Search results for: stochastic gradient descent
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1262

Search results for: stochastic gradient descent

332 Designing and Using a 3-D Printed Dynamic Upper Extremity Orthosis (DUEO) with Children with Cerebral Palsy and Severe Upper Extremity Involvement

Authors: Justin Lee, Siraj Shaikh, Alice Chu MD

Abstract:

Children with cerebral palsy (CP) commonly present with upper extremity impairment, affecting one or both extremities, and are classified using the Manual Ability Classification Scale (MACS). The MACS defines bimanual hand abilities for children ages 4-18 years in everyday tasks and is a gradient scale, with I being nearly normal and V requiring total assistance. Children with more severe upper extremity impairment (MACS III-V) are often underrepresented, and relatively few effective therapies have been identified for these patients. Current orthoses are static and are only meant to prevent the progression of contractures in these patients. Other limitations include cost, comfort, accessibility, and longevity of the orthoses. Taking advantage of advances in 3D printing technology, we have created a highly customizable upper extremity orthotic that can be produced at a low cost. Iterations in our design have resulted in an orthotic that is custom fit to the patient based on scans of their arm, made of rigid polymer when needed to provide support, flexible material where appropriate to allow for comfort, and designed with a mechanical pulley system to allow for some functional use of the arm while in the orthotic. Preliminary data has shown that our orthotic can be built at a fraction of the cost of current orthoses and provide clinically significant improvement in assisting hand assessment (AHA) and pediatric quality of life scores (PedsQL).

Keywords: upper extremity orthosis, upper extremity, orthosis, 3-D printing, cerebral palsy, occupational therapy, spasticity, customizable

Procedia PDF Downloads 307
331 Potassium Fertilization Improves Rice Yield in Aerobic Production System by Decreasing Panicle Sterility

Authors: Abdul Wakeel, Hafeez Ur Rehman, Muhammad Umair Mubarak

Abstract:

Rice is the second most important staple food in Pakistan after wheat. It is not only a healthy food for the people of all age groups but also a source of foreign exchange for Pakistan. Instead of bright history for Basmati rice production, we are suffering from multiple problems reducing yield and quality as well. Rice lodging and water shortage for an-aerobic rice production system is among major glitches of it. Due to water shortage an-aerobic rice production system has to be supplemented or replaced by aerobic rice system. Aerobic rice system has been adopted for production of non-basmati rice in many parts of the world. Also for basmati rice, significant efforts have been made for aerobic rice production, however still has to be improved for effective recommendations. Among two major issues for aerobic rice, weed elimination has been solved to great extent by introducing suitable herbicides, however, low yield production due weak grains and panicle sterility is still elusive. It has been reported that potassium (K) has significant role to decrease panicle sterility in cereals. Potassium deficiency is obvious for rice under aerobic rice production system due to lack of K gradient coming with irrigation water and lowered indigenous K release from soils. Therefore it was hypothesized that K application under aerobic rice production system may improve the rice yield by decreasing panicle sterility. Results from pot and field experiments confirm that application of K fertilizer significantly increased the rice grain yield due to decreased panicle sterility and improving grain health. The quality of rice was also improved by K fertilization.

Keywords: DSR, Basmati rice, aerobic, potassium

Procedia PDF Downloads 393
330 Optimization of a Flexible Thermoelectric Generator for Energy Harvesting from Human Skin to Power Wearable Electronics

Authors: Dessalegn Abera Waktole, Boru Jia, Zhengxing Zuo, Wei Wang, Nianling Kuang

Abstract:

A flexible thermoelectric generator is one method for recycling waste heat. This research provides the optimum performance of a flexible thermoelectric generator with optimal geometric parameters and a detailed structural design. In this research, a numerical simulation and experiment were carried out to develop an efficient, flexible thermoelectric generator for energy harvesting from human skin. Heteromorphic electrodes and a polyimide substrate with a copper-printed circuit board were introduced into the structural design of a flexible thermoelectric generator. The heteromorphic electrode was used as a heat sink and component of a flexible thermoelectric generator to enhance the temperature difference within the thermoelectric legs. Both N-type and P-type thermoelectric legs were made of bismuth selenium telluride (Bi1.7Te3.7Se0.3) and bismuth antimony telluride (Bi0.4Sb1.6Te3). The output power of the flexible thermoelectric generator was analyzed under different heat source temperatures and heat dissipation conditions. The COMSOL Multiphysics 5.6 software was used to conduct the simulation, which was validated by experiment. It is recorded that the maximum power output of 232.064μW was obtained by considering different wind speed conditions, the ambient temperature of 20℃, and the heat source temperature of 36℃ under various load resistance conditions, which range from 0.24Ω to 0. 91Ω. According to this finding, heteromorphic electrodes have a significant impact on the performance of the device.

Keywords: flexible thermoelectric generator, optimization, performance, temperature gradient, waste heat recovery

Procedia PDF Downloads 163
329 Development of a Few-View Computed Tomographic Reconstruction Algorithm Using Multi-Directional Total Variation

Authors: Chia Jui Hsieh, Jyh Cheng Chen, Chih Wei Kuo, Ruei Teng Wang, Woei Chyn Chu

Abstract:

Compressed sensing (CS) based computed tomographic (CT) reconstruction algorithm utilizes total variation (TV) to transform CT image into sparse domain and minimizes L1-norm of sparse image for reconstruction. Different from the traditional CS based reconstruction which only calculates x-coordinate and y-coordinate TV to transform CT images into sparse domain, we propose a multi-directional TV to transform tomographic image into sparse domain for low-dose reconstruction. Our method considers all possible directions of TV calculations around a pixel, so the sparse transform for CS based reconstruction is more accurate. In 2D CT reconstruction, we use eight-directional TV to transform CT image into sparse domain. Furthermore, we also use 26-directional TV for 3D reconstruction. This multi-directional sparse transform method makes CS based reconstruction algorithm more powerful to reduce noise and increase image quality. To validate and evaluate the performance of this multi-directional sparse transform method, we use both Shepp-Logan phantom and a head phantom as the targets for reconstruction with the corresponding simulated sparse projection data (angular sampling interval is 5 deg and 6 deg, respectively). From the results, the multi-directional TV method can reconstruct images with relatively less artifacts compared with traditional CS based reconstruction algorithm which only calculates x-coordinate and y-coordinate TV. We also choose RMSE, PSNR, UQI to be the parameters for quantitative analysis. From the results of quantitative analysis, no matter which parameter is calculated, the multi-directional TV method, which we proposed, is better.

Keywords: compressed sensing (CS), low-dose CT reconstruction, total variation (TV), multi-directional gradient operator

Procedia PDF Downloads 256
328 Effects of the Fractional Order on Nanoparticles in Blood Flow through the Stenosed Artery

Authors: Mohammed Abdulhameed, Sagir M. Abdullahi

Abstract:

In this paper, based on the applications of nanoparticle, the blood flow along with nanoparticles through stenosed artery is studied. The blood is acted by periodic body acceleration, an oscillating pressure gradient and an external magnetic field. The mathematical formulation is based on Caputo-Fabrizio fractional derivative without singular kernel. The model of ordinary blood, corresponding to time-derivatives of integer order, is obtained as a limiting case. Analytical solutions of the blood velocity and temperature distribution are obtained by means of the Hankel and Laplace transforms. Effects of the order of Caputo-Fabrizio time-fractional derivatives and three different nanoparticles i.e. Fe3O4, TiO4 and Cu are studied. The results highlights that, models with fractional derivatives bring significant differences compared to the ordinary model. It is observed that the addition of Fe3O4 nanoparticle reduced the resistance impedance of the blood flow and temperature distribution through bell shape stenosed arteries as compared to TiO4 and Cu nanoparticles. On entering in the stenosed area, blood temperature increases slightly, but, increases considerably and reaches its maximum value in the stenosis throat. The shears stress has variation from a constant in the area without stenosis and higher in the layers located far to the longitudinal axis of the artery. This fact can be an important for some clinical applications in therapeutic procedures.

Keywords: nanoparticles, blood flow, stenosed artery, mathematical models

Procedia PDF Downloads 267
327 Two Antiplasmodial Compounds from Lauraceae: Actinodaphne macrophylla and Nectandra angustifolia

Authors: Tiah Rachmatiah, Subaryanti

Abstract:

Plants of Lauraceae family are known to contain many chemical compounds which have potential bioactivity such as alkaloids, flavonoids, lactones, terpenes, etc. Actinodaphne macrophylla and Nectandra angustifolia are two species from Lauraceae. A previous study on the crude alkaloidal extract from the bark of Act. macrophylla and n-hexane extract from the bark of N. angustifolia showed antiplasmodial activity against Plasmodium falciparum. The study was continued to find antiplasmodial active compounds from the two extracts. The materials were obtained from Bogor Botanical Garden, West Java, Indonesia. Crude alkaloidal extract of Act. macrophylla was prepared by maceration in dichloromethane after moistened with NH4OH 25% and n-hexane extract of N. angustifolia was prepared by maceration in n-hexane. A major compound was isolated by column chromatography using silica gel and a mixture of CH2Cl2 and methanol as a gradient solvent system for the alkaloidal extract and mixture of n-hexane and ethyl acetate for n-hexane extract. Fine white needle crystals were obtained from the alkaloidal extract and rod crystals from n-hexane extract. Molecular structure of the compounds was determined by analysis of spectra of NMR, IR, MS and compared by references. In vitro bioactivity test of the compound was performed against Plasmodium falciparum. The results showed that the bark of Act. macrophylla contained an aporphine alkaloid, actinodaphnine, that had activity against P. falciparum with IC50 value of 0.095 µg/mL and the bark of N. angustifolia contained a lignan compound, sesamine, with IC50 of 0.122 µg/mL.

Keywords: actinodaphne macrophylla, alkaloid, antiplasmodial, lauraceae, lignan, nectandra angustifolia

Procedia PDF Downloads 426
326 Isolation, Characterization and Quantitation of Anticancer Constituent from Chloroform Extract of N. arbortristis L. Leaves

Authors: Parul Grover, K. A. Suri, Raj Kumar, Gulshan Bansal

Abstract:

Background: Nyctanthes arbortristis Linn is traditionally used as anticancer herb in Indian system of medicine, but its introduction into modern system of medicine is still awaited due to lack of systematic scientific studies. Objective: The objective of the present study was to isolate and characterize anticancer phytoconstituents from N. arbortristis L. leaves based on bioactivity guided fractionation. Method: Different extracts of the leaves of the plant were prepared by Soxhlet extractor. Each extract was evaluated for anticancer activity against HL-60 cell lines. Chloroform and HA extract showed potent anticancer activity and hence were selected for fractionation. Fraction C1 from chloroform extract was found to be most potent amongst all when tested against three cell lines (HL-60, A-549, and HCT-116) and thus was selected for further fractionation and a pure compound CP-01 was isolated. RP-HPLC method has been developed for quantification of isolated compound by using Kinetex C-18 column with gradient elution at 0.7 mL/min using mobile phase containing potassium dihydrogen phosphate (0.01 M, pH 3.0) with acetonitrile. The wavelength of maximum absorption (λₘₐₓ) selected was 210 nm. Results: The structure of potent anticancer CP-01 was determined on the basis spectroscopic methods like IR, 1H-NMR, ¹³C-NMR and Mass Spectrometry and it was characterized as 1,1,2-tris(2’,4’-di-tert-butylbenzene)-4,4-dimethyl-pent-1-ene. The content of CP-01 was found to be 0.88 %w/w of chloroform extract and 0.08 %w/w of N.arbortristis leaves. Conclusion: The study supports the traditional use of N. arbortristis as anticancer herb & the identified compound CP-01 can serve as an excellent lead to develop potent and safe anticancer drugs.

Keywords: anticancer, HL-60 cell lines, Nyctanthes arbor-tristis, RP-HPLC

Procedia PDF Downloads 147
325 Development and Testing of an Instrument to Measure Beliefs about Cervical Cancer Screening among Women in Botswana

Authors: Ditsapelo M. McFarland

Abstract:

Background: Despite the availability of the Pap smear services in urban areas in Botswana, most women in such areas do not seem to screen regular for prevention of the cervical cancer disease. Reasons for non-use of the available Pap smear services are not well understood. Beliefs about cancer may influence participation in cancer screening in these women. The purpose of this study was to develop an instrument to measure beliefs about cervical cancer and Pap smear screening among Black women in Botswana, and evaluate the psychometric properties of the instrument. Significance: Instruments that are designed to measure beliefs about cervical cancer and screening among black women in Botswana, as well as in the surrounding region, are presently not available. Valid and reliable instruments are needed for exploration of the women’s beliefs about cervical cancer. Conceptual Framework: The Health Belief Model (HBM) provided a conceptual framework for the study. Methodology: The study was done in four phases: Phase 1: item generation: 15 items were generated from literature review and qualitative data for each of four conceptually defined HBM constructs: Perceived susceptibility, severity, benefits, and barriers (Version 1). Phase 2: content validity: Four experts who were advanced practice nurses of African descent and were familiar with the content and the HBM evaluated the content. Experts rated the items on a 4-point Likert scale ranging from: 1=not relevant, 2=somewhat relevant, 3=relevant and 4=very relevant. Fifty-five items were retained for instrument development: perceived susceptibility - 11, severity - 14, benefits - 15 and barriers - 15, all measuring on a 4-point Likert scale ranging from strongly disagree (1) to strongly agree (4). (Version 2). Phase 3: pilot testing: The instrument was pilot tested on a convenient sample of 30 women in Botswana and revised as needed. Phase 4: reliability: the revised instrument (Version 3) was submitted to a larger sample of women in Botswana (n=300) for reliability testing. The sample included women who were Batswana by birth and decent, were aged 30 years and above and could complete an English questionnaire. Data were collected with the assistance of trained research assistants. Major findings: confirmatory factor analysis of the 55 items found that a number of items did not adequately load in a four-factor solution. Items that exhibited reasonable reliability and had low frequency of missing values (n=36) were retained: perceived barriers (14 items), perceived benefits (8 items), perceived severity (4 items), and perceived susceptibility (10 items). confirmatory factor analysis (principle components) for a four factor solution using varimax rotation demonstrated that these four factors explained 43% of the variation in these 36 items. Conclusion: reliability analysis using Cronbach’s Alpha gave generally satisfactory results with values from 0.53 to 0.89.

Keywords: cervical cancer, factor analysis, psychometric evaluation, varimax rotation

Procedia PDF Downloads 126
324 Combined Synchrotron Radiography and Diffraction for in Situ Study of Reactive Infiltration of Aluminum into Iron Porous Preform

Authors: S. Djaziri, F. Sket, A. Hynowska, S. Milenkovic

Abstract:

The use of Fe-Al based intermetallics as an alternative to Cr/Ni based stainless steels is very promising for industrial applications that use critical raw materials parts under extreme conditions. However, the development of advanced Fe-Al based intermetallics with appropriate mechanical properties presents several challenges that involve appropriate processing and microstructure control. A processing strategy is being developed which aims at producing a net-shape porous Fe-based preform that is infiltrated with molten Al or Al-alloy. In the present work, porous Fe-based preforms produced by two different methods (selective laser melting (SLM) and Kochanek-process (KE)) are studied during infiltration with molten aluminum. In the objective to elucidate the mechanisms underlying the formation of Fe-Al intermetallic phases during infiltration, an in-house furnace has been designed for in situ observation of infiltration at synchrotron facilities combining x-ray radiography (XR) and x-ray diffraction (XRD) techniques. The feasibility of this approach has been demonstrated, and information about the melt flow front propagation has been obtained. In addition, reactive infiltration has been achieved where a bi-phased intermetallic layer has been identified to be formed between the solid Fe and liquid Al. In particular, a tongue-like Fe₂Al₅ phase adhering to the Fe and a needle-like Fe₄Al₁₃ phase adhering to the Al were observed. The growth of the intermetallic compound was found to be dependent on the temperature gradient present along the preform as well as on the reaction time which will be discussed in view of the different obtained results.

Keywords: combined synchrotron radiography and diffraction, Fe-Al intermetallic compounds, in-situ molten Al infiltration, porous solid Fe preforms

Procedia PDF Downloads 226
323 A Boundary-Fitted Nested Grid Model for Modeling Tsunami Propagation of 2004 Indonesian Tsunami along Southern Thailand

Authors: Fazlul Karim, Esa Al-Islam

Abstract:

Many problems in oceanography and environmental sciences require the solution of shallow water equations on physical domains having curvilinear coastlines and abrupt changes of ocean depth near the shore. Finite-difference technique for the shallow water equations representing the boundary as stair step may give inaccurate results near the coastline where results are of greatest interest for various applications. This suggests the use of methods which are capable of incorporating the irregular boundary in coastal belts. At the same time, large velocity gradient is expected near the beach and islands as water depth vary abruptly near the coast. A nested numerical scheme with fine resolution is the best resort to enhance the numerical accuracy with the least grid numbers for the region of interests where the velocity changes rapidly and which is unnecessary for the away of the region. This paper describes the development of a boundary fitted nested grid (BFNG) model to compute tsunami propagation of 2004 Indonesian tsunami in Southern Thailand coastal waters. In this paper, we develop a numerical model employing the shallow water nested model and an orthogonal boundary fitted grid to investigate the tsunami impact on the Southern Thailand due to the Indonesian tsunami of 2004. Comparisons of water surface elevation obtained from numerical simulations and field measurements are made.

Keywords: Indonesian tsunami of 2004, Boundary-fitted nested grid model, Southern Thailand, finite difference method

Procedia PDF Downloads 441
322 A Grey-Box Text Attack Framework Using Explainable AI

Authors: Esther Chiramal, Kelvin Soh Boon Kai

Abstract:

Explainable AI is a strong strategy implemented to understand complex black-box model predictions in a human-interpretable language. It provides the evidence required to execute the use of trustworthy and reliable AI systems. On the other hand, however, it also opens the door to locating possible vulnerabilities in an AI model. Traditional adversarial text attack uses word substitution, data augmentation techniques, and gradient-based attacks on powerful pre-trained Bidirectional Encoder Representations from Transformers (BERT) variants to generate adversarial sentences. These attacks are generally white-box in nature and not practical as they can be easily detected by humans e.g., Changing the word from “Poor” to “Rich”. We proposed a simple yet effective Grey-box cum Black-box approach that does not require the knowledge of the model while using a set of surrogate Transformer/BERT models to perform the attack using Explainable AI techniques. As Transformers are the current state-of-the-art models for almost all Natural Language Processing (NLP) tasks, an attack generated from BERT1 is transferable to BERT2. This transferability is made possible due to the attention mechanism in the transformer that allows the model to capture long-range dependencies in a sequence. Using the power of BERT generalisation via attention, we attempt to exploit how transformers learn by attacking a few surrogate transformer variants which are all based on a different architecture. We demonstrate that this approach is highly effective to generate semantically good sentences by changing as little as one word that is not detectable by humans while still fooling other BERT models.

Keywords: BERT, explainable AI, Grey-box text attack, transformer

Procedia PDF Downloads 137
321 Modelling Patient Condition-Based Demand for Managing Hospital Inventory

Authors: Esha Saha, Pradip Kumar Ray

Abstract:

A hospital inventory comprises of a large number and great variety of items for the proper treatment and care of patients, such as pharmaceuticals, medical equipment, surgical items, etc. Improper management of these items, i.e. stockouts, may lead to delay in treatment or other fatal consequences, even death of the patient. So, generally the hospitals tend to overstock items to avoid the risk of stockout which leads to unnecessary investment of money, difficulty in storing, more expiration and wastage, etc. Thus, in such challenging environment, it is necessary for hospitals to follow an inventory policy considering the stochasticity of demand in a hospital. Statistical analysis captures the correlation of patient condition based on bed occupancy with the patient demand which changes stochastically. Due to the dependency on bed occupancy, the markov model is developed that helps to map the changes in demand of hospital inventory based on the changes in the patient condition represented by the movements of bed occupancy states (acute care state, rehabilitative state and long-care state) during the length-of-stay of patient in a hospital. An inventory policy is developed for a hospital based on the fulfillment of patient demand with the objective of minimizing the frequency and quantity of placement of orders of inventoried items. The analytical structure of the model based on probability calculation is provided to show the optimal inventory-related decisions. A case-study is illustrated in this paper for the development of hospital inventory model based on patient demand for multiple inpatient pharmaceutical items. A sensitivity analysis is conducted to investigate the impact of inventory-related parameters on the developed optimal inventory policy. Therefore, the developed model and solution approach may help the hospital managers and pharmacists in managing the hospital inventory in case of stochastic demand of inpatient pharmaceutical items.

Keywords: bed occupancy, hospital inventory, markov model, patient condition, pharmaceutical items

Procedia PDF Downloads 323
320 Hindi Speech Synthesis by Concatenation of Recognized Hand Written Devnagri Script Using Support Vector Machines Classifier

Authors: Saurabh Farkya, Govinda Surampudi

Abstract:

Optical Character Recognition is one of the current major research areas. This paper is focussed on recognition of Devanagari script and its sound generation. This Paper consists of two parts. First, Optical Character Recognition of Devnagari handwritten Script. Second, speech synthesis of the recognized text. This paper shows an implementation of support vector machines for the purpose of Devnagari Script recognition. The Support Vector Machines was trained with Multi Domain features; Transform Domain and Spatial Domain or Structural Domain feature. Transform Domain includes the wavelet feature of the character. Structural Domain consists of Distance Profile feature and Gradient feature. The Segmentation of the text document has been done in 3 levels-Line Segmentation, Word Segmentation, and Character Segmentation. The pre-processing of the characters has been done with the help of various Morphological operations-Otsu's Algorithm, Erosion, Dilation, Filtration and Thinning techniques. The Algorithm was tested on the self-prepared database, a collection of various handwriting. Further, Unicode was used to convert recognized Devnagari text into understandable computer document. The document so obtained is an array of codes which was used to generate digitized text and to synthesize Hindi speech. Phonemes from the self-prepared database were used to generate the speech of the scanned document using concatenation technique.

Keywords: Character Recognition (OCR), Text to Speech (TTS), Support Vector Machines (SVM), Library of Support Vector Machines (LIBSVM)

Procedia PDF Downloads 499
319 Grain Selection in Spiral Grain Selectors during Casting Single-Crystal Turbine Blades

Authors: M. Javahar, H. B. Dong

Abstract:

Single crystal components manufactured using Ni-base Superalloys are routinely used in the hot sections of aero engines and industrial gas turbines due to their outstanding high temperature strength, toughness and resistance to degradation in corrosive and oxidative environments. To control the quality of the single crystal turbine blades, particular attention has been paid to grain selection, which is used to obtain the single crystal morphology from a plethora of columnar grains. For this purpose, different designs of grain selectors are employed and the most common type is the spiral grain selector. A typical spiral grain selector includes a starter block and a spiral (helix) located above. It has been found that the grains with orientation well aligned to the thermal gradient survive in the starter block by competitive grain growth while the selection of the single crystal grain occurs in the spiral part. In the present study, 2D spiral selectors with different geometries were designed and produced using a state-of-the-art Bridgeman Directional Solidification casting furnace to investigate the competitive growth during grain selection in 2d grain selectors. The principal advantage of using a 2-D selector is to facilitate the wax injection process in investment casting by enabling significant degree of automation. The automation within the process can be derived by producing 2D grain selector wax patterns parts using a split die (metal mold model) coupled with wax injection stage. This will not only produce the part with high accuracy but also at an acceptable production rate.

Keywords: grain selector, single crystal, directional solidification, CMSX-4 superalloys, investment casting

Procedia PDF Downloads 587
318 Factors Influencing Soil Organic Carbon Storage Estimation in Agricultural Soils: A Machine Learning Approach Using Remote Sensing Data Integration

Authors: O. Sunantha, S. Zhenfeng, S. Phattraporn, A. Zeeshan

Abstract:

The decline of soil organic carbon (SOC) in global agriculture is a critical issue requiring rapid and accurate estimation for informed policymaking. While it is recognized that SOC predictors vary significantly when derived from remote sensing data and environmental variables, identifying the specific parameters most suitable for accurately estimating SOC in diverse agricultural areas remains a challenge. This study utilizes remote sensing data to precisely estimate SOC and identify influential factors in diverse agricultural areas, such as paddy, corn, sugarcane, cassava, and perennial crops. Extreme gradient boosting (XGBoost), random forest (RF), and support vector regression (SVR) models are employed to analyze these factors' impact on SOC estimation. The results show key factors influencing SOC estimation include slope, vegetation indices (EVI), spectral reflectance indices (red index, red edge2), temperature, land use, and surface soil moisture, as indicated by their averaged importance scores across XGBoost, RF, and SVR models. Therefore, using different machine learning algorithms for SOC estimation reveals varying influential factors from remote sensing data and environmental variables. This approach emphasizes feature selection, as different machine learning algorithms identify various key factors from remote sensing data and environmental variables for accurate SOC estimation.

Keywords: factors influencing SOC estimation, remote sensing data, environmental variables, machine learning

Procedia PDF Downloads 35
317 Alternative General Formula to Estimate and Test Influences of Early Diagnosis on Cancer Survival

Authors: Li Yin, Xiaoqin Wang

Abstract:

Background and purpose: Cancer diagnosis is part of a complex stochastic process, in which patients' personal and social characteristics influence the choice of diagnosing methods, diagnosing methods, in turn, influence the initial assessment of cancer stage, the initial assessment, in turn, influences the choice of treating methods, and treating methods in turn influence cancer outcomes such as cancer survival. To evaluate diagnosing methods, one needs to estimate and test the causal effect of a regime of cancer diagnosis and treatments. Recently, Wang and Yin (Annals of statistics, 2020) derived a new general formula, which expresses these causal effects in terms of the point effects of treatments in single-point causal inference. As a result, it is possible to estimate and test these causal effects via point effects. The purpose of the work is to estimate and test causal effects under various regimes of cancer diagnosis and treatments via point effects. Challenges and solutions: The cancer stage has influences from earlier diagnosis as well as on subsequent treatments. As a consequence, it is highly difficult to estimate and test the causal effects via standard parameters, that is, the conditional survival given all stationary covariates, diagnosing methods, cancer stage and prognosis factors, treating methods. Instead of standard parameters, we use the point effects of cancer diagnosis and treatments to estimate and test causal effects under various regimes of cancer diagnosis and treatments. We are able to use familiar methods in the framework of single-point causal inference to accomplish the task. Achievements: we have applied this method to stomach cancer survival from a clinical study in Sweden. We have studied causal effects under various regimes, including the optimal regime of diagnosis and treatments and the effect moderation of the causal effect by age and gender.

Keywords: cancer diagnosis, causal effect, point effect, G-formula, sequential causal effect

Procedia PDF Downloads 195
316 Adapting Tools for Text Monitoring and for Scenario Analysis Related to the Field of Social Disasters

Authors: Svetlana Cojocaru, Mircea Petic, Inga Titchiev

Abstract:

Humanity faces more and more often with different social disasters, which in turn can generate new accidents and catastrophes. To mitigate their consequences, it is important to obtain early possible signals about the events which are or can occur and to prepare the corresponding scenarios that could be applied. Our research is focused on solving two problems in this domain: identifying signals related that an accident occurred or may occur and mitigation of some consequences of disasters. To solve the first problem, methods of selecting and processing texts from global network Internet are developed. Information in Romanian is of special interest for us. In order to obtain the mentioned tools, we should follow several steps, divided into preparatory stage and processing stage. Throughout the first stage, we manually collected over 724 news articles and classified them into 10 categories of social disasters. It constitutes more than 150 thousand words. Using this information, a controlled vocabulary of more than 300 keywords was elaborated, that will help in the process of classification and identification of the texts related to the field of social disasters. To solve the second problem, the formalism of Petri net has been used. We deal with the problem of inhabitants’ evacuation in useful time. The analysis methods such as reachability or coverability tree and invariants technique to determine dynamic properties of the modeled systems will be used. To perform a case study of properties of extended evacuation system by adding time, the analysis modules of PIPE such as Generalized Stochastic Petri Nets (GSPN) Analysis, Simulation, State Space Analysis, and Invariant Analysis have been used. These modules helped us to obtain the average number of persons situated in the rooms and the other quantitative properties and characteristics related to its dynamics.

Keywords: lexicon of disasters, modelling, Petri nets, text annotation, social disasters

Procedia PDF Downloads 197
315 The Effects of Varying Nutrient Conditions on Hydrogen Production in PGR5 Deficient C. Reinhardtii Mutants

Authors: Samuel Mejorado

Abstract:

C. Reinahrdtii serves as one of the most promising organisms from which to obtain biological hydrogen. However, its production catalyst, [FeFe]-hydrogenase, is largely inhibited by the presence of oxygen. In recent years, researchers have identified a Proton Gradient Regulation 5 (PGR5) deficient mutant, which shows enhanced respiration and lower accumulations of oxygen within the system. In this research, we investigated the effects of varying nutrient conditions on PGR5 mutants' ability to produce hydrogen. After growing PGR5 mutants in varying nutrient conditions under 55W fluorescent lamps at 30℃ with constant stirring at 200 rpm, a common water displacement method was utilized to obtain a definitive volumetric reading of hydrogen produced by these mutants over a period of 12 days. After the trials, statistical t-tests and ANOVAs were performed to better determine the effect which nutrient conditions have on PGR5 mutants' ability to produce hydrogen. In this, we report that conditions of sulfur deprivation most optimally enhanced hydrogen production within these mutants, with groups grown under these conditions demonstrating the highest production capacity over the entire 12-day period. Similarly, it was found that when grown under conditions of nitrogen deprivation, a favorable shift towards carbon fixation and overall lipid/starch metabolism was observed. Overall, these results demonstrate that PGR5-deficient mutants stand as a promising source of biohydrogen when grown under conditions of sulfur deprivation. To date, photochemical characteristics of [FeFe]-hydrogenase in these mutants have yet to be investigated under conditions of sulfur deprivation.

Keywords: biofuel, biohydrogen, [FeFe]-hydrogenase, algal biofuel

Procedia PDF Downloads 144
314 Diversity and Distribution of Butterflies (Lepidoptera-Rhopalocera) along with Altitudinal Gradient and Vegetation Types at Lahoul Valley, Trans-Himalaya Region, India

Authors: Saveena Bogtapa, Jagbir Singh Kirti

Abstract:

Himalaya is one of the most fascinating ranges in the world. In India, it comprises 18 percent of the land area. Lahoul valley which is a part of Trans-Himalaya region is well known for its unique, diverse flora and fauna. It lies in the North-Eastern corner of the state Himachal Pradesh where its altitude ranges between 2500m to 5000m. Vegetation of this region is dry-temperate to alpine type. The diversity of the area is very less, rare, unique and highly endemic. But today, as a lot of environmental degradation has taken place in this hot spot of biodiversity because of frequent developmental and commercial activities which lead to the diversity of this area comes under a real threat. Therefore, as part of the research, butterflies which are known for their attractiveness as well as usefulness to the ecosystem, are used for the study. The diversity of butterflies of a particular area not only provides a healthy environment but also serves as the first step of conservation to the biodiversity. Their distribution in different habitats and altitude type helps us to understand the species richness and abundance in an area. Moreover, different environmental parameters which affect the butterfly community has also recorded. Hence, the present study documents the butterfly diversity in an unexplored habitat and altitude types at Lahoul valley. The valley has been surveyed along with altitudinal gradients (from 2500m to 4500m) and in various habitats like agriculture land, grassland, scrubland, riverine and in different types of forests. Very rare species of butterflies have been explored, and these will be discussed along with different parameters during the presentation.

Keywords: butterflies, diversity, Lahoul valley, altitude, vegetation

Procedia PDF Downloads 246
313 Effect of Cellular Water Transport on Deformation of Food Material during Drying

Authors: M. Imran Hossen Khan, M. Mahiuddin, M. A. Karim

Abstract:

Drying is a food processing technique where simultaneous heat and mass transfer take place from surface to the center of the sample. Deformation of food materials during drying is a common physical phenomenon which affects the textural quality and taste of the dried product. Most of the plant-based food materials are porous and hygroscopic in nature that contains about 80-90% water in different cellular environments: intercellular environment and intracellular environment. Transport of this cellular water has a significant effect on material deformation during drying. However, understanding of the scale of deformation is very complex due to diverse nature and structural heterogeneity of food material. Knowledge about the effect of transport of cellular water on deformation of material during drying is crucial for increasing the energy efficiency and obtaining better quality dried foods. Therefore, the primary aim of this work is to investigate the effect of intracellular water transport on material deformation during drying. In this study, apple tissue was taken for the investigation. The experiment was carried out using 1H-NMR T2 relaxometry with a conventional dryer. The experimental results are consistent with the understanding that transport of intracellular water causes cellular shrinkage associated with the anisotropic deformation of whole apple tissue. Interestingly, it is found that the deformation of apple tissue takes place at different stages of drying rather than deforming at one time. Moreover, it is found that the penetration rate of heat energy together with the pressure gradient between intracellular and intercellular environments is the responsible force to rupture the cell membrane.

Keywords: heat and mass transfer, food material, intracellular water, cell rupture, deformation

Procedia PDF Downloads 221
312 Analysis of Two-Echelon Supply Chain with Perishable Items under Stochastic Demand

Authors: Saeed Poormoaied

Abstract:

Perishability and developing an intelligent control policy for perishable items are the major concerns of marketing managers in a supply chain. In this study, we address a two-echelon supply chain problem for perishable items with a single vendor and a single buyer. The buyer adopts an aged-based continuous review policy which works by taking both the stock level and the aging process of items into account. The vendor works under the warehouse framework, where its lot size is determined with respect to the batch size of the buyer. The model holds for a positive and fixed lead time for the buyer, and zero lead time for the vendor. The demand follows a Poisson process and any unmet demand is lost. We provide exact analytic expressions for the operational characteristics of the system by using the renewal reward theorem. Items have a fixed lifetime after which they become unusable and are disposed of from the buyer's system. The age of items starts when they are unpacked and ready for the consumption at the buyer. When items are held by the vendor, there is no aging process which results in no perishing at the vendor's site. The model is developed under the centralized framework, which takes the expected profit of both vendor and buyer into consideration. The goal is to determine the optimal policy parameters under the service level constraint at the retailer's site. A sensitivity analysis is performed to investigate the effect of the key input parameters on the expected profit and order quantity in the supply chain. The efficiency of the proposed age-based policy is also evaluated through a numerical study. Our results show that when the unit perishing cost is negligible, a significant cost saving is achieved.

Keywords: two-echelon supply chain, perishable items, age-based policy, renewal reward theorem

Procedia PDF Downloads 143
311 Solar Powered Front Wheel Drive (FWD) Electric Trike: An Innovation

Authors: Michael C. Barbecho, Romeo B. Morcilla

Abstract:

This study focused on the development of a solar powered front wheel drive electric trike for personal use and short distance travel, utilizing solar power and a variable speed transmission to adapt in places where varying road grades and unavailability of plug-in charging stations are of great problems. The actual performance of the vehicle was measured in terms of duration of charging using solar power, distance travel and battery power duration, top speed developed at full power, and load capacity. This project followed the research and development process which involved planning, designing, construction, and testing. Solar charging tests revealed that the vehicle requires 6 to 8 hours sunlight exposure to fully charge the batteries. At full charge, the vehicle can travel 35 km utilizing battery power down to 42%. Vehicle showed top speed of 25 kph at 0 to 3% road grade carrying a maximum load of 122 kg. The maximum climbing grade was 23% with the vehicle carrying a maximum load of 122 kg. Technically the project was feasible and can be a potential model for possible conversion of traditional Philippine made “pedicabs” and gasoline engine powered tricycle into modern electric vehicles. Moreover, it has several technical features and advantages over a commercialized electric vehicle such as the use solar charging system and variable speed power transmission and front drive power train for adaptability in any road gradient.

Keywords: electric vehicle, solar vehicles, front drive, solar, solar power

Procedia PDF Downloads 571
310 Stability of a Natural Weak Rock Slope under Rapid Water Drawdowns: Interaction between Guadalfeo Viaduct and Rules Reservoir, Granada, Spain

Authors: Sonia Bautista Carrascosa, Carlos Renedo Sanchez

Abstract:

The effect of a rapid drawdown is a classical scenario to be considered in slope stability under submerged conditions. This situation arises when totally or partially submerged slopes experience a descent of the external water level and is a typical verification to be done in a dam engineering discipline, as reservoir water levels commonly fluctuate noticeably during seasons and due to operational reasons. Although the scenario is well known and predictable in general, site conditions can increase the complexity of its assessment and external factors are not always expected, can cause a reduction in the stability or even a failure in a slope under a rapid drawdown situation. The present paper describes and discusses the interaction between two different infrastructures, a dam and a highway, and the impact on the stability of a natural rock slope overlaid by the north abutment of a viaduct of the A-44 Highway due to the rapid drawdown of the Rules Dam, in the province of Granada (south of Spain). In the year 2011, with both infrastructures, the A-44 Highway and the Rules Dam already constructed, delivered and under operation, some movements start to be recorded in the approximation embankment and north abutment of the Guadalfeo Viaduct, included in the highway and developed to solve the crossing above the tail of the reservoir. The embankment and abutment were founded in a low-angle natural rock slope formed by grey graphic phyllites, distinctly weathered and intensely fractured, with pre-existing fault and weak planes. After the first filling of the reservoir, to a relative level of 243m, three consecutive drawdowns were recorded in the autumns 2010, 2011 and 2012, to relative levels of 234m, 232m and 225m. To understand the effect of these drawdowns in the weak rock mass strength and in its stability, a new geological model was developed, after reviewing all the available ground investigations, updating the geological mapping of the area and supplemented with an additional geotechnical and geophysical investigations survey. Together with all this information, rainfall and reservoir level evolution data have been reviewed in detail to incorporate into the monitoring interpretation. The analysis of the monitoring data and the new geological and geotechnical interpretation, supported by the use of limit equilibrium software Slide2, concludes that the movement follows the same direction as the schistosity of the phyllitic rock mass, coincident as well with the direction of the natural slope, indicating a deep-seated movement of the whole slope towards the reservoir. As part of these conclusions, the solutions considered to reinstate the highway infrastructure to the required FoS will be described, and the geomechanical characterization of these weak rocks discussed, together with the influence of water level variations, not only in the water pressure regime but in its geotechnical behavior, by the modification of the strength parameters and deformability.

Keywords: monitoring, rock slope stability, water drawdown, weak rock

Procedia PDF Downloads 160
309 AI-Powered Models for Real-Time Fraud Detection in Financial Transactions to Improve Financial Security

Authors: Shanshan Zhu, Mohammad Nasim

Abstract:

Financial fraud continues to be a major threat to financial institutions across the world, causing colossal money losses and undermining public trust. Fraud prevention techniques, based on hard rules, have become ineffective due to evolving patterns of fraud in recent times. Against such a background, the present study probes into distinct methodologies that exploit emergent AI-driven techniques to further strengthen fraud detection. We would like to compare the performance of generative adversarial networks and graph neural networks with other popular techniques, like gradient boosting, random forests, and neural networks. To this end, we would recommend integrating all these state-of-the-art models into one robust, flexible, and smart system for real-time anomaly and fraud detection. To overcome the challenge, we designed synthetic data and then conducted pattern recognition and unsupervised and supervised learning analyses on the transaction data to identify which activities were fishy. With the use of actual financial statistics, we compare the performance of our model in accuracy, speed, and adaptability versus conventional models. The results of this study illustrate a strong signal and need to integrate state-of-the-art, AI-driven fraud detection solutions into frameworks that are highly relevant to the financial domain. It alerts one to the great urgency that banks and related financial institutions must rapidly implement these most advanced technologies to continue to have a high level of security.

Keywords: AI-driven fraud detection, financial security, machine learning, anomaly detection, real-time fraud detection

Procedia PDF Downloads 42
308 A Segmentation Method for Grayscale Images Based on the Firefly Algorithm and the Gaussian Mixture Model

Authors: Donatella Giuliani

Abstract:

In this research, we propose an unsupervised grayscale image segmentation method based on a combination of the Firefly Algorithm and the Gaussian Mixture Model. Firstly, the Firefly Algorithm has been applied in a histogram-based research of cluster means. The Firefly Algorithm is a stochastic global optimization technique, centered on the flashing characteristics of fireflies. In this context it has been performed to determine the number of clusters and the related cluster means in a histogram-based segmentation approach. Successively these means are used in the initialization step for the parameter estimation of a Gaussian Mixture Model. The parametric probability density function of a Gaussian Mixture Model is represented as a weighted sum of Gaussian component densities, whose parameters are evaluated applying the iterative Expectation-Maximization technique. The coefficients of the linear super-position of Gaussians can be thought as prior probabilities of each component. Applying the Bayes rule, the posterior probabilities of the grayscale intensities have been evaluated, therefore their maxima are used to assign each pixel to the clusters, according to their gray-level values. The proposed approach appears fairly solid and reliable when applied even to complex grayscale images. The validation has been performed by using different standard measures, more precisely: the Root Mean Square Error (RMSE), the Structural Content (SC), the Normalized Correlation Coefficient (NK) and the Davies-Bouldin (DB) index. The achieved results have strongly confirmed the robustness of this gray scale segmentation method based on a metaheuristic algorithm. Another noteworthy advantage of this methodology is due to the use of maxima of responsibilities for the pixel assignment that implies a consistent reduction of the computational costs.

Keywords: clustering images, firefly algorithm, Gaussian mixture model, meta heuristic algorithm, image segmentation

Procedia PDF Downloads 217
307 Simulation of Cure Kinetics and Process-Induced Stresses in Carbon Fibre Composite Laminate Manufactured by a Liquid Composite Molding Technique

Authors: Jayaraman Muniyappan, Bachchan Kr Mishra, Gautam Salkar, Swetha Manian Sridhar

Abstract:

Vacuum Assisted Resin Transfer Molding (VARTM), a cost effective method of Liquid Composite Molding (LCM), is a single step process where the resin, at atmospheric pressure, is infused through a preform that is maintained under vacuum. This hydrodynamic pressure gradient is responsible for the flow of resin through the dry fabric preform. The current study has a slight variation to traditional VARTM, wherein, the resin infuses through the fabric placed on a heated mold to reduce its viscosity. The saturated preform is subjected to a cure cycle where the resin hardens as it undergoes curing. During this cycle, an uneven temperature distribution through the thickness of the composite and excess exothermic heat released due to different cure rates result in non-uniform curing. Additionally, there is a difference in thermal expansion coefficient between fiber and resin in a given plane and between adjacent plies. All these effects coupled with orthotropic coefficient of thermal expansion of the composite give rise to process-induced stresses in the laminate. Such stresses lead to part deformation when the laminate tries to relieve them as the part is released off the mold. The current study looks at simulating resin infusion, cure kinetics and the structural response of composite laminate subject to process-induced stresses.

Keywords: cure kinetics, process-induced stresses, thermal expansion coefficient, vacuum assisted resin transfer molding

Procedia PDF Downloads 240
306 Probabilistic Approach to the Spatial Identification of the Environmental Sources behind Mortality Rates in Europe

Authors: Alina Svechkina, Boris A. Portnov

Abstract:

In line with a rapid increase in pollution sources and enforcement of stricter air pollution regulation, which lowers pollution levels, it becomes more difficult to identify actual risk sources behind the observed morbidity patterns, and new approaches are required to identify potential risks and take preventive actions. In the present study, we discuss a probabilistic approach to the spatial identification of a priori unidentified environmental health hazards. The underlying assumption behind the tested approach is that the observed adverse health patterns (morbidity, mortality) can become a source of information on the geographic location of environmental risk factors that stand behind them. Using this approach, we analyzed sources of environmental exposure using data on mortality rates available for the year 2015 for NUTS 3 (Nomenclature of Territorial Units for Statistics) subdivisions of the European Union. We identified several areas in the southwestern part of Europe as primary risk sources for the observed mortality patterns. Multivariate regressions, controlled by geographical location, climate conditions, GDP (gross domestic product) per capita, dependency ratios, population density, and the level of road freight revealed that mortality rates decline as a function of distance from the identified hazard location. We recommend the proposed approach an exploratory analysis tool for initial investigation of regional patterns of population morbidity patterns and factors behind it.

Keywords: mortality, environmental hazards, air pollution, distance decay gradient, multi regression analysis, Europe, NUTS3

Procedia PDF Downloads 167
305 Liver and Liver Lesion Segmentation From Abdominal CT Scans

Authors: Belgherbi Aicha, Hadjidj Ismahen, Bessaid Abdelhafid

Abstract:

The interpretation of medical images benefits from anatomical and physiological priors to optimize computer- aided diagnosis applications. Segmentation of liver and liver lesion is regarded as a major primary step in computer aided diagnosis of liver diseases. Precise liver segmentation in abdominal CT images is one of the most important steps for the computer-aided diagnosis of liver pathology. In this papers, a semi- automated method for medical image data is presented for the liver and liver lesion segmentation data using mathematical morphology. Our algorithm is currency in two parts. In the first, we seek to determine the region of interest by applying the morphological filters to extract the liver. The second step consists to detect the liver lesion. In this task; we proposed a new method developed for the semi-automatic segmentation of the liver and hepatic lesions. Our proposed method is based on the anatomical information and mathematical morphology tools used in the image processing field. At first, we try to improve the quality of the original image and image gradient by applying the spatial filter followed by the morphological filters. The second step consists to calculate the internal and external markers of the liver and hepatic lesions. Thereafter we proceed to the liver and hepatic lesions segmentation by the watershed transform controlled by markers. The validation of the developed algorithm is done using several images. Obtained results show the good performances of our proposed algorithm

Keywords: anisotropic diffusion filter, CT images, hepatic lesion segmentation, Liver segmentation, morphological filter, the watershed algorithm

Procedia PDF Downloads 451
304 Effect of External Radiative Heat Flux on Combustion Characteristics of Rigid Polyurethane Foam under Piloted-Ignition and Radiative Auto-Ignition Modes

Authors: Jia-Jia He, Lin Jiang, Jin-Hua Sun

Abstract:

Rigid polyurethane foam (RPU) has been extensively applied in building insulation system, yet with high flammability for being easily ignited by high temperature spark or radiative heat flux from other flaming materials or surrounding building facade. Using a cone calorimeter by Fire Testing Technology and thermal couple tree, this study systematically investigated the effect of radiative heat flux on the ignition time and characteristic temperature distribution during RPU combustion under different heat fluxes gradient (12, 15, 20, 25, 30, 35, 40, 45, and 50 kW/m²) with spark ignition/ignition by radiation. The ignition time decreases proportionally with increase of external heat flux, meanwhile increasing the external heat flux raises the peak heat release rate and impresses on the vertical temperature distribution greatly. The critical ignition heat flux is found to be 15 and 25 kW/m² for spark ignition and radiative ignition, respectively. Based on previous experienced ignition formula, a methodology to predict ignition times in both modes has been developed theoretically. By analyzing the heat transfer mechanism around the sample surroundings, both radiation from cone calorimeter and convection flow are considered and calculated theoretically. The experimental ignition times agree well with the theoretical ones in both radiative and convective conditions; however, the observed critical ignition heat flux is higher than the calculated one under piloted-ignition mode because the heat loss process, especially in lower heat flux radiation, is not considered in this developed methodology.

Keywords: rigid polyurethane foam, cone calorimeter, ignition time, external heat flux

Procedia PDF Downloads 208
303 Improving Fingerprinting-Based Localization System Using Generative AI

Authors: Getaneh Berie Tarekegn

Abstract:

A precise localization system is crucial for many artificial intelligence Internet of Things (AI-IoT) applications in the era of smart cities. Their applications include traffic monitoring, emergency alarming, environmental monitoring, location-based advertising, intelligent transportation, and smart health care. The most common method for providing continuous positioning services in outdoor environments is by using a global navigation satellite system (GNSS). Due to nonline-of-sight, multipath, and weather conditions, GNSS systems do not perform well in dense urban, urban, and suburban areas.This paper proposes a generative AI-based positioning scheme for large-scale wireless settings using fingerprinting techniques. In this article, we presented a semi-supervised deep convolutional generative adversarial network (S-DCGAN)-based radio map construction method for real-time device localization. It also employed a reliable signal fingerprint feature extraction method with t-distributed stochastic neighbor embedding (t-SNE), which extracts dominant features while eliminating noise from hybrid WLAN and long-term evolution (LTE) fingerprints. The proposed scheme reduced the workload of site surveying required to build the fingerprint database by up to 78.5% and significantly improved positioning accuracy. The results show that the average positioning error of GAILoc is less than 0.39 m, and more than 90% of the errors are less than 0.82 m. According to numerical results, SRCLoc improves positioning performance and reduces radio map construction costs significantly compared to traditional methods.

Keywords: location-aware services, feature extraction technique, generative adversarial network, long short-term memory, support vector machine

Procedia PDF Downloads 59