more effectively, which enables several features such as higher sustainability, better quality of service, and affordable electricity tariffs. It is easy yet effective to apply Load Forecasting at larger geographic scale, i.e. Smart Micro Grids, wherein the lower available grid flexibility makes accurate prediction more critical in Demand Response applications. This paper analyses the application of short-term load forecasting in a concrete scenario, proposed within the EU-funded GreenCom project, which collect load data from single loads and households belonging to a Smart Micro Grid. Three short-term load forecasting techniques, i.e. linear regression, artificial neural networks, and radial basis function network, are considered, compared, and evaluated through absolute forecast errors and training time. The influence of weather conditions in Load Forecasting is also evaluated. A new definition of Gain is introduced in this paper, which innovatively serves as an indicator of short-term prediction capabilities of time spam consistency. Two models, 24- and 1-hour-ahead forecasting, are built to comprehensively compare these three techniques.

Keywords: short-term load forecasting, smart micro grid, linear regression, artificial neural networks, radial basis function network, gain

Procedia PDF Downloads 468