Search results for: algebraic signal processing
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5163

Search results for: algebraic signal processing

4203 Allostatic Load as a Predictor of Adolescents’ Executive Function: A Longitudinal Network Analysis

Authors: Sipu Guo, Silin Huang

Abstract:

Background: Most studies investigate the link between executive function and allostatic load (AL) among adults aged 18 years and older. Studies differed regarding the specific biological indicators studied and executive functions accounted for. Specific executive functions may be differentially related to allostatic load. We investigated the comorbidities of executive functions and allostatic load via network analysis. Methods: We included 603 adolescents (49.84% girls; Mean age = 12.38, SD age = 1.79) from junior high school in rural China. Eight biological markers at T1 and four executive function tasks at T2 were used to evaluate networks. Network analysis was used to determine the network structure, core symptoms, and bridge symptoms in the AL-executive function network among rural adolescents. Results: The executive functions were related to 6 AL biological markers, not to cortisol and epinephrine. The most influential symptoms were inhibition control, cognitive flexibility, processing speed, and systolic blood pressure (SBP). SBP, dehydroepiandrosterone, and processing speed were the bridges through which AL was related to executive functions. dehydroepiandrosterone strongly predicted processing speed. The SBP was the biggest influencer in the entire network. Conclusions: We found evidence for differential relations between markers and executive functions. SBP was a driver in the network; dehydroepiandrosterone showed strong relations with executive function.

Keywords: allostatic load, executive function, network analysis, rural adolescent

Procedia PDF Downloads 52
4202 Robust Barcode Detection with Synthetic-to-Real Data Augmentation

Authors: Xiaoyan Dai, Hsieh Yisan

Abstract:

Barcode processing of captured images is a huge challenge, as different shooting conditions can result in different barcode appearances. This paper proposes a deep learning-based barcode detection using synthetic-to-real data augmentation. We first augment barcodes themselves; we then augment images containing the barcodes to generate a large variety of data that is close to the actual shooting environments. Comparisons with previous works and evaluations with our original data show that this approach achieves state-of-the-art performance in various real images. In addition, the system uses hybrid resolution for barcode “scan” and is applicable to real-time applications.

Keywords: barcode detection, data augmentation, deep learning, image-based processing

Procedia PDF Downloads 174
4201 Ultrasonic Techniques to Characterize and Monitor Water-in-Oil Emulsion

Authors: E. A. Alshaafi, A. Prakash

Abstract:

Oil-water emulsions are commonly encountered in various industrial operations and at different stages of crude oil production and processing. Emulsions are often difficult to track and treat and can cause a number of costly problems which need to be avoided. The characteristics of the emulsion phase can vary with crude composition and types of impurities present in oil. The objectives of this study are the development of ultrasonic techniques to track and characterize emulsion phase generated during production and cleaning of crude oil. The position of emulsion layer is monitored with the help of ultrasonic probes suitably placed in the vessel. The sensitivity of the technique and its potential has been demonstrated based on extensive testing with different oil samples. The technique is also being developed to monitor emulsion phase characteristics such as stability, composition, and droplet size distribution. The ultrasonic parameters recorded are changes in acoustic velocity, signal attenuation and its frequency spectrum. Emulsion has been prepared with light mineral oil sample and the effects of various factors including mixing speed, temperature, surfactant, and solid particles concentrations have been investigated. The applied frequency for ultrasonic waves has been varied from 1 to 5 MHz to carry out a sensitivity analysis. Emulsion droplet structure is observed with optical microscopy and stability is examined by tracking the changes in ultrasonic parameters with time. A model based on ultrasonic attenuation spectroscopy is being developed and tested to track changes in droplet size distribution with time.

Keywords: ultrasonic techniques, emulsion, characterization, droplet size

Procedia PDF Downloads 175
4200 The Processing of Implicit Stereotypes in Contexts of Reading, Using Eye-Tracking and Self-Paced Reading Tasks

Authors: Magali Mari, Misha Muller

Abstract:

The present study’s objectives were to determine how diverse implicit stereotypes affect the processing of written information and linguistic inferential processes, such as presupposition accommodation. When reading a text, one constructs a representation of the described situation, which is then updated, according to new outputs and based on stereotypes inscribed within society. If the new output contradicts stereotypical expectations, the representation must be corrected, resulting in longer reading times. A similar process occurs in cases of linguistic inferential processes like presupposition accommodation. Presupposition accommodation is traditionally regarded as fast, automatic processing of background information (e.g., ‘Mary stopped eating meat’ is quickly processed as Mary used to eat meat). However, very few accounts have investigated if this process is likely to be influenced by domains of social cognition, such as implicit stereotypes. To study the effects of implicit stereotypes on presupposition accommodation, adults were recorded while they read sentences in French, combining two methods, an eye-tracking task and a classic self-paced reading task (where participants read sentence segments at their own pace by pressing a computer key). In one condition, presuppositions were activated with the French definite articles ‘le/la/les,’ whereas in the other condition, the French indefinite articles ‘un/une/des’ was used, triggering no presupposition. Using a definite article presupposes that the object has already been uttered and is thus part of background information, whereas using an indefinite article is understood as the introduction of new information. Two types of stereotypes were under examination in order to enlarge the scope of stereotypes traditionally analyzed. Study 1 investigated gender stereotypes linked to professional occupations to replicate previous findings. Study 2 focused on nationality-related stereotypes (e.g. ‘the French are seducers’ versus ‘the Japanese are seducers’) to determine if the effects of implicit stereotypes on reading are generalizable to other types of implicit stereotypes. The results show that reading is influenced by the two types of implicit stereotypes; in the two studies, the reading pace slowed down when a counter-stereotype was presented. However, presupposition accommodation did not affect participants’ processing of information. Altogether these results show that (a) implicit stereotypes affect the processing of written information, regardless of the type of stereotypes presented, and (b) that implicit stereotypes prevail over the superficial linguistic treatment of presuppositions, which suggests faster processing for treating social information compared to linguistic information.

Keywords: eye-tracking, implicit stereotypes, reading, social cognition

Procedia PDF Downloads 201
4199 Increased Energy Efficiency and Improved Product Quality in Processing of Lithium Bearing Ores by Applying Fluidized-Bed Calcination Systems

Authors: Edgar Gasafi, Robert Pardemann, Linus Perander

Abstract:

For the production of lithium carbonate or hydroxide out of lithium bearing ores, a thermal activation (calcination/decrepitation) is required for the phase transition in the mineral to enable an acid respectively soda leaching in the downstream hydrometallurgical section. In this paper, traditional processing in Lithium industry is reviewed, and opportunities to reduce energy consumption and improve product quality and recovery rate will be discussed. The conventional process approach is still based on rotary kiln calcination, a technology in use since the early days of lithium ore processing, albeit not significantly further developed since. A new technology, at least for the Lithium industry, is fluidized bed calcination. Decrepitation of lithium ore was investigated at Outotec’s Frankfurt Research Centre. Focusing on fluidized bed technology, a study of major process parameters (temperature and residence time) was performed at laboratory and larger bench scale aiming for optimal product quality for subsequent processing. The technical feasibility was confirmed for optimal process conditions on pilot scale (400 kg/h feed input) providing the basis for industrial process design. Based on experimental results, a comprehensive Aspen Plus flow sheet simulation was developed to quantify mass and energy flow for the rotary kiln and fluidized bed system. Results show a significant reduction in energy consumption and improved process performance in terms of temperature profile, product quality and plant footprint. The major conclusion is that a substantial reduction of energy consumption can be achieved in processing Lithium bearing ores by using fluidized bed based systems. At the same time and different from rotary kiln process, an accurate temperature and residence time control is ensured in fluidized-bed systems leading to a homogenous temperature profile in the reactor which prevents overheating and sintering of the solids and results in uniform product quality.

Keywords: calcination, decrepitation, fluidized bed, lithium, spodumene

Procedia PDF Downloads 232
4198 Optimizing Parallel Computing Systems: A Java-Based Approach to Modeling and Performance Analysis

Authors: Maher Ali Rusho, Sudipta Halder

Abstract:

The purpose of the study is to develop optimal solutions for models of parallel computing systems using the Java language. During the study, programmes were written for the examined models of parallel computing systems. The result of the parallel sorting code is the output of a sorted array of random numbers. When processing data in parallel, the time spent on processing and the first elements of the list of squared numbers are displayed. When processing requests asynchronously, processing completion messages are displayed for each task with a slight delay. The main results include the development of optimisation methods for algorithms and processes, such as the division of tasks into subtasks, the use of non-blocking algorithms, effective memory management, and load balancing, as well as the construction of diagrams and comparison of these methods by characteristics, including descriptions, implementation examples, and advantages. In addition, various specialised libraries were analysed to improve the performance and scalability of the models. The results of the work performed showed a substantial improvement in response time, bandwidth, and resource efficiency in parallel computing systems. Scalability and load analysis assessments were conducted, demonstrating how the system responds to an increase in data volume or the number of threads. Profiling tools were used to analyse performance in detail and identify bottlenecks in models, which improved the architecture and implementation of parallel computing systems. The obtained results emphasise the importance of choosing the right methods and tools for optimising parallel computing systems, which can substantially improve their performance and efficiency.

Keywords: algorithm optimisation, memory management, load balancing, performance profiling, asynchronous programming.

Procedia PDF Downloads 14
4197 Predictive Maintenance of Electrical Induction Motors Using Machine Learning

Authors: Muhammad Bilal, Adil Ahmed

Abstract:

This study proposes an approach for electrical induction motor predictive maintenance utilizing machine learning algorithms. On the basis of a study of temperature data obtained from sensors put on the motor, the goal is to predict motor failures. The proposed models are trained to identify whether a motor is defective or not by utilizing machine learning algorithms like Support Vector Machines (SVM) and K-Nearest Neighbors (KNN). According to a thorough study of the literature, earlier research has used motor current signature analysis (MCSA) and vibration data to forecast motor failures. The temperature signal methodology, which has clear advantages over the conventional MCSA and vibration analysis methods in terms of cost-effectiveness, is the main subject of this research. The acquired results emphasize the applicability and effectiveness of the temperature-based predictive maintenance strategy by demonstrating the successful categorization of defective motors using the suggested machine learning models.

Keywords: predictive maintenance, electrical induction motors, machine learning, temperature signal methodology, motor failures

Procedia PDF Downloads 119
4196 Development of an NIR Sorting Machine, an Experimental Study in Detecting Internal Disorder and Quality of Apple Fruitpple Fruit

Authors: Eid Alharbi, Yaser Miaji

Abstract:

The quality level for fresh fruits is very important for the fruit industries. In presents study, an automatic online sorting system according to the internal disorder for fresh apple fruit has developed by using near infrared (NIR) spectroscopic technology. The automatic conveyer belts system along with sorting mechanism was constructed. To check the internal quality of the apple fruit, apple was exposed to the NIR radiations in the range 650-1300nm and the data were collected in form of absorption spectra. The collected data were compared to the reference (data of known sample) analyzed and an electronic signal was pass to the sorting system. The sorting system was separate the apple fruit samples according to electronic signal passed to the system. It is found that absorption of NIR radiation in the range 930-950nm was higher in the internally defected samples as compared to healthy samples. On the base of this high absorption of NIR radiation in 930-950nm region the online sorting system was constructed.

Keywords: mechatronics, NIR, fruit quality, spectroscopic technology, mechatronic design

Procedia PDF Downloads 391
4195 A Simple and Efficient Method for Accurate Measurement and Control of Power Frequency Deviation

Authors: S. J. Arif

Abstract:

In the presented technique, a simple method is given for accurate measurement and control of power frequency deviation. The sinusoidal signal for which the frequency deviation measurement is required is transformed to a low voltage level and passed through a zero crossing detector to convert it into a pulse train. Another stable square wave signal of 10 KHz is obtained using a crystal oscillator and decade dividing assemblies (DDA). These signals are combined digitally and then passed through decade counters to give a unique combination of pulses or levels, which are further encoded to make them equally suitable for both control applications and display units. The developed circuit using discrete components has a resolution of 0.5 Hz and completes measurement within 20 ms. The realized circuit is simulated and synthesized using Verilog HDL and subsequently implemented on FPGA. The results of measurement on FPGA are observed on a very high resolution logic analyzer. These results accurately match the simulation results as well as the results of same circuit implemented with discrete components. The proposed system is suitable for accurate measurement and control of power frequency deviation.

Keywords: digital encoder for frequency measurement, frequency deviation measurement, measurement and control systems, power systems

Procedia PDF Downloads 377
4194 The Effect of Object Presentation on Action Memory in School-Aged Children

Authors: Farzaneh Badinlou, Reza Kormi-Nouri, Monika Knopf

Abstract:

Enacted tasks are typically remembered better than when the same task materials are only verbally encoded, a robust finding referred to as the enactment effect. It has been assumed that enactment effect is independent of object presence but the size of enactment effect can be increased by providing objects at study phase in adults. To clarify the issues in children, free recall and cued recall performance of action phrases with or without using real objects were compared in 410 school-aged children from four age groups (8, 10, 12 and 14 years old). In this study, subjects were instructed to learn a series of action phrases under three encoding conditions, participants listened to verbal action phrases (VTs), performed the phrases (SPTs: subject-performed tasks), and observed the experimenter perform the phrases (EPTs: experimenter-performed tasks). Then, free recall and cued recall memory tests were administrated. The results revealed that the real object compared with imaginary objects improved recall performance in SPTs and EPTs, but more so in VTs. It was also found that the object presence was not necessary for the occurrence of the enactment effect but it was changed the size of enactment effect in all age groups. The size of enactment effect was more pronounced for imaginary objects than the real object in both free recall and cued recall memory tests in children. It was discussed that SPTs and EPTs deferentially facilitate item-specific and relation information processing and providing the objects can moderate the processing underlying the encoding conditions.

Keywords: action memory, enactment effect, item-specific processing, object, relational processing, school-aged children

Procedia PDF Downloads 240
4193 Influence of Geomagnetic Storms on Ionospheric Parameters

Authors: Affan Ahmed

Abstract:

This research investigates the Influence of geomagnetic storm occurring from April 22 to April 26, 2023, on the Earth’s ionosphere, with a focus on analyzing specific ionospheric parameters to understand the storm's effects on ionospheric stability and GNSS signal propagation. Geomagnetic storms, caused by intensified solar wind-magnetosphere interactions, can significantly disturb ionospheric conditions, impacting electron density, Total Electron Content (TEC), and thermospheric composition. Such disturbances are particularly relevant to satellite-based navigation and communication systems, as fluctuations in ionospheric parameters can degrade signal integrity and reliability. In this study, data were obtained from multiple sources, including OMNIWeb for parameters like Dst, Kp, Bz, Electric Field, and solar wind pressure, GUVI for O/N₂ ratio maps, and TEC data from low-, mid-, and high-latitude stations available on the IONOLAB website. Additional Equatorial Electrojet (EEJ) and geomagnetic data were acquired from INTERMAGNET. The methodology involved comparing storm-affected data from April 22 to April 26 with quiet days in April 2023, using statistical and wavelet analysis to assess variations in parameters like TEC, O/N₂ ratio, and geomagnetic indices. The results show pronounced fluctuations in TEC and other ionospheric parameters during the main phase of the storm, with spatial variations observed across latitudes, highlighting the global response of the ionosphere to geomagnetic disturbances. The findings underline the storm’s significant impact on ionospheric composition, particularly in mid- and high-latitude regions, which correlates with increased GNSS signal interference in these areas. This study contributes to understanding the ionosphere’s response to geomagnetic activity, emphasizing the need for robust models to predict and mitigate space weather effects on GNSS-dependent technologies.

Keywords: geomagnetic storms, ionospheric disturbances, space weather effects, magnetosphere-ionopheric coupling

Procedia PDF Downloads 13
4192 Robust Data Image Watermarking for Data Security

Authors: Harsh Vikram Singh, Ankur Rai, Anand Mohan

Abstract:

In this paper, we propose secure and robust data hiding algorithm based on DCT by Arnold transform and chaotic sequence. The watermark image is scrambled by Arnold cat map to increases its security and then the chaotic map is used for watermark signal spread in middle band of DCT coefficients of the cover image The chaotic map can be used as pseudo-random generator for digital data hiding, to increase security and robustness .Performance evaluation for robustness and imperceptibility of proposed algorithm has been made using bit error rate (BER), normalized correlation (NC), and peak signal to noise ratio (PSNR) value for different watermark and cover images such as Lena, Girl, Tank images and gain factor .We use a binary logo image and text image as watermark. The experimental results demonstrate that the proposed algorithm achieves higher security and robustness against JPEG compression as well as other attacks such as addition of noise, low pass filtering and cropping attacks compared to other existing algorithm using DCT coefficients. Moreover, to recover watermarks in proposed algorithm, there is no need to original cover image.

Keywords: data hiding, watermarking, DCT, chaotic sequence, arnold transforms

Procedia PDF Downloads 515
4191 Computational Characterization of Electronic Charge Transfer in Interfacial Phospholipid-Water Layers

Authors: Samira Baghbanbari, A. B. P. Lever, Payam S. Shabestari, Donald Weaver

Abstract:

Existing signal transmission models, although undoubtedly useful, have proven insufficient to explain the full complexity of information transfer within the central nervous system. The development of transformative models will necessitate a more comprehensive understanding of neuronal lipid membrane electrophysiology. Pursuant to this goal, the role of highly organized interfacial phospholipid-water layers emerges as a promising case study. A series of phospholipids in neural-glial gap junction interfaces as well as cholesterol molecules have been computationally modelled using high-performance density functional theory (DFT) calculations. Subsequent 'charge decomposition analysis' calculations have revealed a net transfer of charge from phospholipid orbitals through the organized interfacial water layer before ultimately finding its way to cholesterol acceptor molecules. The specific pathway of charge transfer from phospholipid via water layers towards cholesterol has been mapped in detail. Cholesterol is an essential membrane component that is overrepresented in neuronal membranes as compared to other mammalian cells; given this relative abundance, its apparent role as an electronic acceptor may prove to be a relevant factor in further signal transmission studies of the central nervous system. The timescales over which this electronic charge transfer occurs have also been evaluated by utilizing a system design that systematically increases the number of water molecules separating lipids and cholesterol. Memory loss through hydrogen-bonded networks in water can occur at femtosecond timescales, whereas existing action potential-based models are limited to micro or nanosecond scales. As such, the development of future models that attempt to explain faster timescale signal transmission in the central nervous system may benefit from our work, which provides additional information regarding fast timescale energy transfer mechanisms occurring through interfacial water. The study possesses a dataset that includes six distinct phospholipids and a collection of cholesterol. Ten optimized geometric characteristics (features) were employed to conduct binary classification through an artificial neural network (ANN), differentiating cholesterol from the various phospholipids. This stems from our understanding that all lipids within the first group function as electronic charge donors, while cholesterol serves as an electronic charge acceptor.

Keywords: charge transfer, signal transmission, phospholipids, water layers, ANN

Procedia PDF Downloads 75
4190 Affective Transparency in Compound Word Processing

Authors: Jordan Gallant

Abstract:

In the compound word processing literature, much attention has been paid to the relationship between a compound’s denotational meaning and that of its morphological whole-word constituents, which is referred to as ‘semantic transparency’. However, the parallel relationship between a compound’s connotation and that of its constituents has not been addressed at all. For instance, while a compound like ‘painkiller’ might be semantically transparent, it is not ‘affectively transparent’. That is, both constituents have primarily negative connotations, while the whole compound has a positive one. This paper investigates the role of affective transparency on compound processing using two methodologies commonly employed in this field: a lexical decision task and a typing task. The critical stimuli used were 112 English bi-constituent compounds that differed in terms of the effective transparency of their constituents. Of these, 36 stimuli contained constituents with similar connotations to the compound (e.g., ‘dreamland’), 36 contained constituents with more positive connotations (e.g. ‘bedpan’), and 36 contained constituents with more negative connotations (e.g. ‘painkiller’). Connotation of whole-word constituents and compounds were operationalized via valence ratings taken from an off-line ratings database. In Experiment 1, compound stimuli and matched non-word controls were presented visually to participants, who were then asked to indicate whether it was a real word in English. Response times and accuracy were recorded. In Experiment 2, participants typed compound stimuli presented to them visually. Individual keystroke response times and typing accuracy were recorded. The results of both experiments provided positive evidence that compound processing is influenced by effective transparency. In Experiment 1, compounds in which both constituents had more negative connotations than the compound itself were responded to significantly more slowly than compounds in which the constituents had similar or more positive connotations. Typed responses from Experiment 2 showed that inter-keystroke intervals at the morphological constituent boundary were significantly longer when the connotation of the head constituent was either more positive or more negative than that of the compound. The interpretation of this finding is discussed in the context of previous compound typing research. Taken together, these findings suggest that affective transparency plays a role in the recognition, storage, and production of English compound words. This study provides a promising first step in a new direction for research on compound words.

Keywords: compound processing, semantic transparency, typed production, valence

Procedia PDF Downloads 129
4189 Reliability of Intra-Logistics Systems – Simulating Performance Availability

Authors: Steffen Schieweck, Johannes Dregger, Sascha Kaczmarek, Michael ten Hompel

Abstract:

Logistics distributors face the issue of having to provide increasing service levels while being forced to reduce costs at the same time. Same-day delivery, quick order processing and rapidly growing ranges of articles are only some of the prevailing challenges. One key aspect of the performance of an intra-logistics system is how often and in which amplitude congestions and dysfunctions affect the processing operations. By gaining knowledge of the so called ‘performance availability’ of such a system during the planning stage, oversizing and wasting can be reduced whereas planning transparency is increased. State of the art for the determination of this KPI are simulation studies. However, their structure and therefore their results may vary unforeseeably. This article proposes a concept for the establishment of ‘certified’ and hence reliable and comparable simulation models.

Keywords: intra-logistics, performance availability, simulation, warehousing

Procedia PDF Downloads 455
4188 Advances of Image Processing in Precision Agriculture: Using Deep Learning Convolution Neural Network for Soil Nutrient Classification

Authors: Halimatu S. Abdullahi, Ray E. Sheriff, Fatima Mahieddine

Abstract:

Agriculture is essential to the continuous existence of human life as they directly depend on it for the production of food. The exponential rise in population calls for a rapid increase in food with the application of technology to reduce the laborious work and maximize production. Technology can aid/improve agriculture in several ways through pre-planning and post-harvest by the use of computer vision technology through image processing to determine the soil nutrient composition, right amount, right time, right place application of farm input resources like fertilizers, herbicides, water, weed detection, early detection of pest and diseases etc. This is precision agriculture which is thought to be solution required to achieve our goals. There has been significant improvement in the area of image processing and data processing which has being a major challenge. A database of images is collected through remote sensing, analyzed and a model is developed to determine the right treatment plans for different crop types and different regions. Features of images from vegetations need to be extracted, classified, segmented and finally fed into the model. Different techniques have been applied to the processes from the use of neural network, support vector machine, fuzzy logic approach and recently, the most effective approach generating excellent results using the deep learning approach of convolution neural network for image classifications. Deep Convolution neural network is used to determine soil nutrients required in a plantation for maximum production. The experimental results on the developed model yielded results with an average accuracy of 99.58%.

Keywords: convolution, feature extraction, image analysis, validation, precision agriculture

Procedia PDF Downloads 318
4187 Simscape Library for Large-Signal Physical Network Modeling of Inertial Microelectromechanical Devices

Authors: S. Srinivasan, E. Cretu

Abstract:

The information flow (e.g. block-diagram or signal flow graph) paradigm for the design and simulation of Microelectromechanical (MEMS)-based systems allows to model MEMS devices using causal transfer functions easily, and interface them with electronic subsystems for fast system-level explorations of design alternatives and optimization. Nevertheless, the physical bi-directional coupling between different energy domains is not easily captured in causal signal flow modeling. Moreover, models of fundamental components acting as building blocks (e.g. gap-varying MEMS capacitor structures) depend not only on the component, but also on the specific excitation mode (e.g. voltage or charge-actuation). In contrast, the energy flow modeling paradigm in terms of generalized across-through variables offers an acausal perspective, separating clearly the physical model from the boundary conditions. This promotes reusability and the use of primitive physical models for assembling MEMS devices from primitive structures, based on the interconnection topology in generalized circuits. The physical modeling capabilities of Simscape have been used in the present work in order to develop a MEMS library containing parameterized fundamental building blocks (area and gap-varying MEMS capacitors, nonlinear springs, displacement stoppers, etc.) for the design, simulation and optimization of MEMS inertial sensors. The models capture both the nonlinear electromechanical interactions and geometrical nonlinearities and can be used for both small and large signal analyses, including the numerical computation of pull-in voltages (stability loss). Simscape behavioral modeling language was used for the implementation of reduced-order macro models, that present the advantage of a seamless interface with Simulink blocks, for creating hybrid information/energy flow system models. Test bench simulations of the library models compare favorably with both analytical results and with more in-depth finite element simulations performed in ANSYS. Separate MEMS-electronic integration tests were done on closed-loop MEMS accelerometers, where Simscape was used for modeling the MEMS device and Simulink for the electronic subsystem.

Keywords: across-through variables, electromechanical coupling, energy flow, information flow, Matlab/Simulink, MEMS, nonlinear, pull-in instability, reduced order macro models, Simscape

Procedia PDF Downloads 137
4186 Enhancement of Mechanical and Dissolution Properties of a Cast Magnesium Alloy via Equal Angular Channel Processing

Authors: Tim Dunne, Jiaxiang Ren, Lei Zhao, Peng Cheng, Yi Song, Yu Liu, Wenhan Yue, Xiongwen Yang

Abstract:

Two decades of the Shale Revolution has transforming transformed the global energy market, in part by the adaption of multi-stage dissolvable frac plugs. Magnesium has been favored for the bulk of plugs, requiring development of materials to suit specific field requirements. Herein, the mechanical and dissolution results from equal channel angular pressing (ECAP) of two cast dissolvable magnesium alloy are described. ECAP was selected as a route to increase the mechanical properties of two formulations of dissolvable magnesium, as solutionizing failed. In this study, 1” square cross section samples cast Mg alloys formulations containing rare earth were processed at temperatures ranging from 200 to 350 °C, at a rate of 0.005”/s, with a backpressure from 0 to 70 MPa, in a brass, or brass + graphite sheet. Generally, the yield and ultimate tensile strength (UTS) doubled for all. For formulation DM-2, the yield increased from 100 MPa to 250 MPa; UTS from 175 MPa to 325 MPa, but the strain fell from 2 to 1%. Formulation DM-3 yield increased from 75 MPa to 200 MPa, UTS from 150 MPa to 275 MPa, with strain increasing from 1 to 3%. Meanwhile, ECAP has also been found to reduce the dissolution rate significantly. A microstructural analysis showed grain refinement of the alloy and the movement of secondary phases away from the grain boundary. It is believed that reconfiguration of the grain boundary phases increased the mechanical properties and decreased the dissolution rate. ECAP processing of dissolvable high rare earth content magnesium is possible despite the brittleness of the material. ECAP is a possible processing route to increase mechanical properties for dissolvable aluminum alloys that do not extrude.

Keywords: equal channel angular processing, dissolvable magnesium, frac plug, mechanical properties

Procedia PDF Downloads 117
4185 Generic Early Warning Signals for Program Student Withdrawals: A Complexity Perspective Based on Critical Transitions and Fractals

Authors: Sami Houry

Abstract:

Complex systems exhibit universal characteristics as they near a tipping point. Among them are common generic early warning signals which precede critical transitions. These signals include: critical slowing down in which the rate of recovery from perturbations decreases over time; an increase in the variance of the state variable; an increase in the skewness of the state variable; an increase in the autocorrelations of the state variable; flickering between different states; and an increase in spatial correlations over time. The presence of the signals has management implications, as the identification of the signals near the tipping point could allow management to identify intervention points. Despite the applications of the generic early warning signals in various scientific fields, such as fisheries, ecology and finance, a review of literature did not identify any applications that address the program student withdrawal problem at the undergraduate distance universities. This area could benefit from the application of generic early warning signals as the program withdrawal rate amongst distance students is higher than the program withdrawal rate at face-to-face conventional universities. This research specifically assessed the generic early warning signals through an intensive case study of undergraduate program student withdrawal at a Canadian distance university. The university is non-cohort based due to its system of continuous course enrollment where students can enroll in a course at the beginning of every month. The assessment of the signals was achieved through the comparison of the incidences of generic early warning signals among students who withdrew or simply became inactive in their undergraduate program of study, the true positives, to the incidences of the generic early warning signals among graduates, the false positives. This was achieved through significance testing. Research findings showed support for the signal pertaining to the rise in flickering which is represented in the increase in the student’s non-pass rates prior to withdrawing from a program; moderate support for the signals of critical slowing down as reflected in the increase in the time a student spends in a course; and moderate support for the signals on increase in autocorrelation and increase in variance in the grade variable. The findings did not support the signal on the increase in skewness of the grade variable. The research also proposes a new signal based on the fractal-like characteristic of student behavior. The research also sought to extend knowledge by investigating whether the emergence of a program withdrawal status is self-similar or fractal-like at multiple levels of observation, specifically the program level and the course level. In other words, whether the act of withdrawal at the program level is also present at the course level. The findings moderately supported self-similarity as a potential signal. Overall, the assessment of the signals suggests that the signals, with the exception with the increase of skewness, could be utilized as a predictive management tool and potentially add one more tool, the fractal-like characteristic of withdrawal, as an additional signal in addressing the student program withdrawal problem.

Keywords: critical transitions, fractals, generic early warning signals, program student withdrawal

Procedia PDF Downloads 185
4184 Paddy/Rice Singulation for Determination of Husking Efficiency and Damage Using Machine Vision

Authors: M. Shaker, S. Minaei, M. H. Khoshtaghaza, A. Banakar, A. Jafari

Abstract:

In this study a system of machine vision and singulation was developed to separate paddy from rice and determine paddy husking and rice breakage percentages. The machine vision system consists of three main components including an imaging chamber, a digital camera, a computer equipped with image processing software. The singulation device consists of a kernel holding surface, a motor with vacuum fan, and a dimmer. For separation of paddy from rice (in the image), it was necessary to set a threshold. Therefore, some images of paddy and rice were sampled and the RGB values of the images were extracted using MATLAB software. Then mean and standard deviation of the data were determined. An Image processing algorithm was developed using MATLAB to determine paddy/rice separation and rice breakage and paddy husking percentages, using blue to red ratio. Tests showed that, a threshold of 0.75 is suitable for separating paddy from rice kernels. Results from the evaluation of the image processing algorithm showed that the accuracies obtained with the algorithm were 98.36% and 91.81% for paddy husking and rice breakage percentage, respectively. Analysis also showed that a suction of 45 mmHg to 50 mmHg yielding 81.3% separation efficiency is appropriate for operation of the kernel singulation system.

Keywords: breakage, computer vision, husking, rice kernel

Procedia PDF Downloads 382
4183 Detection of Intentional Attacks in Images Based on Watermarking

Authors: Hazem Munawer Al-Otum

Abstract:

In this work, an efficient watermarking technique is proposed and can be used for detecting intentional attacks in RGB color images. The proposed technique can be implemented for image authentication and exhibits high robustness against unintentional common image processing attacks. It deploys two measures to discern between intentional and unintentional attacks based on using a quantization-based technique in a modified 2D multi-pyramidal DWT transform. Simulations have shown high accuracy in detecting intentionally attacked regions while exhibiting high robustness under moderate to severe common image processing attacks.

Keywords: image authentication, copyright protection, semi-fragile watermarking, tamper detection

Procedia PDF Downloads 258
4182 Dynamic Control Theory: A Behavioral Modeling Approach to Demand Forecasting amongst Office Workers Engaged in a Competition on Energy Shifting

Authors: Akaash Tawade, Manan Khattar, Lucas Spangher, Costas J. Spanos

Abstract:

Many grids are increasing the share of renewable energy in their generation mix, which is causing the energy generation to become less controllable. Buildings, which consume nearly 33% of all energy, are a key target for demand response: i.e., mechanisms for demand to meet supply. Understanding the behavior of office workers is a start towards developing demand response for one sector of building technology. The literature notes that dynamic computational modeling can be predictive of individual action, especially given that occupant behavior is traditionally abstracted from demand forecasting. Recent work founded on Social Cognitive Theory (SCT) has provided a promising conceptual basis for modeling behavior, personal states, and environment using control theoretic principles. Here, an adapted linear dynamical system of latent states and exogenous inputs is proposed to simulate energy demand amongst office workers engaged in a social energy shifting game. The energy shifting competition is implemented in an office in Singapore that is connected to a minigrid of buildings with a consistent 'price signal.' This signal is translated into a 'points signal' by a reinforcement learning (RL) algorithm to influence participant energy use. The dynamic model functions at the intersection of the points signals, baseline energy consumption trends, and SCT behavioral inputs to simulate future outcomes. This study endeavors to analyze how the dynamic model trains an RL agent and, subsequently, the degree of accuracy to which load deferability can be simulated. The results offer a generalizable behavioral model for energy competitions that provides the framework for further research on transfer learning for RL, and more broadly— transactive control.

Keywords: energy demand forecasting, social cognitive behavioral modeling, social game, transfer learning

Procedia PDF Downloads 109
4181 Control the Flow of Big Data

Authors: Shizra Waris, Saleem Akhtar

Abstract:

Big data is a research area receiving attention from academia and IT communities. In the digital world, the amounts of data produced and stored have within a short period of time. Consequently this fast increasing rate of data has created many challenges. In this paper, we use functionalism and structuralism paradigms to analyze the genesis of big data applications and its current trends. This paper presents a complete discussion on state-of-the-art big data technologies based on group and stream data processing. Moreover, strengths and weaknesses of these technologies are analyzed. This study also covers big data analytics techniques, processing methods, some reported case studies from different vendor, several open research challenges and the chances brought about by big data. The similarities and differences of these techniques and technologies based on important limitations are also investigated. Emerging technologies are suggested as a solution for big data problems.

Keywords: computer, it community, industry, big data

Procedia PDF Downloads 194
4180 Design and Implementation of a Counting and Differentiation System for Vehicles through Video Processing

Authors: Derlis Gregor, Kevin Cikel, Mario Arzamendia, Raúl Gregor

Abstract:

This paper presents a self-sustaining mobile system for counting and classification of vehicles through processing video. It proposes a counting and classification algorithm divided in four steps that can be executed multiple times in parallel in a SBC (Single Board Computer), like the Raspberry Pi 2, in such a way that it can be implemented in real time. The first step of the proposed algorithm limits the zone of the image that it will be processed. The second step performs the detection of the mobile objects using a BGS (Background Subtraction) algorithm based on the GMM (Gaussian Mixture Model), as well as a shadow removal algorithm using physical-based features, followed by morphological operations. In the first step the vehicle detection will be performed by using edge detection algorithms and the vehicle following through Kalman filters. The last step of the proposed algorithm registers the vehicle passing and performs their classification according to their areas. An auto-sustainable system is proposed, powered by batteries and photovoltaic solar panels, and the data transmission is done through GPRS (General Packet Radio Service)eliminating the need of using external cable, which will facilitate it deployment and translation to any location where it could operate. The self-sustaining trailer will allow the counting and classification of vehicles in specific zones with difficult access.

Keywords: intelligent transportation system, object detection, vehicle couting, vehicle classification, video processing

Procedia PDF Downloads 323
4179 Design of Enhanced Adaptive Filter for Integrated Navigation System of FOG-SINS and Star Tracker

Authors: Nassim Bessaad, Qilian Bao, Zhao Jiangkang

Abstract:

The fiber optics gyroscope in the strap-down inertial navigation system (FOG-SINS) suffers from precision degradation due to the influence of random errors. In this work, an enhanced Allan variance (AV) stochastic modeling method combined with discrete wavelet transform (DWT) for signal denoising is implemented to estimate the random process in the FOG signal. Furthermore, we devise a measurement-based iterative adaptive Sage-Husa nonlinear filter with augmented states to integrate a star tracker sensor with SINS. The proposed filter adapts the measurement noise covariance matrix based on the available data. Moreover, the enhanced stochastic modeling scheme is invested in tuning the process noise covariance matrix and the augmented state Gauss-Markov process parameters. Finally, the effectiveness of the proposed filter is investigated by employing the collected data in laboratory conditions. The result shows the filter's improved accuracy in comparison with the conventional Kalman filter (CKF).

Keywords: inertial navigation, adaptive filtering, star tracker, FOG

Procedia PDF Downloads 80
4178 Rationalized Haar Transforms Approach to Design of Observer for Control Systems with Unknown Inputs

Authors: Joon-Hoon Park

Abstract:

The fundamental concept of observability is important in both theoretical and practical points of modern control systems. In modern control theory, a control system has criteria for determining the design solution exists for the system parameters and design objectives. The idea of observability relates to the condition of observing or estimating the state variables from the output variables that is generally measurable. To design closed-loop control system, the practical problems of implementing the feedback of the state variables must be considered and implementing state feedback control problem has been existed in this case. All the state variables are not available, so it is requisite to design and implement an observer that will estimate the state variables form the output parameters. However sometimes unknown inputs are presented in control systems as practical cases. This paper presents a design method and algorithm for observer of control system with unknown input parameters based on Rationalized Haar transform. The proposed method is more advantageous than the other numerical method.

Keywords: orthogonal functions, rationalized Haar transforms, control system observer, algebraic method

Procedia PDF Downloads 371
4177 Mathematical Modeling Pressure Losses of Trapezoidal Labyrinth Channel and Bi-Objective Optimization of the Design Parameters

Authors: Nina Philipova

Abstract:

The influence of the geometric parameters of trapezoidal labyrinth channel on the pressure losses along the labyrinth length is investigated in this work. The impact of the dentate height is studied at fixed values of the dentate angle and the dentate spacing. The objective of the work presented in this paper is to derive a mathematical model of the pressure losses along the labyrinth length depending on the dentate height. The numerical simulations of the water flow movement are performed by using Commercial codes ANSYS GAMBIT and FLUENT. Dripper inlet pressure is set up to be 1 bar. As a result, the mathematical model of the pressure losses is determined as a second-order polynomial by means Commercial code STATISTIKA. Bi-objective optimization is performed by using the mean algebraic function of utility. The optimum value of the dentate height is defined at fixed values of the dentate angle and the dentate spacing. The derived model of the pressure losses and the optimum value of the dentate height are used as a basis for a more successful emitter design.

Keywords: drip irrigation, labyrinth channel hydrodynamics, numerical simulations, Reynolds stress model

Procedia PDF Downloads 155
4176 Design of Regular Communication Area for Infrared Electronic-Toll-Collection Systems

Authors: Wern-Yarng Shieh, Chao Qian, Bingnan Pei

Abstract:

A design of communication area for infrared electronic-toll-collection systems to provide an extended communication interval in the vehicle traveling direction and regular boundary between contiguous traffic lanes is proposed. By utilizing two typical low-cost commercial infrared LEDs with different half-intensity angles Φ1/2 = 22° and 10°, the radiation pattern of the emitter is designed to properly adjust the spatial distribution of the signal power. The aforementioned purpose can be achieved with an LED array in a three-piece structure with appropriate mounting angles. With this emitter, the influence of the mounting parameters, including the mounting height and mounting angles of the on-board unit and road-side unit, on the system performance in terms of the received signal strength and communication area are investigated. The results reveal that, for our emitter proposed in this paper, the ideal "long-and-narrow" characteristic of the communication area is very little affected by these mounting parameters. An optimum mounting configuration is also suggested.

Keywords: dedicated short-range communication (DSRC), electronic toll collection (ETC), infrared communication, intelligent transportation system (ITS), multilane free flow

Procedia PDF Downloads 337
4175 Big Data Analysis with RHadoop

Authors: Ji Eun Shin, Byung Ho Jung, Dong Hoon Lim

Abstract:

It is almost impossible to store or analyze big data increasing exponentially with traditional technologies. Hadoop is a new technology to make that possible. R programming language is by far the most popular statistical tool for big data analysis based on distributed processing with Hadoop technology. With RHadoop that integrates R and Hadoop environment, we implemented parallel multiple regression analysis with different sizes of actual data. Experimental results showed our RHadoop system was much faster as the number of data nodes increases. We also compared the performance of our RHadoop with lm function and big lm packages available on big memory. The results showed that our RHadoop was faster than other packages owing to paralleling processing with increasing the number of map tasks as the size of data increases.

Keywords: big data, Hadoop, parallel regression analysis, R, RHadoop

Procedia PDF Downloads 437
4174 The Univalence Principle: Equivalent Mathematical Structures Are Indistinguishable

Authors: Michael Shulman, Paige North, Benedikt Ahrens, Dmitris Tsementzis

Abstract:

The Univalence Principle is the statement that equivalent mathematical structures are indistinguishable. We prove a general version of this principle that applies to all set-based, categorical, and higher-categorical structures defined in a non-algebraic and space-based style, as well as models of higher-order theories such as topological spaces. In particular, we formulate a general definition of indiscernibility for objects of any such structure, and a corresponding univalence condition that generalizes Rezk’s completeness condition for Segal spaces and ensures that all equivalences of structures are levelwise equivalences. Our work builds on Makkai’s First-Order Logic with Dependent Sorts, but is expressed in Voevodsky’s Univalent Foundations (UF), extending previous work on the Structure Identity Principle and univalent categories in UF. This enables indistinguishability to be expressed simply as identification, and yields a formal theory that is interpretable in classical homotopy theory, but also in other higher topos models. It follows that Univalent Foundations is a fully equivalence-invariant foundation for higher-categorical mathematics, as intended by Voevodsky.

Keywords: category theory, higher structures, inverse category, univalence

Procedia PDF Downloads 153