Search results for: predicting models
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7246

Search results for: predicting models

6286 The Effect of Symmetry on the Perception of Happiness and Boredom in Design Products

Authors: Michele Sinico

Abstract:

The present research investigates the effect of symmetry on the perception of happiness and boredom in design products. Three experiments were carried out in order to verify the degree of the visual expressive value on different models of bookcases, wall clocks, and chairs. 60 participants directly indicated the degree of happiness and boredom using 7-point rating scales. The findings show that the participants acknowledged a different value of expressive quality in the different product models. Results show also that symmetry is not a significant constraint for an emotional design project.

Keywords: product experience, emotional design, symmetry, expressive qualities

Procedia PDF Downloads 132
6285 Airliner-UAV Flight Formation in Climb Regime

Authors: Pavel Zikmund, Robert Popela

Abstract:

Extreme formation is a theoretical concept of self-sustain flight when a big Airliner is followed by a small UAV glider flying in airliner’s wake vortex. The paper presents results of climb analysis with a goal to lift the gliding UAV to airliner’s cruise altitude. Wake vortex models, the UAV drag polar and basic parameters and airliner’s climb profile are introduced at first. Then, flight performance of the UAV in the wake vortex is evaluated by analytical methods. Time history of optimal distance between the airliner and the UAV during the climb is determined. The results are encouraging, therefore available UAV drag margin for electricity generation is figured out for different vortex models.

Keywords: flight in formation, self-sustained flight, UAV, wake vortex

Procedia PDF Downloads 418
6284 Analysis of Biomarkers Intractable Epileptogenic Brain Networks with Independent Component Analysis and Deep Learning Algorithms: A Comprehensive Framework for Scalable Seizure Prediction with Unimodal Neuroimaging Data in Pediatric Patients

Authors: Bliss Singhal

Abstract:

Epilepsy is a prevalent neurological disorder affecting approximately 50 million individuals worldwide and 1.2 million Americans. There exist millions of pediatric patients with intractable epilepsy, a condition in which seizures fail to come under control. The occurrence of seizures can result in physical injury, disorientation, unconsciousness, and additional symptoms that could impede children's ability to participate in everyday tasks. Predicting seizures can help parents and healthcare providers take precautions, prevent risky situations, and mentally prepare children to minimize anxiety and nervousness associated with the uncertainty of a seizure. This research proposes a comprehensive framework to predict seizures in pediatric patients by evaluating machine learning algorithms on unimodal neuroimaging data consisting of electroencephalogram signals. The bandpass filtering and independent component analysis proved to be effective in reducing the noise and artifacts from the dataset. Various machine learning algorithms’ performance is evaluated on important metrics such as accuracy, precision, specificity, sensitivity, F1 score and MCC. The results show that the deep learning algorithms are more successful in predicting seizures than logistic Regression, and k nearest neighbors. The recurrent neural network (RNN) gave the highest precision and F1 Score, long short-term memory (LSTM) outperformed RNN in accuracy and convolutional neural network (CNN) resulted in the highest Specificity. This research has significant implications for healthcare providers in proactively managing seizure occurrence in pediatric patients, potentially transforming clinical practices, and improving pediatric care.

Keywords: intractable epilepsy, seizure, deep learning, prediction, electroencephalogram channels

Procedia PDF Downloads 63
6283 Problem Gambling in the Conceptualization of Health Professionals: A Qualitative Analysis of the Discourses Produced by Psychologists, Psychiatrists and General Practitioners

Authors: T. Marinaci, C. Venuleo

Abstract:

Different conceptualizations of disease affect patient care. This study aims to address this gap. It explores how health professionals conceptualize gambling problem, addiction and the goals of recovery process. In-depth, semi-structured, open-ended interviews were conducted with Italian psychologists, psychiatrists, general practitioners, and support staff (N= 114), working within health centres for the treatment of addiction (public health services or therapeutic communities) or medical offices. A Lexical Correspondence Analysis (LCA) was applied to the verbatim transcripts. LCA allowed to identify two main factorial dimensions, which organize similarity and dissimilarity in the discourses of the interviewed. The first dimension labelled 'Models of relationship with the problem', concerns two different models of relationship with the health problem: one related to the request for help and the process of taking charge and the other related to the identification of the psychopathology underlying the disorder. The second dimension, labelled 'Organisers of the intervention' reflects the dialectic between two ways to address the problem. On the one hand, they are the gambling dynamics and its immediate life-consequences to organize the intervention (whatever the request of the user is); on the other hand, they are the procedures and the tools which characterize the health service to organize the way the professionals deal with the user’ s problem (whatever it is and despite the specify of the user’s request). The results highlight how, despite the differences, the respondents share a central assumption: understanding gambling problem implies the reference to the gambler’s identity, more than, for instance, to the relational, social, cultural or political context where the gambler lives. A passive stance is attributed to the user, who does not play any role in the definition of the goal of the intervention. The results will be discussed to highlight the relationship between professional models and users’ ways to understand and deal with the problems related to gambling.

Keywords: cultural models, health professionals, intervention models, problem gambling

Procedia PDF Downloads 134
6282 Probing Syntax Information in Word Representations with Deep Metric Learning

Authors: Bowen Ding, Yihao Kuang

Abstract:

In recent years, with the development of large-scale pre-trained lan-guage models, building vector representations of text through deep neural network models has become a standard practice for natural language processing tasks. From the performance on downstream tasks, we can know that the text representation constructed by these models contains linguistic information, but its encoding mode and extent are unclear. In this work, a structural probe is proposed to detect whether the vector representation produced by a deep neural network is embedded with a syntax tree. The probe is trained with the deep metric learning method, so that the distance between word vectors in the metric space it defines encodes the distance of words on the syntax tree, and the norm of word vectors encodes the depth of words on the syntax tree. The experiment results on ELMo and BERT show that the syntax tree is encoded in their parameters and the word representations they produce.

Keywords: deep metric learning, syntax tree probing, natural language processing, word representations

Procedia PDF Downloads 45
6281 Description of Decision Inconsistency in Intertemporal Choices and Representation of Impatience as a Reflection of Irrationality: Consequences in the Field of Personalized Behavioral Finance

Authors: Roberta Martino, Viviana Ventre

Abstract:

Empirical evidence has, over time, confirmed that the behavior of individuals is inconsistent with the descriptions provided by the Discounted Utility Model, an essential reference for calculating the utility of intertemporal prospects. The model assumes that individuals calculate the utility of intertemporal prospectuses by adding up the values of all outcomes obtained by multiplying the cardinal utility of the outcome by the discount function estimated at the time the outcome is received. The trend of the discount function is crucial for the preferences of the decision maker because it represents the perception of the future, and its trend causes temporally consistent or temporally inconsistent preferences. In particular, because different formulations of the discount function lead to various conclusions in predicting choice, the descriptive ability of models with a hyperbolic trend is greater than linear or exponential models. Suboptimal choices from any time point of view are the consequence of this mechanism, the psychological factors of which are encapsulated in the discount rate trend. In addition, analyzing the decision-making process from a psychological perspective, there is an equivalence between the selection of dominated prospects and a degree of impatience that decreases over time. The first part of the paper describes and investigates the anomalies of the discounted utility model by relating the cognitive distortions of the decision-maker to the emotional factors that are generated during the evaluation and selection of alternatives. Specifically, by studying the degree to which impatience decreases, it’s possible to quantify how the psychological and emotional mechanisms of the decision-maker result in a lack of decision persistence. In addition, this description presents inconsistency as the consequence of an inconsistent attitude towards time-delayed choices. The second part of the paper presents an experimental phase in which we show the relationship between inconsistency and impatience in different contexts. Analysis of the degree to which impatience decreases confirms the influence of the decision maker's emotional impulses for each anomaly in the utility model discussed in the first part of the paper. This work provides an application in the field of personalized behavioral finance. Indeed, the numerous behavioral diversities, evident even in the degrees of decrease in impatience in the experimental phase, support the idea that optimal strategies may not satisfy individuals in the same way. With the aim of homogenizing the categories of investors and to provide a personalized approach to advice, the results proven in the experimental phase are used in a complementary way with the information in the field of behavioral finance to implement the Analytical Hierarchy Process model in intertemporal choices, useful for strategic personalization. In the construction of the Analytic Hierarchy Process, the degree of decrease in impatience is understood as reflecting irrationality in decision-making and is therefore used for the construction of weights between anomalies and behavioral traits.

Keywords: analytic hierarchy process, behavioral finance, financial anomalies, impatience, time inconsistency

Procedia PDF Downloads 52
6280 Prediction of Bodyweight of Cattle by Artificial Neural Networks Using Digital Images

Authors: Yalçın Bozkurt

Abstract:

Prediction models were developed for accurate prediction of bodyweight (BW) by using Digital Images of beef cattle body dimensions by Artificial Neural Networks (ANN). For this purpose, the animal data were collected at a private slaughter house and the digital images and the weights of each live animal were taken just before they were slaughtered and the body dimensions such as digital wither height (DJWH), digital body length (DJBL), digital body depth (DJBD), digital hip width (DJHW), digital hip height (DJHH) and digital pin bone length (DJPL) were determined from the images, using the data with 1069 observations for each traits. Then, prediction models were developed by ANN. Digital body measurements were analysed by ANN for body prediction and R2 values of DJBL, DJWH, DJHW, DJBD, DJHH and DJPL were approximately 94.32, 91.31, 80.70, 83.61, 89.45 and 70.56 % respectively. It can be concluded that in management situations where BW cannot be measured it can be predicted accurately by measuring DJBL and DJWH alone or both DJBD and even DJHH and different models may be needed to predict BW in different feeding and environmental conditions and breeds

Keywords: artificial neural networks, bodyweight, cattle, digital body measurements

Procedia PDF Downloads 349
6279 Forecasting Equity Premium Out-of-Sample with Sophisticated Regression Training Techniques

Authors: Jonathan Iworiso

Abstract:

Forecasting the equity premium out-of-sample is a major concern to researchers in finance and emerging markets. The quest for a superior model that can forecast the equity premium with significant economic gains has resulted in several controversies on the choice of variables and suitable techniques among scholars. This research focuses mainly on the application of Regression Training (RT) techniques to forecast monthly equity premium out-of-sample recursively with an expanding window method. A broad category of sophisticated regression models involving model complexity was employed. The RT models include Ridge, Forward-Backward (FOBA) Ridge, Least Absolute Shrinkage and Selection Operator (LASSO), Relaxed LASSO, Elastic Net, and Least Angle Regression were trained and used to forecast the equity premium out-of-sample. In this study, the empirical investigation of the RT models demonstrates significant evidence of equity premium predictability both statistically and economically relative to the benchmark historical average, delivering significant utility gains. They seek to provide meaningful economic information on mean-variance portfolio investment for investors who are timing the market to earn future gains at minimal risk. Thus, the forecasting models appeared to guarantee an investor in a market setting who optimally reallocates a monthly portfolio between equities and risk-free treasury bills using equity premium forecasts at minimal risk.

Keywords: regression training, out-of-sample forecasts, expanding window, statistical predictability, economic significance, utility gains

Procedia PDF Downloads 81
6278 Structure of Turbulence Flow in the Wire-Wrappes Fuel Assemblies of BREST-OD-300

Authors: Dmitry V. Fomichev, Vladimir I. Solonin

Abstract:

In this paper, experimental and numerical study of hydrodynamic characteristics of the air coolant flow in the test wire-wrapped assembly is presented. The test assembly has 37 rods, which are similar to the real fuel pins of the BREST-OD-300 fuel assemblies geometrically. Air open loop test facility installed at the “Nuclear Power Plants and Installations” department of BMSTU was used to obtain the experimental data. The obtaining altitudinal distribution of static pressure in the near-wall test assembly as well as velocity and temperature distribution of coolant flow in the test sections can give us some new knowledge about the mechanism of formation of the turbulence flow structure in the wire wrapped fuel assemblies. Numerical simulations of the turbulence flow has been accomplished using ANSYS Fluent 14.5. Different non-local turbulence models have been considered, such as standard and RNG k-e models and k-w SST model. Results of numerical simulations of the flow based on the considered turbulence models give the best agreement with the experimental data and help us to carry out strong analysis of flow characteristics.

Keywords: wire-spaces fuel assembly, turbulent flow structure, computation fluid dynamics

Procedia PDF Downloads 438
6277 Advances in Design Decision Support Tools for Early-stage Energy-Efficient Architectural Design: A Review

Authors: Maryam Mohammadi, Mohammadjavad Mahdavinejad, Mojtaba Ansari

Abstract:

The main driving force for increasing movement towards the design of High-Performance Buildings (HPB) are building codes and rating systems that address the various components of the building and their impact on the environment and energy conservation through various methods like prescriptive methods or simulation-based approaches. The methods and tools developed to meet these needs, which are often based on building performance simulation tools (BPST), have limitations in terms of compatibility with the integrated design process (IDP) and HPB design, as well as use by architects in the early stages of design (when the most important decisions are made). To overcome these limitations in recent years, efforts have been made to develop Design Decision Support Systems, which are often based on artificial intelligence. Numerous needs and steps for designing and developing a Decision Support System (DSS), which complies with the early stages of energy-efficient architecture design -consisting of combinations of different methods in an integrated package- have been listed in the literature. While various review studies have been conducted in connection with each of these techniques (such as optimizations, sensitivity and uncertainty analysis, etc.) and their integration of them with specific targets; this article is a critical and holistic review of the researches which leads to the development of applicable systems or introduction of a comprehensive framework for developing models complies with the IDP. Information resources such as Science Direct and Google Scholar are searched using specific keywords and the results are divided into two main categories: Simulation-based DSSs and Meta-simulation-based DSSs. The strengths and limitations of different models are highlighted, two general conceptual models are introduced for each category and the degree of compliance of these models with the IDP Framework is discussed. The research shows movement towards Multi-Level of Development (MOD) models, well combined with early stages of integrated design (schematic design stage and design development stage), which are heuristic, hybrid and Meta-simulation-based, relies on Big-real Data (like Building Energy Management Systems Data or Web data). Obtaining, using and combining of these data with simulation data to create models with higher uncertainty, more dynamic and more sensitive to context and culture models, as well as models that can generate economy-energy-efficient design scenarios using local data (to be more harmonized with circular economy principles), are important research areas in this field. The results of this study are a roadmap for researchers and developers of these tools.

Keywords: integrated design process, design decision support system, meta-simulation based, early stage, big data, energy efficiency

Procedia PDF Downloads 144
6276 Development of an Interactive Display-Control Layout Design System for Trains Based on Train Drivers’ Mental Models

Authors: Hyeonkyeong Yang, Minseok Son, Taekbeom Yoo, Woojin Park

Abstract:

Human error is the most salient contributing factor to railway accidents. To reduce the frequency of human errors, many researchers and train designers have adopted ergonomic design principles for designing display-control layout in rail cab. There exist a number of approaches for designing the display control layout based on optimization methods. However, the ergonomically optimized layout design may not be the best design for train drivers, since the drivers have their own mental models based on their experiences. Consequently, the drivers may prefer the existing display-control layout design over the optimal design, and even show better driving performance using the existing design compared to that using the optimal design. Thus, in addition to ergonomic design principles, train drivers’ mental models also need to be considered for designing display-control layout in rail cab. This paper developed an ergonomic assessment system of display-control layout design, and an interactive layout design system that can generate design alternatives and calculate ergonomic assessment score in real-time. The design alternatives generated from the interactive layout design system may not include the optimal design from the ergonomics point of view. However, the system’s strength is that it considers train drivers’ mental models, which can help generate alternatives that are more friendly and easier to use for train drivers. Also, with the developed system, non-experts in ergonomics, such as train drivers, can refine the design alternatives and improve ergonomic assessment score in real-time.

Keywords: display-control layout design, interactive layout design system, mental model, train drivers

Procedia PDF Downloads 283
6275 Local Interpretable Model-agnostic Explanations (LIME) Approach to Email Spam Detection

Authors: Rohini Hariharan, Yazhini R., Blessy Maria Mathew

Abstract:

The task of detecting email spam is a very important one in the era of digital technology that needs effective ways of curbing unwanted messages. This paper presents an approach aimed at making email spam categorization algorithms transparent, reliable and more trustworthy by incorporating Local Interpretable Model-agnostic Explanations (LIME). Our technique assists in providing interpretable explanations for specific classifications of emails to help users understand the decision-making process by the model. In this study, we developed a complete pipeline that incorporates LIME into the spam classification framework and allows creating simplified, interpretable models tailored to individual emails. LIME identifies influential terms, pointing out key elements that drive classification results, thus reducing opacity inherent in conventional machine learning models. Additionally, we suggest a visualization scheme for displaying keywords that will improve understanding of categorization decisions by users. We test our method on a diverse email dataset and compare its performance with various baseline models, such as Gaussian Naive Bayes, Multinomial Naive Bayes, Bernoulli Naive Bayes, Support Vector Classifier, K-Nearest Neighbors, Decision Tree, and Logistic Regression. Our testing results show that our model surpasses all other models, achieving an accuracy of 96.59% and a precision of 99.12%.

Keywords: text classification, LIME (local interpretable model-agnostic explanations), stemming, tokenization, logistic regression.

Procedia PDF Downloads 26
6274 Simscape Library for Large-Signal Physical Network Modeling of Inertial Microelectromechanical Devices

Authors: S. Srinivasan, E. Cretu

Abstract:

The information flow (e.g. block-diagram or signal flow graph) paradigm for the design and simulation of Microelectromechanical (MEMS)-based systems allows to model MEMS devices using causal transfer functions easily, and interface them with electronic subsystems for fast system-level explorations of design alternatives and optimization. Nevertheless, the physical bi-directional coupling between different energy domains is not easily captured in causal signal flow modeling. Moreover, models of fundamental components acting as building blocks (e.g. gap-varying MEMS capacitor structures) depend not only on the component, but also on the specific excitation mode (e.g. voltage or charge-actuation). In contrast, the energy flow modeling paradigm in terms of generalized across-through variables offers an acausal perspective, separating clearly the physical model from the boundary conditions. This promotes reusability and the use of primitive physical models for assembling MEMS devices from primitive structures, based on the interconnection topology in generalized circuits. The physical modeling capabilities of Simscape have been used in the present work in order to develop a MEMS library containing parameterized fundamental building blocks (area and gap-varying MEMS capacitors, nonlinear springs, displacement stoppers, etc.) for the design, simulation and optimization of MEMS inertial sensors. The models capture both the nonlinear electromechanical interactions and geometrical nonlinearities and can be used for both small and large signal analyses, including the numerical computation of pull-in voltages (stability loss). Simscape behavioral modeling language was used for the implementation of reduced-order macro models, that present the advantage of a seamless interface with Simulink blocks, for creating hybrid information/energy flow system models. Test bench simulations of the library models compare favorably with both analytical results and with more in-depth finite element simulations performed in ANSYS. Separate MEMS-electronic integration tests were done on closed-loop MEMS accelerometers, where Simscape was used for modeling the MEMS device and Simulink for the electronic subsystem.

Keywords: across-through variables, electromechanical coupling, energy flow, information flow, Matlab/Simulink, MEMS, nonlinear, pull-in instability, reduced order macro models, Simscape

Procedia PDF Downloads 117
6273 Prediction of Soil Liquefaction by Using UBC3D-PLM Model in PLAXIS

Authors: A. Daftari, W. Kudla

Abstract:

Liquefaction is a phenomenon in which the strength and stiffness of a soil is reduced by earthquake shaking or other rapid cyclic loading. Liquefaction and related phenomena have been responsible for huge amounts of damage in historical earthquakes around the world. Modelling of soil behaviour is the main step in soil liquefaction prediction process. Nowadays, several constitutive models for sand have been presented. Nevertheless, only some of them can satisfy this mechanism. One of the most useful models in this term is UBCSAND model. In this research, the capability of this model is considered by using PLAXIS software. The real data of superstition hills earthquake 1987 in the Imperial Valley was used. The results of the simulation have shown resembling trend of the UBC3D-PLM model.

Keywords: liquefaction, plaxis, pore-water pressure, UBC3D-PLM

Procedia PDF Downloads 294
6272 Building Information Management in Context of Urban Spaces, Analysis of Current Use and Possibilities

Authors: Lucie Jirotková, Daniel Macek, Andrea Palazzo, Veronika Malinová

Abstract:

Currently, the implementation of 3D models in the construction industry is gaining popularity. Countries around the world are developing their own modelling standards and implement the use of 3D models into their individual permitting processes. Another theme that needs to be addressed are public building spaces and their subsequent maintenance, where the usage of BIM methodology is directly offered. The significant benefit of the implementation of Building Information Management is the information transfer. The 3D model contains not only the spatial representation of the item shapes but also various parameters that are assigned to the individual elements, which are easily traceable, mainly because they are all stored in one place in the BIM model. However, it is important to keep the data in the models up to date to achieve useability of the model throughout the life cycle of the building. It is now becoming standard practice to use BIM models in the construction of buildings, however, the building environment is very often neglected. Especially in large-scale development projects, the public space of buildings is often forwarded to municipalities, which obtains the ownership and are in charge of its maintenance. A 3D model of the building surroundings would include both the above-ground visible elements of the development as well as the underground parts, such as the technological facilities of water features, electricity lines for public lighting, etc. The paper shows the possibilities of a model in the field of information for the handover of premises, the following maintenance and decision making. The attributes and spatial representation of the individual elements make the model a reliable foundation for the creation of "Smart Cities". The paper analyses the current use of the BIM methodology and presents the state-of-the-art possibilities of development.

Keywords: BIM model, urban space, BIM methodology, facility management

Procedia PDF Downloads 109
6271 Evaluating Robustness of Conceptual Rainfall-runoff Models under Climate Variability in Northern Tunisia

Authors: H. Dakhlaoui, D. Ruelland, Y. Tramblay, Z. Bargaoui

Abstract:

To evaluate the impact of climate change on water resources at the catchment scale, not only future projections of climate are necessary but also robust rainfall-runoff models that are able to be fairly reliable under changing climate conditions. This study aims at assessing the robustness of three conceptual rainfall-runoff models (GR4j, HBV and IHACRES) on five basins in Northern Tunisia under long-term climate variability. Their robustness was evaluated according to a differential split sample test based on a climate classification of the observation period regarding simultaneously precipitation and temperature conditions. The studied catchments are situated in a region where climate change is likely to have significant impacts on runoff and they already suffer from scarcity of water resources. They cover the main hydrographical basins of Northern Tunisia (High Medjerda, Zouaraâ, Ichkeul and Cap bon), which produce the majority of surface water resources in Tunisia. The streamflow regime of the basins can be considered as natural since these basins are located upstream from storage-dams and in areas where withdrawals are negligible. A 30-year common period (1970‒2000) was considered to capture a large spread of hydro-climatic conditions. The calibration was based on the Kling-Gupta Efficiency (KGE) criterion, while the evaluation of model transferability is performed according to the Nash-Suttfliff efficiency criterion and volume error. The three hydrological models were shown to have similar behaviour under climate variability. Models prove a better ability to simulate the runoff pattern when transferred toward wetter periods compared to the case when transferred to drier periods. The limits of transferability are beyond -20% of precipitation and +1.5 °C of temperature in comparison with the calibration period. The deterioration of model robustness could in part be explained by the climate dependency of some parameters.

Keywords: rainfall-runoff modelling, hydro-climate variability, model robustness, uncertainty, Tunisia

Procedia PDF Downloads 277
6270 Count of Trees in East Africa with Deep Learning

Authors: Nubwimana Rachel, Mugabowindekwe Maurice

Abstract:

Trees play a crucial role in maintaining biodiversity and providing various ecological services. Traditional methods of counting trees are time-consuming, and there is a need for more efficient techniques. However, deep learning makes it feasible to identify the multi-scale elements hidden in aerial imagery. This research focuses on the application of deep learning techniques for tree detection and counting in both forest and non-forest areas through the exploration of the deep learning application for automated tree detection and counting using satellite imagery. The objective is to identify the most effective model for automated tree counting. We used different deep learning models such as YOLOV7, SSD, and UNET, along with Generative Adversarial Networks to generate synthetic samples for training and other augmentation techniques, including Random Resized Crop, AutoAugment, and Linear Contrast Enhancement. These models were trained and fine-tuned using satellite imagery to identify and count trees. The performance of the models was assessed through multiple trials; after training and fine-tuning the models, UNET demonstrated the best performance with a validation loss of 0.1211, validation accuracy of 0.9509, and validation precision of 0.9799. This research showcases the success of deep learning in accurate tree counting through remote sensing, particularly with the UNET model. It represents a significant contribution to the field by offering an efficient and precise alternative to conventional tree-counting methods.

Keywords: remote sensing, deep learning, tree counting, image segmentation, object detection, visualization

Procedia PDF Downloads 42
6269 Finetuned Transformers for Translating Multi Dialect Texts to MSA

Authors: Tahar Alimi, Rahma Boujelbane, Wiem Derouich, Lamia Hadrich Belguith

Abstract:

Machine translation task of low-resourced languages such as Arabic is a challenging task. Despite the appearance of sophisticated models based on the latest deep learning techniques, namely the transfer learning and transformers, all models prove incapable of carrying out an acceptable translation which includes Arabic dialects because they not official status. In this paper, a machine translation model designed to translate Arabic multidialectal content into Modern Standard Arabic (MSA), leveraging both new and existing parallel resources. The latter achieved the best results for both Levantine and Maghrebi dialects with BLEU score of 64.99.

Keywords: Arabic translation, dialect translation, fine-tune, msa translation, transformer, translation

Procedia PDF Downloads 27
6268 Integration of Technology into Nursing Education: A Collaboration between College of Nursing and University Research Center

Authors: Lori Lioce, Gary Maddux, Norven Goddard, Ishella Fogle, Bernard Schroer

Abstract:

This paper presents the integration of technologies into nursing education. The collaborative effort includes the College of Nursing (CoN) at the University of Alabama in Huntsville (UAH) and the UAH Systems Management and Production Center (SMAP). The faculty at the CoN conducts needs assessments to identify education and training requirements. A team of CoN faculty and SMAP engineers then prioritize these requirements and establish improvement/development teams. The development teams consist of nurses to evaluate the models and to provide feedback and of undergraduate engineering students and their senior staff mentors from SMAP. The SMAP engineering staff develops and creates the physical models using 3D printing, silicone molds and specialized molding mixtures and techniques. The collaboration has focused on developing teaching and training, or clinical, simulators. In addition, the onset of the Covid-19 pandemic has intensified this relationship, as 3D modeling shifted to supplied personal protection equipment (PPE) to local health care providers. A secondary collaboration has been introducing students to clinical benchmarking through the UAH Center for Management and Economic Research. As a result of these successful collaborations the Model Exchange & Development of Nursing & Engineering Technology (MEDNET) has been established. MEDNET seeks to extend and expand the linkage between engineering and nursing to K-12 schools, technical schools and medical facilities in the region to the resources available from the CoN and SMAP. As an example, stereolithography (STL) files of the 3D printed models, along with the specifications to fabricate models, are available on the MEDNET website. Ten 3D printed models have been developed and are currently in use by the CoN. The following additional training simulators are currently under development:1) suture pads, 2) gelatin wound models and 3) printed wound tattoos. Specification sheets have been written for these simulations that describe the use, fabrication procedures and parts list. These specifications are available for viewing and download on MEDNET. Included in this paper are 1) descriptions of CoN, SMAP and MEDNET, 2) collaborative process used in product improvement/development, 3) 3D printed models of training and teaching simulators, 4) training simulators under development with specification sheets, 5) family care practice benchmarking, 6) integrating the simulators into the nursing curriculum, 7) utilizing MEDNET as a pandemic response, and 8) conclusions and lessons learned.

Keywords: 3D printing, nursing education, simulation, trainers

Procedia PDF Downloads 109
6267 Deep Learning for Recommender System: Principles, Methods and Evaluation

Authors: Basiliyos Tilahun Betru, Charles Awono Onana, Bernabe Batchakui

Abstract:

Recommender systems have become increasingly popular in recent years, and are utilized in numerous areas. Nowadays many web services provide several information for users and recommender systems have been developed as critical element of these web applications to predict choice of preference and provide significant recommendations. With the help of the advantage of deep learning in modeling different types of data and due to the dynamic change of user preference, building a deep model can better understand users demand and further improve quality of recommendation. In this paper, deep neural network models for recommender system are evaluated. Most of deep neural network models in recommender system focus on the classical collaborative filtering user-item setting. Deep learning models demonstrated high level features of complex data can be learned instead of using metadata which can significantly improve accuracy of recommendation. Even though deep learning poses a great impact in various areas, applying the model to a recommender system have not been fully exploited and still a lot of improvements can be done both in collaborative and content-based approach while considering different contextual factors.

Keywords: big data, decision making, deep learning, recommender system

Procedia PDF Downloads 454
6266 Models, Resources and Activities of Project Scheduling Problems

Authors: Jorge A. Ruiz-Vanoye, Ocotlán Díaz-Parra, Alejandro Fuentes-Penna, José J. Hernández-Flores, Edith Olaco Garcia

Abstract:

The Project Scheduling Problem (PSP) is a generic name given to a whole class of problems in which the best form, time, resources and costs for project scheduling are necessary. The PSP is an application area related to the project management. This paper aims at being a guide to understand PSP by presenting a survey of the general parameters of PSP: the Resources (those elements that realize the activities of a project), and the Activities (set of operations or own tasks of a person or organization); the mathematical models of the main variants of PSP and the algorithms used to solve the variants of the PSP. The project scheduling is an important task in project management. This paper contains mathematical models, resources, activities, and algorithms of project scheduling problems. The project scheduling problem has attracted researchers of the automotive industry, steel manufacturer, medical research, pharmaceutical research, telecommunication, industry, aviation industry, development of the software, manufacturing management, innovation and technology management, construction industry, government project management, financial services, machine scheduling, transportation management, and others. The project managers need to finish a project with the minimum cost and the maximum quality.

Keywords: PSP, Combinatorial Optimization Problems, Project Management; Manufacturing Management, Technology Management.

Procedia PDF Downloads 396
6265 The Role of Trust in Intention to Use Prescribed and Non-prescribed Connected Devices

Authors: Jean-michel Sahut, Lubica Hikkerova, Wissal Ben Arfi

Abstract:

The Internet of Things (IoT) emerged over the last few decades in many fields. Healthcare can significantly benefit from IoT. This study aims to examine factors influencing the adoption of IoT in eHealth. To do so, an innovative framework has been developed which applies both the Technology Acceptance Model (TAM) and the United Theory of Acceptance and Use of Technology (UTAUT) model and builds on them by analyzing trust and perceived-risk dimensions to predict intention to use IoT in eHealth. In terms of methodology, a Partial Least Approach Structural Equation Modelling was carried out on a sample of 267 French users. The findings of this research support the significant positive effect of constructs set out in the TAM (perceived ease of use) on predicting behavioral intention by adding the effects identified for UTAUT variables. This research also demonstrates how perceived risk and trust are significant factors for models examining behavioral intentions to use IoT. Perceived risk enhanced by the trust has a significant effect on patients’ behavioral intentions. Moreover, the results highlight the key role of prescription as a moderator of IoT adoption in eHealth. Depending on whether an individual has a prescription to use connected devices or not, ease of use has a stronger impact on adoption, while trust has a negative impact on adoption for users without a prescription. In accordance with the empirical results, several practical implications can be proposed. All connected devices applied in a medical context should be divided into groups according to their functionality: whether they are essential for the patient’s health and whether they require a prescription or not. Devices used with a prescription are easily accepted because the intention to use them is moderated by the medical trust (discussed above). For users without a prescription, ease of use is a more significant factor than for users who have a prescription. This suggests that currently, connected e-Health devices and online healthcare systems have to take this factor into account to better meet the needs and expectations of end-users.

Keywords: internet of things, Healthcare, trust, consumer acceptance

Procedia PDF Downloads 127
6264 Aerodynamic Heating Analysis of Hypersonic Flow over Blunt-Nosed Bodies Using Computational Fluid Dynamics

Authors: Aakash Chhunchha, Assma Begum

Abstract:

The qualitative aspects of hypersonic flow over a range of blunt bodies have been extensively analyzed in the past. It is well known that the curvature of a body’s geometry in the sonic region predominantly dictates the bow shock shape and its standoff distance from the body, while the surface pressure distribution depends on both the sonic region and on the local body shape. The present study is an extension to analyze the hypersonic flow characteristics over several blunt-nosed bodies using modern Computational Fluid Dynamics (CFD) tools to determine the shock shape and its effect on the heat flux around the body. 4 blunt-nosed models with cylindrical afterbodies were analyzed for a flow at a Mach number of 10 corresponding to the standard atmospheric conditions at an altitude of 50 km. The nose radii of curvature of the models range from a hemispherical nose to a flat nose. Appropriate numerical models and the supplementary convergence techniques that were implemented for the CFD analysis are thoroughly described. The flow contours are presented highlighting the key characteristics of shock wave shape, shock standoff distance and the sonic point shift on the shock. The variation of heat flux, due to different shock detachments for various models is comprehensively discussed. It is observed that the more the bluntness of the nose radii, the farther the shock stands from the body; and consequently, the less the surface heating at the nose. The results obtained from the CFD analyses are compared with approximated theoretical engineering correlations. Overall, a satisfactory agreement is observed between the two.

Keywords: aero-thermodynamics, blunt-nosed bodies, computational fluid dynamics (CFD), hypersonic flow

Procedia PDF Downloads 125
6263 Urinalysis by Surface-Enhanced Raman Spectroscopy on Gold Nanoparticles for Different Disease

Authors: Leonardo C. Pacheco-Londoño, Nataly J. Galan-Freyle, Lisandro Pacheco-Lugo, Antonio Acosta, Elkin Navarro, Gustavo Aroca-Martínez, Karin Rondón-Payares, Samuel P. Hernández-Rivera

Abstract:

In our Life Science Research Center of the University Simon Bolivar (LSRC), one of the focuses is the diagnosis and prognosis of different diseases; we have been implementing the use of gold nanoparticles (Au-NPs) for various biomedical applications. In this case, Au-NPs were used for Surface-Enhanced Raman Spectroscopy (SERS) in different diseases' diagnostics, such as Lupus Nephritis (LN), hypertension (H), preeclampsia (PC), and others. This methodology is proposed for the diagnosis of each disease. First, good signals of the different metabolites by SERS were obtained through a mixture of urine samples and Au-NPs. Second, PLS-DA models based on SERS spectra to discriminate each disease were able to differentiate between sick and healthy patients with different diseases. Finally, the sensibility and specificity for the different models were determined in the order of 0.9. On the other hand, a second methodology was developed using machine learning models from all data of the different diseases, and, as a result, a discriminant spectral map of the diseases was generated. These studies were possible thanks to joint research between two university research centers and two health sector entities, and the patient samples were treated with ethical rigor and their consent.

Keywords: SERS, Raman, PLS-DA, diseases

Procedia PDF Downloads 118
6262 Implementation of State-Space and Super-Element Techniques for the Modeling and Control of Smart Structures with Damping Characteristics

Authors: Nader Ghareeb, Rüdiger Schmidt

Abstract:

Minimizing the weight in flexible structures means reducing material and costs as well. However, these structures could become prone to vibrations. Attenuating these vibrations has become a pivotal engineering problem that shifted the focus of many research endeavors. One technique to do that is to design and implement an active control system. This system is mainly composed of a vibrating structure, a sensor to perceive the vibrations, an actuator to counteract the influence of disturbances, and finally a controller to generate the appropriate control signals. In this work, two different techniques are explored to create two different mathematical models of an active control system. The first model is a finite element model with a reduced number of nodes and it is called a super-element. The second model is in the form of state-space representation, i.e. a set of partial differential equations. The damping coefficients are calculated and incorporated into both models. The effectiveness of these models is demonstrated when the system is excited by its first natural frequency and an active control strategy is developed and implemented to attenuate the resulting vibrations. Results from both modeling techniques are presented and compared.

Keywords: damping coefficients, finite element analysis, super-element, state-space model

Procedia PDF Downloads 304
6261 Role of Cognitive Flexibility and Employee Engagement in Determining Turnover Intentions of Employees

Authors: Prashant Das, Tushar Singh, Virendra Byadwal

Abstract:

The present study attempted to understand the role of cognitive flexibility and employee engagement in predicting employees’ turnover intentions. Employee turnover is a significant problem that many organizations are facing these days. Employee turnover is not only extremely expensive for the employer but also results in poor production levels. In developing countries like India, organizations once believed to have most stable employees, are facing major turnover problems. One such organization is banking organizations. Due to globalization, banks are now changing their work scenarios under which the employees have many different roles to perform. Cognitive flexibility which refers to an individual’s ability to shift cognitive sets and to adapt to one’s changing environment, thus seems to be an important factor that are responsible for the employee turnover in organizations. It is hypothesized that those with higher cognitive flexibility would be more able to adapt to the changing work demands of the organizations and thus would show less turnover intentions. Another factor that seems to be important in predicting turnover is employee engagement. Kahn referred to engagement in terms of the harnessing of organization members’ selves to their work roles [by which they] employ and express themselves physically, cognitively, and emotionally during role performances. Studies have shown a strong relationship between employee engagement and turnover intentions. Those with higher engagement with their jobs have found to show low turnover intentions. This study thus hypothesizes that employees with higher engagement will show lower levels of turnover intentions. A total of 150 bank employees (75 from private and 75 from public) participated in this study. They were administered Cognitive Flexibility Scale, Gallup Questionnaire and Intention to Stay Questionnaire along with another questionnaire asking for their demographic details. Results of the study revealed that employees with higher levels of cognitive flexibility and employee engagement show lover levels of turnover intentions. However, the effect is more prominent in case of employees of private banks. Demographic characteristics such as level of the employee and years of engagement in the current job have also been found to be influencing the relationship between cognitive flexibility, employee engagement and turnover intentions. Results of the study are interpreted in accordance to the prevalent literature and theoretical positions.

Keywords: cognitive flexibility, employee engagement, organization, turnover intentions

Procedia PDF Downloads 405
6260 Prediction of Trailing-Edge Noise under Adverse-Pressure Gradient Effect

Authors: Li Chen

Abstract:

For an aerofoil or hydrofoil in high Reynolds number flows, broadband noise is generated efficiently as the result of the turbulence convecting over the trailing edge. This noise can be related to the surface pressure fluctuations, which can be predicted by either CFD or empirical models. However, in reality, the aerofoil or hydrofoil often operates at an angle of attack. Under this situation, the flow is subjected to an Adverse-Pressure-Gradient (APG), and as a result, a flow separation may occur. This study is to assess trailing-edge noise models for such flows. In the present work, the trailing-edge noise from a 2D airfoil at 6 degree of angle of attach is investigated. Under this condition, the flow is experiencing a strong APG, and the flow separation occurs. The flow over the airfoil with a chord of 300 mm, equivalent to a Reynold Number 4x10⁵, is simulated using RANS with the SST k-ɛ turbulent model. The predicted surface pressure fluctuations are compared with the published experimental data and empirical models, and show a good agreement with the experimental data. The effect of the APG on the trailing edge noise is discussed, and the associated trailing edge noise is calculated.

Keywords: aero-acoustics, adverse-pressure gradient, computational fluid dynamics, trailing-edge noise

Procedia PDF Downloads 316
6259 Influence of Behavior Models on the Response of a Reinforced Concrete Frame: Multi-Fiber Approach

Authors: A. Kahil, A. Nekmouche, N. Khelil, I. Hamadou, M. Hamizi, Ne. Hannachi

Abstract:

The objective of this work is to study the influence of the nonlinear behavior models of the concrete (concrete_BAEL and concrete_UNI) as well as the confinement brought by the transverse reinforcement on the seismic response of reinforced concrete frame (RC/frame). These models as well as the confinement are integrated in the Cast3m finite element calculation code. The consideration of confinement (TAC, taking into account the confinement) provided by the transverse reinforcement and the non-consideration of confinement (without consideration of containment, WCC) in the presence and absence of a vertical load is studied. The application was made on a reinforced concrete frame (RC/frame) with 3 levels and 2 spans. The results show that on the one hand, the concrete_BAEL model slightly underestimates the resistance of the RC/frame in the plastic field, whereas the concrete_uni model presents the best results compared to the simplified model "concrete_BAEL", on the other hand, for the concrete-uni model, taking into account the confinement has no influence on the behavior of the RC/frame under imposed displacement up to a vertical load of 500 KN.

Keywords: reinforced concrete, nonlinear calculation, behavior laws, fiber model confinement, numerical simulation

Procedia PDF Downloads 140
6258 Performance of the Cmip5 Models in Simulation of the Present and Future Precipitation over the Lake Victoria Basin

Authors: M. A. Wanzala, L. A. Ogallo, F. J. Opijah, J. N. Mutemi

Abstract:

The usefulness and limitations in climate information are due to uncertainty inherent in the climate system. For any given region to have sustainable development it is important to apply climate information into its socio-economic strategic plans. The overall objective of the study was to assess the performance of the Coupled Model Inter-comparison Project (CMIP5) over the Lake Victoria Basin. The datasets used included the observed point station data, gridded rainfall data from Climate Research Unit (CRU) and hindcast data from eight CMIP5. The methodology included trend analysis, spatial analysis, correlation analysis, Principal Component Analysis (PCA) regression analysis, and categorical statistical skill score. Analysis of the trends in the observed rainfall records indicated an increase in rainfall variability both in space and time for all the seasons. The spatial patterns of the individual models output from the models of MPI, MIROC, EC-EARTH and CNRM were closest to the observed rainfall patterns.

Keywords: categorical statistics, coupled model inter-comparison project, principal component analysis, statistical downscaling

Procedia PDF Downloads 352
6257 Publish/Subscribe Scientific Workflow Interoperability Framework (PS-SWIF) Architecture and Design

Authors: Ahmed Alqaoud

Abstract:

This paper describes Publish/Subscribe Scientific Workflow Interoperability Framework (PS-SWIF) architecture and its components that collectively provide interoperability between heterogeneous scientific workflow systems. Requirements to achieve interoperability are identified. This paper also provides a detailed investigation and design of models and solutions for system requirements, and considers how workflow interoperability models provided by Workflow Management Coalition (WfMC) can be achieved using the PS-SWIF system.

Keywords: publish/subscribe, scientific workflow, web services, workflow interoperability

Procedia PDF Downloads 289