Search results for: thermal energy storage.‎
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12006

Search results for: thermal energy storage.‎

11076 The Safety Related Functions of The Engineered Barriers of the IAEA Borehole Disposal System: The Ghana Pilot Project

Authors: Paul Essel, Eric T. Glover, Gustav Gbeddy, Yaw Adjei-Kyereme, Abdallah M. A. Dawood, Evans M. Ameho, Emmanuel A. Aberikae

Abstract:

Radioactive materials mainly in the form of Sealed Radioactive Sources are being used in various sectors (medicine, agriculture, industry, research, and teaching) for the socio-economic development of Ghana. The use of these beneficial radioactive materials has resulted in an inventory of Disused Sealed Radioactive Sources (DSRS) in storage. Most of the DSRS are legacy/historic sources which cannot be returned to their manufacturer or country of origin. Though small in volume, DSRS can be intensively radioactive and create a significant safety and security liability. They need to be managed in a safe and secure manner in accordance with the fundamental safety objective. The Radioactive Waste Management Center (RWMC) of the Ghana Atomic Energy Commission (GAEC) is currently storing a significant volume of DSRS. The initial activities of the DSRS range from 7.4E+5 Bq to 6.85E+14 Bq. If not managed properly, such DSRS can represent a potential hazard to human health and the environment. Storage is an important interim step, especially for DSRS containing very short-lived radionuclides, which can decay to exemption levels within a few years. Long-term storage, however, is considered an unsustainable option for DSRS with long half-lives hence the need for a disposal facility. The GAEC intends to use the International Atomic Energy Agency’s (IAEA’s) Borehole Disposal System (BDS) to provide a safe, secure, and cost-effective disposal option to dispose of its DSRS in storage. The proposed site for implementation of the BDS is on the GAEC premises at Kwabenya. The site has been characterized to gain a general understanding in terms of its regional setting, its past evolution and likely future natural evolution over the assessment time frame. Due to the long half-lives of some of the radionuclides to be disposed of (Ra-226 with half-life of 1600 years), the engineered barriers of the system must be robust to contain these radionuclides for this long period before they decay to harmless levels. There is the need to assess the safety related functions of the engineered barriers of this disposal system.

Keywords: radionuclides, disposal, radioactive waste, engineered barrier

Procedia PDF Downloads 82
11075 A Design Methodology and Tool to Support Ecodesign Implementation in Induction Hobs

Authors: Anna Costanza Russo, Daniele Landi, Michele Germani

Abstract:

Nowadays, the European Ecodesign Directive has emerged as a new approach to integrate environmental concerns into the product design and related processes. Ecodesign aims to minimize environmental impacts throughout the product life cycle, without compromising performances and costs. In addition, the recent Ecodesign Directives require products which are increasingly eco-friendly and eco-efficient, preserving high-performances. It is very important for producers measuring performances, for electric cooking ranges, hobs, ovens, and grills for household use, and a low power consumption of appliances represents a powerful selling point, also in terms of ecodesign requirements. The Ecodesign Directive provides a clear framework about the sustainable design of products and it has been extended in 2009 to all energy-related products, or products with an impact on energy consumption during the use. The European Regulation establishes measures of ecodesign of ovens, hobs, and kitchen hoods, and domestic use and energy efficiency of a product has a significant environmental aspect in the use phase which is the most impactful in the life cycle. It is important that the product parameters and performances are not affected by ecodesign requirements from a user’s point of view, and the benefits of reducing energy consumption in the use phase should offset the possible environmental impact in the production stage. Accurate measurements of cooking appliance performance are essential to help the industry to produce more energy efficient appliances. The development of ecodriven products requires ecoinnovation and ecodesign tools to support the sustainability improvement. The ecodesign tools should be practical and focused on specific ecoobjectives in order to be largely diffused. The main scope of this paper is the development, implementation, and testing of an innovative tool, which could be an improvement for the sustainable design of induction hobs. In particular, a prototypical software tool is developed in order to simulate the energy performances of the induction hobs. The tool is focused on a multiphysics model which is able to simulate the energy performances and the efficiency of induction hobs starting from the design data. The multiphysics model is composed by an electromagnetic simulation and a thermal simulation. The electromagnetic simulation is able to calculate the eddy current induced in the pot, which leads to the Joule heating of material. The thermal simulation is able to measure the energy consumption during the operational phase. The Joule heating caused from the eddy currents is the output of electromagnetic simulation and the input of thermal ones. The aims of the paper are the development of integrated tools and methodologies of virtual prototyping in the context of the ecodesign. This tool could be a revolutionary instrument in the field of industrial engineering and it gives consideration to the environmental aspects of product design and focus on the ecodesign of energy-related products, in order to achieve a reduced environmental impact.

Keywords: ecodesign, energy efficiency, induction hobs, virtual prototyping

Procedia PDF Downloads 250
11074 Scenario Analysis to Assess the Competitiveness of Hydrogen in Securing the Italian Energy System

Authors: Gianvito Colucci, Valeria Di Cosmo, Matteo Nicoli, Orsola Maria Robasto, Laura Savoldi

Abstract:

The hydrogen value chain deployment is likely to be boosted in the near term by the energy security measures planned by European countries to face the recent energy crisis. In this context, some countries are recognized to have a crucial role in the geopolitics of hydrogen as importers, consumers and exporters. According to the European Hydrogen Backbone Initiative, Italy would be part of one of the 5 corridors that will shape the European hydrogen market. However, the set targets are very ambitious and require large investments to rapidly develop effective hydrogen policies: in this regard, scenario analysis is becoming increasingly important to support energy planning, and energy system optimization models appear to be suitable tools to quantitively carry on that kind of analysis. The work aims to assess the competitiveness of hydrogen in contributing to the Italian energy security in the coming years, under different price and import conditions, using the energy system model TEMOA-Italy. A wide spectrum of hydrogen technologies is included in the analysis, covering the production, storage, delivery, and end-uses stages. National production from fossil fuels with and without CCS, as well as electrolysis and import of low-carbon hydrogen from North Africa, are the supply solutions that would compete with other ones, such as natural gas, biomethane and electricity value chains, to satisfy sectoral energy needs (transport, industry, buildings, agriculture). Scenario analysis is then used to study the competition under different price and import conditions. The use of TEMOA-Italy allows the work to catch the interaction between the economy and technological detail, which is much needed in the energy policies assessment, while the transparency of the analysis and of the results is ensured by the full accessibility of the TEMOA open-source modeling framework.

Keywords: energy security, energy system optimization models, hydrogen, natural gas, open-source modeling, scenario analysis, TEMOA

Procedia PDF Downloads 116
11073 Working Mode and Key Technology of Thermal Vacuum Test Software for Spacecraft Test

Authors: Zhang Lei, Zhan Haiyang, Gu Miao

Abstract:

A universal software platform is developed for improving the defects in the practical one. This software platform has distinct advantages in modularization, information management, and the interfaces. Several technologies such as computer technology, virtualization technology, network technology, etc. are combined together in this software platform, and four working modes are introduced in this article including single mode, distributed mode, cloud mode, and the centralized mode. The application area of the software platform is extended through the switch between these working modes. The software platform can arrange the thermal vacuum test process automatically. This function can improve the reliability of thermal vacuum test.

Keywords: software platform, thermal vacuum test, control and measurement, work mode

Procedia PDF Downloads 414
11072 Integrated Thermal Control to Improve Workers' Intellectual Concentration in Office Environment

Authors: Kimi Ueda, Kosuke Sugita, Soma Kawamoto, Hiroshi Shimoda, Hirotake Ishii, Fumiaki Obayashi, Kazuhiro Taniguchi, Ayaka Suzuki

Abstract:

The authors have focused on the thermal difference between office rooms and break rooms, and proposed an integrated thermal control method to improve workers’ intellectual concentration. First, a trial experiment was conducted to verify the effect of temperature difference on workers’ intellectual concentration with using two experimental rooms; a thermally neutral break room and a cooler office room. As the result of the experiment, it was found that the thermal difference had a significant effect on improving their intellectual concentration. Workers, however, often take a short break at their desks without moving to a break room, so that the thermal difference cannot be given to them. So utilization of airflow was proposed as an integrated thermal control method instead of the temperature difference to realize the similar effect. Concretely, they are exposed to airflow when working in order to reduce their effective temperature while it is weakened when taking a break. Another experiment was conducted to confirm the effect of the airflow control on their intellectual concentration. As the result of concentration index and questionnaire survey, their intellectual concentration was significantly improved in the integrated thermal controlled environment. It was also found that most of them felt more comfortable and had higher motivation and higher degree of concentration in the environment.

Keywords: airflow, evaluation experiment, intellectual concentration, thermal difference

Procedia PDF Downloads 293
11071 Modeling and Energy Analysis of Limestone Decomposition with Microwave Heating

Authors: Sofia N. Gonçalves, Duarte M. S. Albuquerque, José C. F. Pereira

Abstract:

The energy transition is spurred by structural changes in energy demand, supply, and prices. Microwave technology was first proposed as a faster alternative for cooking food. It was found that food heated instantly when interacting with high-frequency electromagnetic waves. The dielectric properties account for a material’s ability to absorb electromagnetic energy and dissipate this energy in the form of heat. Many energy-intense industries could benefit from electromagnetic heating since many of the raw materials are dielectric at high temperatures. Limestone sedimentary rock is a dielectric material intensively used in the cement industry to produce unslaked lime. A numerical 3D model was implemented in COMSOL Multiphysics to study the limestone continuous processing under microwave heating. The model solves the two-way coupling between the Energy equation and Maxwell’s equations as well as the coupling between heat transfer and chemical interfaces. Complementary, a controller was implemented to optimize the overall heating efficiency and control the numerical model stability. This was done by continuously matching the cavity impedance and predicting the required energy for the system, avoiding energy inefficiencies. This controller was developed in MATLAB and successfully fulfilled all these goals. The limestone load influence on thermal decomposition and overall process efficiency was the main object of this study. The procedure considered the Verification and Validation of the chemical kinetics model separately from the coupled model. The chemical model was found to correctly describe the chosen kinetic equation, and the coupled model successfully solved the equations describing the numerical model. The interaction between flow of material and electric field Poynting vector revealed to influence limestone decomposition, as a result from the low dielectric properties of limestone. The numerical model considered this effect and took advantage from this interaction. The model was demonstrated to be highly unstable when solving non-linear temperature distributions. Limestone has a dielectric loss response that increases with temperature and has low thermal conductivity. For this reason, limestone is prone to produce thermal runaway under electromagnetic heating, as well as numerical model instabilities. Five different scenarios were tested by considering a material fill ratio of 30%, 50%, 65%, 80%, and 100%. Simulating the tube rotation for mixing enhancement was proven to be beneficial and crucial for all loads considered. When uniform temperature distribution is accomplished, the electromagnetic field and material interaction is facilitated. The results pointed out the inefficient development of the electric field within the bed for 30% fill ratio. The thermal efficiency showed the propensity to stabilize around 90%for loads higher than 50%. The process accomplished a maximum microwave efficiency of 75% for the 80% fill ratio, sustaining that the tube has an optimal fill of material. Electric field peak detachment was observed for the case with 100% fill ratio, justifying the lower efficiencies compared to 80%. Microwave technology has been demonstrated to be an important ally for the decarbonization of the cement industry.

Keywords: CFD numerical simulations, efficiency optimization, electromagnetic heating, impedance matching, limestone continuous processing

Procedia PDF Downloads 175
11070 Utilizing Hybrid File Mapping for High-Performance I/O

Authors: Jaechun No

Abstract:

As the technology of NAND flash memory rapidly grows, SSD is becoming an excellent alternative for storage solutions, because of its high random I/O throughput and low power consumption. These SSD potentials have drawn great attention from IT enterprises that seek for better I/O performance. However, high SSD cost per capacity makes it less desirable to construct a large-scale storage subsystem solely composed of SSD devices. An alternative is to build a hybrid storage subsystem where both HDD and SSD devices are incorporated in an economic manner, while employing the strengths of both devices. This paper presents a hybrid file system, called hybridFS, that attempts to utilize the advantages of HDD and SSD devices, to provide a single, virtual address space by integrating both devices. HybridFS not only proposes an efficient implementation for the file management in the hybrid storage subsystem but also suggests an experimental framework for making use of the excellent features of existing file systems. Several performance evaluations were conducted to verify the effectiveness and suitability of hybridFS.

Keywords: hybrid file mapping, data layout, hybrid device integration, extent allocation

Procedia PDF Downloads 506
11069 Highly Active, Non-Platinum Metal Catalyst Material as Bi-Functional Air Cathode in Zinc Air Battery

Authors: Thirupathi Thippani, Kothandaraman Ramanujam

Abstract:

Current research on energy storage has been paid to metal-air batteries, because of attractive alternate energy source for the future. Metal – air batteries have the probability to significantly increase the power density, decrease the cost of energy storage and also used for a long time due to its high energy density, low-level pollution, light weight. The performance of these batteries mostly restricted by the slow kinetics of the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) on cathode during battery discharge and charge. The ORR and OER are conventionally carried out with precious metals (such as Pt) and metal oxides (such as RuO₂ and IrO₂) as catalysts separately. However, these metal-based catalysts are regularly undergoing some difficulties, including high cost, low selectivity, poor stability and unfavorable to environmental effects. So, in order to develop the active, stable, corrosion resistance and inexpensive bi-functional catalyst material is mandatory for the commercialization of zinc-air rechargeable battery technology. We have attempted and synthesized non-precious metal (NPM) catalysts comprising cobalt and N-doped multiwalled carbon nanotubes (N-MWCNTs-Co) were synthesized by the solid-state pyrolysis (SSP) of melamine with Co₃O₄. N-MWCNTs-Co acts as an excellent electrocatalyst for both the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER), and hence can be used in secondary metal-air batteries and in unitized regenerative fuel cells. It is important to study the OER and ORR at high concentrations of KOH as most of the metal-air batteries employ KOH concentrations > 4M. In the first 16 cycles of the zinc-air battery while using N-MWCNTs-Co, 20 wt.% Pt/C or 20 wt.% IrO₂/C as air electrodes. In the ORR regime (the discharge profile of the zinc-air battery), the cell voltage exhibited by N-MWCNTs-Co was 44 and 83 mV higher (based on 5th cycle) in comparison to of 20 wt.% Pt/C and 20 wt.% IrO₂/C respectively. To demonstrate this promise, a zinc-air battery was assembled and tested at a current density of 0.5 Ag⁻¹ for charge-discharge 100 cycles.

Keywords: oxygen reduction reaction (ORR), oxygen evolution reaction(OER), non-platinum, zinc air battery

Procedia PDF Downloads 234
11068 Surface Nanocrystalline and Hardening Effects of Ti–Al–V Alloy by Electropulsing Ultrasonic Shock

Authors: Xiaoxin Ye, Guoyi Tang

Abstract:

The effect of electropulsing ultrasonic shock (EUS) on the surface hardening and microstructure of Ti6Al4V alloy was studied. It was found that electropulsing improved the microhardness dramatically both in the influential depth and maximum value, compared with the only ultrasonic-shocked sample. It’s indicated that refined surface layer with nanocrystalline and improved microhardness were obtained on account of surface severe plastic deformation, dynamic recrystallization (DRX) and phase change, which was implemented at relative low temperature and high strain rate/capacity due to the coupling of the thermal and athermal effects of EUS. It’s different from conventional experiments and theory. It’s discussed that the positive contributions of EPT in the thermodynamics and kinetics of microstructure and properties change were attributed to the reduction of nucleation energy barrier and acceleration of atomic diffusion. Therefore, it’s supposed that EUS is an energy-saving and high-efficiency method of surface treatment technique with the help of high-energy electropulses, which is promising in cost reduction of the surface engineering and energy management.

Keywords: titanium alloys, electropulsing, ultrasonic shock, microhardness, nanocrystalline

Procedia PDF Downloads 291
11067 Laser Writing on Vitroceramic Disks for Petabyte Data Storage

Authors: C. Busuioc, S. I. Jinga, E. Pavel

Abstract:

The continuous need of more non-volatile memories with a higher storage capacity, smaller dimensions and weight, as well as lower costs, has led to the exploration of optical lithography on active media, as well as patterned magnetic composites. In this context, optical lithography is a technique that can provide a significant decrease of the information bit size to the nanometric scale. However, there are some restrictions that arise from the need of breaking the optical diffraction limit. Major achievements have been obtained by employing a vitoceramic material as active medium and a laser beam operated at low power for the direct writing procedure. Thus, optical discs with ultra-high density were fabricated by a conventional melt-quenching method starting from analytical purity reagents. They were subsequently used for 3D recording based on their photosensitive features. Naturally, the next step consists in the elucidation of the composition and structure of the active centers, in correlation with the use of silver and rare-earth compounds for the synthesis of the optical supports. This has been accomplished by modern characterization methods, namely transmission electron microscopy coupled with selected area electron diffraction, scanning transmission electron microscopy and electron energy loss spectroscopy. The influence of laser diode parameters, silver concentration and fluorescent compounds formation on the writing process and final material properties was investigated. The results indicate performances in terms of capacity with two order of magnitude higher than other reported information storage systems. Moreover, the fluorescent photosensitive vitroceramics may be integrated in other applications which appeal to nanofabrication as the driving force in electronics and photonics fields.

Keywords: data storage, fluorescent compounds, laser writing, vitroceramics

Procedia PDF Downloads 225
11066 Evaluation of Heating/Cooling Potential of a Passive Building

Authors: M. Jamil Ahmad

Abstract:

In this paper, the heating/cooling potential of a passive building (mosque) of Prof. K. A. Nizami center for Quranic studies at AMU Aligarh, has been evaluated on the basis of energy balance under quasi-steady state condition by incorporating the effect of ventilation. The study has been carried out for composite climate of Aligarh. The performance of the above mentioned building has been presented in this study. It is observed that the premises of the mosque are cooler than the outside ambient temperature by an average of 2°C and 4°C during the month of March and April respectively. Provision of excellent ventilation, high amount of thermal mass, high ceilings and circulation of cool natural air helps in maintaining an optimal thermal comfort temperature in the passive building.

Keywords: heating/cooling potential, passive building, ambient temperatures

Procedia PDF Downloads 388
11065 Assessment of Tidal Current Energy Potential at LAMU and Mombasa in Kenya

Authors: Lucy Patricia Onundo, Wilfred Njoroge Mwema

Abstract:

The tidal power potential available for electricity generation from Mombasa and Lamu sites in Kenya will be examined. Several African countries in the Western Indian Ocean endure insufficiencies in the power sector, including both generation and distribution. One important step towards increasing energy security and availability is to intensify the use of renewable energy sources. The access to cost-efficient hydropower is low in Mombasa and Lamu hence Ocean energy will play an important role. Global-Level resource assessments and oceanographic literature and data have been compiled in an analysis between technology-specific requirements for ocean energy technologies (salinity, tide, tidal current, wave, Ocean thermal energy conversion, wind and solar) and the physical resources in Lamu and Mombasa. The potential for tide and tidal current power is more restricted but may be of interest at some locations. The theoretical maximum power produced over a tidal cycle is determined by the product of the forcing tide and the undisturbed volumetric flow-rate. The extraction of the maximum power reduces the flow-rate, but a significant portion of the maximum power can be extracted with little change to the tidal dynamics. Two-dimensional finite-element, numerical simulations designed and developed agree with the theory. Temporal variations in resource intensity, as well as the differences between small-scale and large-scale applications, are considered.

Keywords: energy assessment, marine tidal power, renewable energy, tidal dynamics

Procedia PDF Downloads 577
11064 Microsatellite Passive Thermal Design Using Anodized Titanium

Authors: Maged Assem Soliman Mossallam

Abstract:

Microsatellites' low available power limits the usage of active thermal control techniques in these categories of satellites. Passive thermal control techniques are preferred due to their high reliability and power saving which increase the satellite's survivability in orbit. Steady-state and transient simulations are applied to the microsatellite design in order to define severe conditions in orbit. Satellite thermal orbital three-dimensional simulation is performed using thermal orbit propagator coupled with Comsol Multiphysics finite element solver. Sensitivity study shows the dependence of the satellite temperatures on the internal heat dissipation and the thermooptical properties of anodization coatings. The critical case is defined as low power orbiting mode at the eclipse zone. Using black anodized aluminum drops the internal temperatures to severe values which exceed the permissible cold limits. Replacement with anodized titanium returns the internal subsystems' temperatures back to adequate temperature fluctuations limits.

Keywords: passive thermal control, thermooptical, anodized titanium, emissivity, absorbtiviy

Procedia PDF Downloads 142
11063 Thermal Technologies Applications for Soil Remediation

Authors: A. de Folly d’Auris, R. Bagatin, P. Filtri

Abstract:

This paper discusses the importance of having a good initial characterization of soil samples when thermal desorption has to be applied to polluted soils for the removal of contaminants. Particular attention has to be devoted on the desorption kinetics of the samples to identify the gases evolved during the heating, and contaminant degradation pathways. In this study, two samples coming from different points of the same contaminated site were considered. The samples are much different from each other. Moreover, the presence of high initial quantity of heavy hydrocarbons strongly affected the performance of thermal desorption, resulting in formation of dangerous intermediates. Analytical techniques such TGA (Thermogravimetric Analysis), DSC (Differential Scanning Calorimetry) and GC-MS (Gas Chromatography-Mass) provided a good support to give correct indication for field application.

Keywords: desorption kinetics, hydrocarbons, thermal desorption, thermogravimetric measurements

Procedia PDF Downloads 294
11062 Operating System Support for Mobile Device Thermal Management and Performance Optimization in Augmented Reality Applications

Authors: Yasith Mindula Saipath Wickramasinghe

Abstract:

Augmented reality applications require a high processing power to load, render and live stream high-definition AR models and virtual scenes; it also requires device sensors to work excessively to coordinate with internal hardware, OS and give the expected outcome in advance features like object detection, real time tracking, as well as voice and text recognition. Excessive thermal generation due to these advanced functionalities has become a major research problem as it is unbearable for smaller mobile devices to manage such heat increment and battery drainage as it causes physical harm to the devices in the long term. Therefore, effective thermal management is one of the major requirements in Augmented Reality application development. As this paper discusses major causes for this issue, it also provides possible solutions in the means of operating system adaptations as well as further research on best coding practises to optimize the application performance that reduces thermal excessive thermal generation.

Keywords: augmented reality, device thermal management, GPU, operating systems, device I/O, overheating

Procedia PDF Downloads 118
11061 Signs-Only Compressed Row Storage Format for Exact Diagonalization Study of Quantum Fermionic Models

Authors: Michael Danilov, Sergei Iskakov, Vladimir Mazurenko

Abstract:

The present paper describes a high-performance parallel realization of an exact diagonalization solver for quantum-electron models in a shared memory computing system. The proposed algorithm contains a storage format for efficient computing eigenvalues and eigenvectors of a quantum electron Hamiltonian matrix. The results of the test calculations carried out for 15 sites Hubbard model demonstrate reduction in the required memory and good multiprocessor scalability, while maintaining performance of the same order as compressed row storage.

Keywords: sparse matrix, compressed format, Hubbard model, Anderson model

Procedia PDF Downloads 402
11060 Implementation of a Low-Cost Driver Drowsiness Evaluation System Using a Thermal Camera

Authors: Isa Moazen, Ali Nahvi

Abstract:

Driver drowsiness is a major cause of vehicle accidents, and facial images are highly valuable to detect drowsiness. In this paper, we perform our research via a thermal camera to record drivers' facial images on a driving simulator. A robust real-time algorithm extracts the features using horizontal and vertical integration projection, contours, contour orientations, and cropping tools. The features are included four target areas on the cheeks and forehead. Qt compiler and OpenCV are used with two cameras with different resolutions. A high-resolution thermal camera is used for fifteen subjects, and a low-resolution one is used for a person. The results are investigated by four temperature plots and evaluated by observer rating of drowsiness.

Keywords: advanced driver assistance systems, thermal imaging, driver drowsiness detection, feature extraction

Procedia PDF Downloads 138
11059 Numerical Simulation of a Combined Impact of Cooling and Ventilation on the Indoor Environmental Quality

Authors: Matjaz Prek

Abstract:

Impact of three different combinations of cooling and ventilation systems on the indoor environmental quality (IEQ) has been studied. Comparison of chilled ceiling cooling in combination with displacement ventilation, cooling with fan coil unit and cooling with flat wall displacement outlets was performed. All three combinations were evaluated from the standpoint of whole-body and local thermal comfort criteria as well as from the standpoint of ventilation effectiveness. The comparison was made on the basis of numerical simulation with DesignBuilder and Fluent. Numerical simulations were carried out in two steps. Firstly the DesignBuilder software environment was used to model the buildings thermal performance and evaluation of the interaction between the environment and the building. Heat gains of the building and of the individual space, as well as the heat loss on the boundary surfaces in the room, were calculated. In the second step Fluent software environment was used to simulate the response of the indoor environment, evaluating the interaction between building and human, using the simulation results obtained in the first step. Among the systems presented, the ceiling cooling system in combination with displacement ventilation was found to be the most suitable as it offers a high level of thermal comfort with adequate ventilation efficiency. Fan coil cooling has proved inadequate from the standpoint of thermal comfort whereas flat wall displacement outlets were inadequate from the standpoint of ventilation effectiveness. The study showed the need in evaluating indoor environment not solely from the energy use point of view, but from the point of view of indoor environmental quality as well.

Keywords: cooling, ventilation, thermal comfort, ventilation effectiveness, indoor environmental quality, IEQ, computational fluid dynamics

Procedia PDF Downloads 187
11058 Exploring Unexplored Horizons: Advanced Fluid Mechanics Solutions for Sustainable Energy Technologies

Authors: Elvira S. Castillo, Surupa Shaw

Abstract:

This paper explores advanced applications of fluid mechanics in the context of sustainable energy. By examining the integration of fluid dynamics with renewable energy technologies, the research uncovers previously underutilized strategies for improving efficiency. Through theoretical analyses, the study demonstrates how fluid mechanics can be harnessed to optimize renewable energy systems. The findings contribute to expanding knowledge in sustainable energy by offering practical insights and methodologies for future research and technological advancements to address global energy challenges.

Keywords: fluid mechanics, sustainable energy, energy efficiency, green energy

Procedia PDF Downloads 50
11057 Utilizing Waste Heat from Thermal Power Plants to Generate Power by Modelling an Atmospheric Vortex Engine

Authors: Mohammed Nabeel Khan, C. Perisamy

Abstract:

Convective vortices are normal highlights of air that ingest lower-entropy-energy at higher temperatures than they dismiss higher-entropy-energy to space. By means of the thermodynamic proficiency, it has been anticipated that the force of convective vortices relies upon the profundity of the convective layer. The atmospheric vortex engine is proposed as a gadget for delivering mechanical energy by methods for artificially produced vortex. The task of the engine is in view of the certainties that the environment is warmed from the base and cooled from the top. By generation of the artificial vortex, it is planned to take out the physical solar updraft tower and decrease the capital of the solar chimney power plants. The study shows the essentials of the atmospheric vortex engine, furthermore, audits the cutting edge in subject. Moreover, the study talks about a thought on using the solar energy as heat source to work the framework. All in all, the framework is attainable and promising for electrical power production.

Keywords: AVE, atmospheric vortex engine, atmosphere, updraft, vortex

Procedia PDF Downloads 161
11056 Colour Characteristics of Dried Cocoa Using Shallow Box Fermentation Technique

Authors: Khairul Bariah Sulaiman, Tajul Aris Yang

Abstract:

Fermentation is well known as an essential process in cocoa beans. Besides to develop the precursor of cocoa flavour, it also induce the colour changes in the beans.The fermentation process is reported to be influenced by duration of pod storage and fermentation. Therefore, this study was conducted to evaluate colour of Malaysian cocoa beans and how the pods storage and fermentation duration using shallow box technique will effect on it characteristics. There are two factors being studied ie duration of cocoa pod storage (0, 2, 4, and 6 days) and duration of cocoa fermentation (0, 1, 2, 3, 4 and 5 days). The experiment is arranged in 4 x 6 factorial design with 24 treatments and arrangement is in a Completely Randomised Design (CRD). The produced beans is inspected for colour changes under artificial light during cut test and divided into four groups of colour namely fully brown, purple brown, fully purple and slaty. Cut tests indicated that cocoa beans which are directly dried without undergone fermentation has the highest slaty percentage. However, application of pods storage before fermentation process is found to decrease the slaty percentage. In contrast, the percentages of fully brown beans start to dominate after two days of fermentation, especially from four and six days of pods storage batch. Whereas, almost all batch have percentage of fully purple less than 20%. Interestingly, the percentage of purple brown beans are scattered in the entire beans batch regardless any specific trend. Meanwhile, statistical analysis using General Linear Model showed that the pods storage has a significant effect on the colour characteristic of the Malaysian dried beans compared to fermentation duration.

Keywords: cocoa beans, colour, fermentation, shallow box

Procedia PDF Downloads 491
11055 Recommendations for Environmental Impact Assessment of Geothermal Projects on Mature Oil Fields

Authors: Daria Karasalihovic Sedlar, Lucija Jukic, Ivan Smajla, Marija Macenic

Abstract:

This paper analyses possible geothermal energy production from a mature oil reservoir based on exploitation of underlying aquifer thermal energy for the purpose of heating public buildings. Research was conducted based on the case study of the City of Ivanic-Grad public buildings energy demand and Ivanic oil filed that is situated in the same area. Since the City of Ivanic is one of the few cities in the EU where hydrocarbon exploitation has been taking place for decades almost entirely in urban area, decommissioning of oil wells is inevitable; therefore, the research goal was to investigate how to extend the life-time of the reservoir by exploiting geothermal brine beneath the oil reservoir in an environmental friendly manner. This kind of a project is extremely complex in all segments, from documentation preparation, implementation of technological solutions, and providing ecological measures for environmentally acceptable geothermal energy production and utilization. New mining activities that will be needed for the development of geothermal project at the observed Hydrocarbon Exploitation Field Ivanic will be carried out in order to prepare wells for increasing geothermal brine production. These operations involve the conversion of existing wells (well completion for conversion of the observation wells to production ones) along with workover activities, installation of new heat exchangers, and pipelines. Since the wells are in the urban area of the City of Ivanic-Grad in high density populated area, the inhabitants will be exposed to the different environmental impacts during preparation phase of the project. For the purpose of performing workovers, it will be necessary to secure access to wellheads of existing wells. This paper gives guidelines for describing potential impacts on environment components that could occur during geothermal production preparation on existing mature oil filed, recommends possible protection measures to mitigate these impacts, and gives recommendations for environmental monitoring.

Keywords: geothermal energy production, mature oil filed, environmental impact assessment, underlying aquifer thermal energy

Procedia PDF Downloads 149
11054 Degradation of Mechanical Properties of Offshoring Polymer Composite Pipes in Thermal Environment

Authors: Hamza Benyahia, Mostapha Tarfaoui, Ahmed El-Moumen, Djamel Ouinas

Abstract:

Composite pipes are commonly used in the oil industry, and extreme flow of hot and cold gas fluid can cause degradation of their mechanical performance and properties. Therefore, it is necessary to consider thermomechanical behavior as an important parameter in designing these tubular structures. In this paper, an experimental study is conducted on composite glass/epoxy tubes, with a thickness of 6.2 mm and 86 mm internal diameter made by filament winding of (Փ = ± 55°), to investigate the effects of extreme thermal condition on their mechanical properties b over a temperature range from -40 to 80°C. The climatic chamber is used for the thermal aging and then, combine split disk system is used to perform tensile tests on these composite pies. Thermal aging is carried out for 8hr but each specimen was subjected to various temperature ranges and then, uniaxial tensile test is conducted to evaluate their mechanical performance. Experimental results show degradation in the mechanical properties of composite pipes with an increase in temperature. The rigidity of pipes increases progressively with a decrease in thermal load and results in a radical decrease in their elongation before fracture, thus, decreasing their ductility. However, with an increase in the temperature, there is a decrease in the yield strength and an increase in yield strain, which confirmed an increase in the plasticity of composite pipes.

Keywords: composite pipes, thermal-mechanical properties, filament winding, thermal degradation

Procedia PDF Downloads 146
11053 Effect of Environmental Stress Factors on the Degradation of Display Glass

Authors: Jinyoung Choi, Hyun-A Kim, Sunmook Lee

Abstract:

The effects of environmental stress factors such as storage conditions on the deterioration phenomenon and the characteristic of the display glass were studied. In order to investigate the effect of chemical stress on the glass during the period of storage, the respective components of commercial glass were first identified by XRF (X-ray fluorescence). The glass was exposed in the acid, alkali, neutral environment for about one month. Thin film formed on the glass surface was analyzed by XRD (X-ray diffraction) and FT-IR (Fourier transform infrared). The degree of corrosion and the rate of deterioration of each sample were confirmed by measuring the concentrations of silicon, calcium and chromium with ICP-OES (Inductively coupled plasma-optical emission spectrometry). The optical properties of the glass surface were confirmed by SEM (Scanning electron microscope) before and after the treatment. Acknowledgement—The authors gratefully acknowledge the financial support from the Ministry of Trade, Industry and Energy (Grant Number: 10076817)

Keywords: corrosion, degradation test, display glass, environmental stress factor

Procedia PDF Downloads 459
11052 Current Developments in Flat-Plate Vacuum Solar Thermal Collectors

Authors: Farid Arya, Trevor Hyde, Paul Henshall, Phillip Eames, Roger Moss, Stan Shire

Abstract:

Vacuum flat plate solar thermal collectors offer several advantages over other collectors namely the excellent optical and thermal characteristics they exhibit due to a combination of their wide surface area and high vacuum thermal insulation. These characteristics can offer a variety of applications for industrial process heat as well as for building integration as they are much thinner than conventional collectors making installation possible in limited spaces. However, many technical challenges which need to be addressed to enable wide scale adoption of the technology still remain. This paper will discuss the challenges, expectations and requirements for the flat-plate vacuum solar collector development. In addition, it will provide an overview of work undertaken in Ulster University, Loughborough University, and the University of Warwick on flat-plate vacuum solar thermal collectors. Finally, this paper will present a detailed experimental investigation on the development of a vacuum panel with a novel sealing method which will be used to accommodate a novel slim hydroformed solar absorber.

Keywords: hot box calorimeter, infrared thermography, solar thermal collector, vacuum insulation

Procedia PDF Downloads 311
11051 Thermal Spraying of Titanium-Based Alloys on Steel and Aluminum Substrates

Authors: Ionut Claudiu Roata, Catalin Croitoru

Abstract:

Thermal spraying emerges as a versatile and robust technique for enhancing construction steel with protective coatings tailored for anti-corrosion, insulation, and aesthetics. This study showcases the successful application of flame thermal sprayed titanium-based coatings on EN-S273JR steel substrates and on aluminum. Optimizing the process at a 150 mm spray distance and employing argon as a carrier gas, we achieved coatings with characteristic morphologies and a minimal amount of oxides presence at particle boundaries. Corrosion tests in 3.5% wt. NaCl solution confirmed the coatings’ superior performance, displaying an improved corrosion resistance increase over uncoated steel or aluminum. These results underscore the efficacy of thermal spraying in significantly bolstering the durability of construction steel and aluminum, marking it as a pivotal technique for multifunctional coating applications.

Keywords: thermal spraying, corrosion resistance, surface properties, mechanical properties

Procedia PDF Downloads 22
11050 Steady Conjugate Heat Transfer of Two Connected Thermal Systems

Authors: Mohamed El-Sayed Mosaad

Abstract:

An analytic approach is obtained for the steady heat transfer problem of two fluid systems, in thermal communication via heat conduction across a solid wall separating them. The two free convection layers created on wall sides are assumed to be in parallel flow. Fluid-solid interface temperature on wall sides is not prescribed in analysis in advance; rather, determined from conjugate solution among other unknown parameters. The analysis highlights the main conjugation parameters controlling thermal interaction process of involved heat transfer modes. Heat transfer results of engineering importance are obtained.

Keywords: conjugate heat transfer, boundary layer, convection, thermal systems

Procedia PDF Downloads 379
11049 Thermal Ageing Effect on Mechanical Behavior of Polycarbonate

Authors: H. Babou, S. Ridjla, B. Amerate, R. Ferhoum, M. Aberkane

Abstract:

This work is devoted to the experimental study of thermal ageing effect on the mechanical and micro structural behavior of polycarbonate (PC). A simple compression tests, micro hardness and an IRTF analysis were completed in order to characterize the response of material on specimens after ageing at a temperature of order 100 C° and for serval maintain duration 72, 144 and 216 hours. These investigations showed a decrease of the intrinsic properties of polycarbonate (Young modulus, yield stress, etc.); the superposition of spectra IRTF shows that the intensity of chemical connections C=C, C-O, CH3 and C-H are influenced by the duration of thermal ageing; in addition, an increase of 30 % of micro hardness was detected after 216 hour of ageing.

Keywords: amorphous polymer, polycarbonate, mechanical behavior, compression test, thermal ageing

Procedia PDF Downloads 409
11048 A Study on Cleaning Mirror Technology with Reduced Water Consumption in a Solar Thermal Power Plant

Authors: Bayarjargal Enkhtaivan, Gao Wei, Zhang Yanping, He Guo Qiang

Abstract:

In our study, traditional cleaning mirror technology with reduced consumption of water in solar thermal power plants is investigated. In developed countries, a significant increase of growth and innovation in solar thermal power sector is evident since over the last decade. These power plants required higher water consumption, however, there are some complications to construct and operate such power plants under severe drought-inflicted areas like deserts where high water-deficit can be seen but sufficient solar energy is available. Designing new experimental equipments is the most important advantage of this study. These equipments can estimate various types of measurements at the mean time. In this study, Glasses were placed for 10 and 20 days at certain positions to deposit dusts on glass surface by using a common method. Dust deposited on glass surface was washed by experimental equipment and measured dust deposition on each glass. After that, experimental results were analyzed and concluded.

Keywords: concentrated solar power (CSP) plant, high-pressure water, test equipment of clean mirror, cleaning technology of glass and mirror

Procedia PDF Downloads 173
11047 Effects of Free-Hanging Horizontal Sound Absorbers on the Cooling Performance of Thermally Activated Building Systems

Authors: L. Marcos Domínguez, Nils Rage, Ongun B. Kazanci, Bjarne W. Olesen

Abstract:

Thermally Activated Building Systems (TABS) have proven to be an energy-efficient solution to provide buildings with an optimal indoor thermal environment. This solution uses the structure of the building to store heat, reduce the peak loads, and decrease the primary energy demand. TABS require the heated or cooled surfaces to be as exposed as possible to the indoor space, but exposing the bare concrete surfaces has a diminishing effect on the acoustic qualities of the spaces in a building. Acoustic solutions capable of providing optimal acoustic comfort and allowing the heat exchange between the TABS and the room are desirable. In this study, the effects of free-hanging units on the cooling performance of TABS and the occupants’ thermal comfort was measured in a full-scale TABS laboratory. Investigations demonstrate that the use of free-hanging sound absorbers are compatible with the performance of TABS and the occupant’s thermal comfort, but an appropriate acoustic design is needed to find the most suitable solution for each case. The results show a reduction of 11% of the cooling performance of the TABS when 43% of the ceiling area is covered with free-hanging horizontal sound absorbers, of 23% for 60% ceiling coverage ratio and of 36% for 80% coverage. Measurements in actual buildings showed an increase of the room operative temperature of 0.3 K when 50% of the ceiling surface is covered with horizontal panels and of 0.8 to 1 K for a 70% coverage ratio. According to numerical simulations using a new TRNSYS Type, the use of comfort ventilation has a considerable influence on the thermal conditions in the room; if the ventilation is removed, then the operative temperature increases by 1.8 K for a 60%-covered ceiling.

Keywords: acoustic comfort, concrete core activation, full-scale measurements, thermally activated building systems, TRNSys

Procedia PDF Downloads 328